Bulk Segregation Mapping of Mutations in Closely Related Strains of Mice

Yu Xia,* Sungyong Won,* Xin Du,* Pei Lin,* Charles Ross,* Diantha La Vine,* Sean Wiltshire,[†] Gabriel Leiva,[†] Silvia M. Vidal,[†] Belinda Whittle,[‡] Christopher C. Goodnow,[‡] James Koziol,[§] Eva Marie Y. Moresco* and Bruce Beutler^{*,1}

*Department of Genetics, [§]Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, [†]Centre for the Study of Host Resistance, Montreal General Hospital Dental Clinic, Montreal, Quebec H3G 1A4, Canada and [‡]John Curtin School of Medical Research, Australian National University, Canberra City, ACT 2601, Australia

Manuscript received July 21, 2010

Accepted for publication October 3, 2010

ABSTRACT

Phenovariance may be obscured when genetic mapping is performed using highly divergent strains, and closely similar strains are preferred if adequate marker density can be established. We sequenced the C57BL/10J mouse genome using the Applied Biosystems SOLiD platform and here describe a genome-wide panel of informative markers that permits the mapping of mutations induced on the closely related C57BL/6J background by outcrossing to C57BL/10J, and backcrossing or intercrossing. The panel consists of 127 single nucleotide polymorphisms validated by capillary sequencing: 124 spaced at ~20-Mb intervals across the 19 autosomes, and three markers on the X chromosome. We determined the genetic relationship between four C57BL-derived substrains and used the panel to map two *N*-ethyl-*N*-nitrosourea (ENU)-induced mutations responsible for visible phenotypes in C57BL/6J mice through bulk segregation analysis. Capillary sequencing, with computation of relative chromatogram peak heights, was used to determine the proportion of alleles from each strain at each marker.

D^{ESPITE} the advent of massively parallel DNA sequencing, genetic mapping remains necessary to establish linkage between phenotypes and the mutations that cause them. Ideally, closely related strains are used for mapping, since phenotypes can be affected by modifier loci, which occur in rough proportion to the genetic distance between strains. Modifier loci can alter the inheritance, penetrance, and pleiotropy of mutant phenotypes (MONTAGUTELLI 2000).

C57BL/6J is the only inbred laboratory mouse strain for which a complete annotated genomic sequence has been published and is therefore the strain most commonly used for random germline mutagenesis and phenotypic screening. For mutagenesis centers around the world, including The Jackson Laboratory, Australian Phenomics Facility (Canberra, Australia), RIKEN Genomics Science Center (Saitama, Japan), Medical Research Council Harwell (Oxfordshire, United Kingdom), Genomic Institute of the Novartis Foundation (San Diego, CA), and the Mouse Mutagenesis Center at Baylor College of Medicine (Houston, TX), C57BL/6J has been mutagenized. However, a closely related strain has not been available for genetic mapping of phenotypes induced in C57BL/6J, precluding the mapping and study of some phenotypes.

In 1921, a single cross gave rise to the black subline C57BL and the brown sublines C57BR and C57L. Subsequently, the C57BL/6 and C57BL/10 strains were derived from the inbred C57BL colony and separated prior to 1937; no contribution from other strains to the parentage of either line is known (FESTING 2010). In terms of phenotype, C57BL/6J and C57BL/10J have been extensively characterized; 82 and 51 phenotypes are listed, respectively, for these two strains in the Mouse Phenome Database (http://phenome.jax.org). The strains are highly similar in appearance, body size, and weight, coat color, metabolism, blood composition, immune function, and cardiovascular, renal, and liver physiology. Although the two strains are presumed to share a close genetic relationship due to their recent common origin, by 1995 genetic differences on chromosomes 2, 4, 11, 12, 13, and 16 had been reported (MCCLIVE et al. 1994; SLINGSBY et al. 1995). The Mouse Genome Informatics (MGI) database currently lists a total of 412 autosomal single nucleotide polymorphisms (SNPs), restriction fragment length polymorphisms (RFLPs), or PCR-based polymorphisms between C57BL/6J and C57BL/10J strains. However, at least 12 gaps exceeding 30 Mb in length are evident when the locations of these markers are examined, and not all of

Supporting information is available online at http://www.genetics.org/cgi/content/full/genetics.110.121160/DC1.

¹Corresponding author: Department of Genetics, The Scripps Research Institute, 10550 North Torrey Pines Rd., SP-293, La Jolla, CA 92037. E-mail: bruce@scripps.edu

the differences could be validated when reexamined by capillary electrophoresis in our laboratory.

To construct a more useful set of informative markers distinguishing C57BL/10J and C57BL/6J genomes, we sequenced the C57BL/10J genome using the Applied Biosystems SOLiD sequencing technology. We validated 127 SNPs by capillary sequencing and then used them to map two *N*-ethyl-*N*-nitrosourea (ENU)-induced mutations, one causing pigment dilution and the other causing circling behavior. Mapping was accomplished by bulk segregation analysis (BSA), in which allele frequency was measured at each informative locus in pools of DNA from phenotypically affected and nonaffected F₂ mice. These measurements depended upon software that measures the amplitude of individual nucleotide peaks in trace files generated by sequencing amplified DNA from pooled F₂ genomic DNA samples.

MATERIALS AND METHODS

Animals: The C57BL/6J and C57BL/10J strains were obtained from The Jackson Laboratory (Bar Harbor, ME) and housed in The Scripps Research Institute Animal Facility (La Jolla, CA). All studies were performed in accordance with the guidelines established by the Institutional Animal Care and Use Committee of The Scripps Research Institute. The C57BL/6NCrl and C57BL/10SgSnJ strains were purchased, respectively, from the Charles River Laboratories International (Wilmington, MA) in March 2010 and The Jackson Laboratory in 2004, and maintained at Australian National University (Canberra, Australia).

ENU mutagenesis was performed on C57BL/6J mice ordered from The Jackson Laboratory as described previously (HOEBE *et al.* 2003a,b). Each mutagenized (G0) male was bred to a C57BL/6J female, and the resulting G1 males were crossed to C57BL/6J females to yield G2 mice. G2 females were backcrossed to their G1 sires to yield G3 mice. The *june gloom* phenotype was observed among G3 mice of a single pedigree and expanded to form a stock on the basis of the visible pigmentation phenotype. The *mayday circler* phenotype was identified in a screen for suppressors of the *mayday* phenotype caused by a *Kcnj8* mutation (CROKER *et al.* 2007). The *june gloom, mayday circler, galak, gray goose, cardigan, sweater,* and *zuckerkuss* strains are described at http://mutagenetix.scripps. edu. Their MGI accession nos. are respectively, 4420315, 4458386, 3784980, 3784982, 3784977, 3784986, and 4420306.

Whole genome DNA sequencing: SOLiD sequencing was performed according to the Applied Biosystems SOLiD 2 System Library Preparation Guide, Templated Beads Preparation Guide, and Instrument Operation Guide. Purified genomic DNA from a tail section of a male C57BL/10J mouse was sheared into 60- to 90-bp fragments using the Covaris S2 System. The sheared DNA was end repaired and ligated to adapters P1 and P2 and the products separated by agarose gel electrophoresis. Products 150-200 bp in size were excised, purified, and amplified using library PCR primers. This fragment library was clonally amplified on P1-coupled beads by emulsion PCR. Templated beads were separated from nontemplated beads through capture on polystyrene beads coated with P2 and attached to the surface of a SOLiD slide via a 3' modification of the DNA strands. A total of 326,034,743 template-bound beads were collected and loaded onto one glass slide and subjected to SOLiD sequencing.

SOLiD sequencing data were analyzed using a Linux computer cluster, with a total of 3936 central processing units (CPUs), and the Applied Biosystems software, Corona Lite. Raw data from SOLiD (in .csfasta file format) were matched to the mouse reference genome (NCBI reference assembly Build 37) allowing a maximum of three mismatches per read. Uniquely matched reads were sent to a SNP calling pipeline to identify discrepancies.

SNP validations: Genomic DNA from the C57BL/10J mouse analyzed by SOLiD sequencing was amplified by PCR with primers that were designed using a Perl script embedded with the Prime program from the GCG DNA software analysis package. The PCR products were purified on a Biomek FX using AMPure beads (Agencourt) and sequenced using Big Dye Terminator v3.1 (Applied Biosystems) on an ABI 3730 XL capillary sequencer. Evaluation of validation sequencing data was performed using a Perl script embedded with PhredPhrap, and discrepant base pair calls were visualized with *consed*.

For the first round of validation, two SNPs were selected within each of 138 windows an average size of 1.6 Mb (maximum and minimum windows 21.5 Mb and 387 bp, respectively) and spaced at an average distance of 20.4 Mb (maximum and minimum distances 29.3 Mb and 12.6 Mb, respectively) across the 19 autosomes and the X chromosome. For the second and third rounds of validation, candidate SNPs were selected for sequencing on the basis of (1) a position ~ 20 Mb from the nearest successfully validated SNP, (2) number of reads by SOLiD sequencing and the score/confidence values assigned to the SNP, and (3) whether none of the SOLiD sequencing reads agreed with the published reference sequence. Sixteen discrepancies representing 16 sites validated in the laboratories of C. C. Goodnow and S. M. Vidal were included in the third round of validation and of these, eight were included in the final SNP panel. Of a total of 131 validated SNPs, 3 autosomal SNPs were excluded from the final panel because they were either polymorphic among mice of our inbred C57BL/6J stock or they were polymorphic for more than two different nucleotides. Three SNPs were located on the X chromosome and were not used in mapping the *june* gloom or mayday circler phenotypes. All SNPs behaved as autosomal recessive traits. The final panel contained 127 SNPs: 124 on the 19 autosomes and 3 on the X chromosome.

Bulk segregation analysis: Each SNP was amplified by PCR from the two pooled F2 DNA samples. The PCR products were purified on a Biomek FX using AMPure beads (Agencourt) and sequenced using Big Dye Terminator v3.1 (Applied Biosystems) on an ABI 3730 XL capillary sequencer. DNA sequencing trace peak heights were used to interpolate C57BL/6J (B6) and C57BL/10J (B10) allele frequencies at each SNP site in the F_2 test samples from standard curves of normalized peak height vs. allele frequency, generated using DNA samples containing known ratios of B6:B10 DNA. To generate standard curves, each SNP was amplified by PCR from four DNA samples containing B6:B10 contribution ratios of 100:0, 75:25, 50:50, and 0:100, and PCR products were sequenced by capillary electrophoresis. For each SNP site, B6 or B10 allele percentage was plotted against normalized trace peak height, defined as [SNP peak height/trace basal signal level], where the trace basal signal level was calculated as the average height of 10 nucleotides flanking the SNP site (5 nts upstream and 5 nts downstream of the SNP). This normalization is necessary to correct for differences in overall efficiency of individual sequencing runs. Linear regression was used to fit the plotted data points to a line.

The concentration of genomic DNA from each F_2 mouse was measured by qPCR of a single copy locus (Chr 12: 25,631,411–25,631,567 within the *Mboat2* gene). Pooled F_2 DNA samples

TABLE 1

B6:B10 allele frequencies in F₂ mice with a recessive mutation

		Phenotype			
	Marker	Mutant	Normal		
Intercross	Unlinked	50:50	50:50		
	Linked	100:0	33.3:66.7		
Backcross	Unlinked	75:25	75:25		
	Linked	100:0	50:50		

within the read. In aggregate, the uniquely mapped reads covered 55.8, 39.1, and 28.1% of all nucleotides in the genome with one or more, two or more, or three or more sequencing reads, respectively. Among 62,367 discrepancies from the reference sequence identified in three or more reads (File S1), we manually selected for validation two discrepancies within each of 138 windows an average of 1.6 Mb in size and spaced at an average distance of 20.4 Mb across the 19 autosomes and the X chromosome. At least one SNP at each of 87 sites was successfully validated upon PCR amplification and DNA sequencing by capillary electrophoresis. In a second round of validation, 227 discrepancies at 47 sites were chosen for DNA sequencing; at least one SNP at each of 24 sites was confirmed. In a final round of validation, 150 discrepancies representing 24 sites were sequenced, including 16 informative differences representing 16 sites known to the Goodnow and Vidal laboratories. At least one SNP at each of 20 sites was confirmed in this round.

From 131 SNPs, a final SNP panel was compiled, containing 127 SNPs spaced at ~20-Mb intervals across the 19 autosomes and the X chromosome (Table S1). Of these, nine are listed in the SNP database at Mouse Genome Informatics (MGI). In all, among 641 discrepancies we identified by SOLiD sequencing, 489 were successfully analyzed by capillary sequencing and 216 were authenticated. Taking into account a validation rate of $\sim 44.2\%$ and a total of 62,367 uniquely mapped discrepancies with three or more sequencing reads (28.1% of all nucleotides), we estimate that ~98,000 single nucleotide differences exist between the C57BL/ 6] and C57BL/10] strains (*i.e.*, the strains are 99.9963%) identical, with mutations occurring at intervals averaging 27,000 bp in length). We note, however, that insertions and deletions are not detected by SOLiD sequencing, and also that repetitive sequences are underrepresented in the data captured by SOLiD.

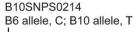
To estimate the similarity between C57BL/6 and C57BL/10 sublines, we also sequenced the 127 SNP sites in our panel in DNA from the C57BL/6NCrl and C57BL/10SgSnJ substrains (Table S2). Of 127 sites distinguishing C57BL/6J and C57BL/10J, the two C57BL/6 substrains and the two C57BL/10 substrains differed at 44 and 42 sites, respectively, supporting a model (Figure S1) in which the ancestral C57BL strain

were created by mixing equimolar quantities of DNA from each individual into the pool. To determine allele frequencies in the pooled F₂ DNA samples, normalized peak height was calculated for B6 and B10 alleles at each SNP site as described above, and estimated B6 and B10 allele percentages were interpolated from the standard curve for each corresponding SNP. This method for measuring allele frequency corrects for differences in nucleotide incorporation (A vs. T vs. C vs. G) within a sequencing run. The total allele number (N) was taken to be twice the number of mice at all autosomal loci. The estimated B6 and B10 allele numbers for each SNP site were determined as [estimated allele percentage $\times N$], and were used to calculate P-values separately for mice with mutant and normal phenotypes on the basis of the χ^2 distribution and the expected frequencies of B6 and B10 alleles at each variant site (Table 1). In the mutant phenotype DNA pool, when the estimated B10 allele count was higher than the expected B10 allele number, the particular marker was considered to be not linked, and the P-value was set at 1, i.e., estimated allele number was assumed to equal expected allele number. Similarly, in the normal phenotype DNA pool, when the estimated B6 allele count was higher than the expected B6 allele number, the particular marker was also considered to be not linked, and the P-value was set at 1. In the converse situation (lower number of B10 alleles than expected in the mutant pool or lower number of B6 alleles than expected in the normal pool), P-values were calculated as described above.

The probabilities for the mutant phenotype sample and the normal phenotype sample were combined after calculation using Fisher's method of combining *P*values with the formula $\chi^2 = -2[\ln(p_1) + \ln(p_2)]$; the *P*value for χ^2 , $p_{\text{composite}}$, was determined from a χ^2 distribution with four degrees of freedom. Scores for linkage were calculated as $-\log_{10}(p)$ separately for the mutant phenotype pool, the normal phenotype pool, and for all mice combined.

Calculation of the synthetic LOD score: The synthetic LOD score was calculated on the basis of the estimated number of mice with genotypes concordant with either the mutant or normal phenotype, using the formula $LOD = \log_{10}[p(link$ age)/p(nonlinkage)]. The probability of linkage was calculated as [p(linkage) = 1 - p(nonlinkage)]. The probability of nonlinkage was calculated from a binomial distribution, where the probability of either of two possible outcomes (concordance or discordance with phenotype) for each unlinked marker in a given F₂ mouse differs depending on the type of cross that has been made. For backcross progeny, the expected frequency of genotypic concordance with either the mutant or the normal phenotype is 50%. For intercross progeny, the expected frequencies of genotypic concordance with the mutant and normal phenotypes are 25 and 75%, respectively. Probabilities calculated independently for F₂ intercross mice with mutant phenotype and mice with normal phenotype were combined using Fisher's method.

RESULTS AND DISCUSSION


To identify SNPs between C57BL/6J and C57BL/10J strains, we performed a single fragment library sequencing run on genomic DNA from a male C57BL/10J mouse using version 2 of Applied Biosystems SOLiD apparatus. A total of 145,423,150 reads were uniquely mapped to the C57BL/6J reference genome [National Center for Biotechnology Information (NCBI) version 37] using a criterion of three or fewer mismatches

diverged to C57BL/6 and C57BL/10 strains, with subsequent splitting of the C57BL/6 line to C57BL/6J and C57BL/6NCrl, and splitting of the C57BL/10 line to C57BL/10J and C57BL/10SgSnJ. There is no evidence of introgression between C57BL/6J and C57BL/ 10SgSnJ nor between C57BL/6NCrl and C57BL/10J, pairs which showed differences at 81 and 79 sites, respectively. In contrast, differences were found at only 36 sites on comparison of C57BL/6NCrl and C57BL/ 10SgSnJ, suggesting introgression of these lines.

To demonstrate the utility of the SNP panel in both intercross and backcross mapping, we used it to locate two mutations responsible for unrelated phenotypes in C57BL/6J G3 mice homozygous for random germline mutations induced by ENU. june gloom is a recessive phenotype characterized by a gray coat color that differs from the normally black coat of wild-type C57BL/6J mice. Mice with the recessive *mayday circler* phenotype exhibit bidirectional circling and head tilting. We used BSA to minimize the cost of mapping. BSA has been applied to plants, where it was first developed (MICHELMORE *et al.* 1991), to Saccharomyces cerevisiae (BRAUER et al. 2006), Danio rerio (RAWLS et al. 2003), and Caenorhabditis elegans (WICKS et al. 2001); it has been employed for mapping traits in mice using simple sequence length polymorphisms (SSLPs) as markers (COLLIN et al. 1996; TAYLOR and PHILLIPS. 1996). After either intercross or backcross of F_1 mice to generate F_2 offspring, we performed BSA by sequencing 124 autosomal markers in two pools of DNA from F₂ animals grouped by phenotype. Each pool was created by measuring genomic DNA from each F₂ mouse at a single copy locus (the Mboat2 gene) by qPCR and then mixing equimolar quantities of DNA from each individual into the pool.

For the june gloom phenotype, we outcrossed homozygous males to C57BL/10J females and intercrossed the resulting F₁ hybrids. DNA from 13 F₂ offspring with gray coat color, or 12 F₂ offspring with black coat color was pooled and amplicons of ~ 200 bp encompassing each of the 124 SNP sites were sequenced in both forward and reverse directions by capillary electrophoresis. For the *mayday circler* phenotype, we outcrossed homozygous males to C57BL/10J females and backcrossed the resulting female F1 hybrids to a homozygous male. Genomic DNA from 13 F₂ offspring with circling behavior, or 13 F₂ offspring with normal locomotor behavior, was pooled and sequenced across all markers. At each informative locus, enrichment of the C57BL/6J allele in the pool from mice with the mutant phenotype, and depletion of the C57BL/6J allele in the pool from mice with the normal phenotype, were used to establish linkage.

Capillary sequencing chromatogram peak heights were used to infer C57BL/6J and C57BL/10J allele frequencies at each variant site in the pooled DNA samples (Figure 1). Allele frequencies were estimated by linear interpolation, using a standard curve gener-

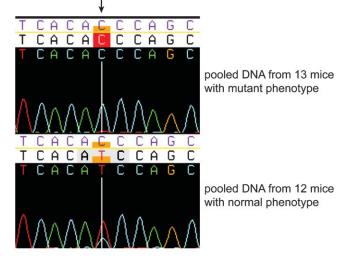


FIGURE 1.—Sample DNA sequence trace chromatograms. The region containing the SNP with strongest linkage to the *june gloom* phenotype from pooled DNA of 12 mice with normal phenotype (black coat) and 13 mice with the mutant phenotype (gray coat). Note that because this marker is linked to the phenotype, the sample from mice with gray coats is expected to contain the C57BL/6J allele exclusively, whereas the sample from mice with black coats is expected to contain C57BL/6J and C57BL/10J alleles at a ratio of 33.3:66.7.

ated using DNA samples containing known amounts of C57BL/6J and C57BL/10J DNA (Figure 2A) (see MATERIALS AND METHODS). Marker peak heights in standards and in test samples were normalized to the average signal within each sequencing reaction, calculated as the average height of 10 nucleotides flanking the SNP site (five peaks proximal and five peaks distal to the informative site). This method corrects SNP peak height measurements for differences between individual sequencing runs in overall efficiency and in the incorporation of particular nucleotides, which would be overlooked if peak heights were used directly in estimating allele frequency. As expected for pooled DNA from june gloom F₂ intercross progeny, C57BL/6J and C57BL/10J allele frequencies were \sim 50% at unlinked loci (Figure 2B). C57BL/6J and C57BL/10J allele frequencies were ~ 75 and 25%, respectively, at unlinked loci in pooled DNA from mayday circler F₂ backcross progeny (Figure 2C).

Because BSA does not determine the genotypes of individual mice, it is not possible to formally calculate LOD scores for each marker. Therefore, the χ^2 distribution was used to calculate the significance of departure from the expectation that for intercross and backcross progeny, respectively, C57BL/6J:C57BL/10J allele frequencies should approximate 50:50 and 75:25 at unlinked loci. In these calculations, the total number of alleles was taken to be twice the number of mice at all autosomal loci; the number of C57BL/6J or C57BL/10J

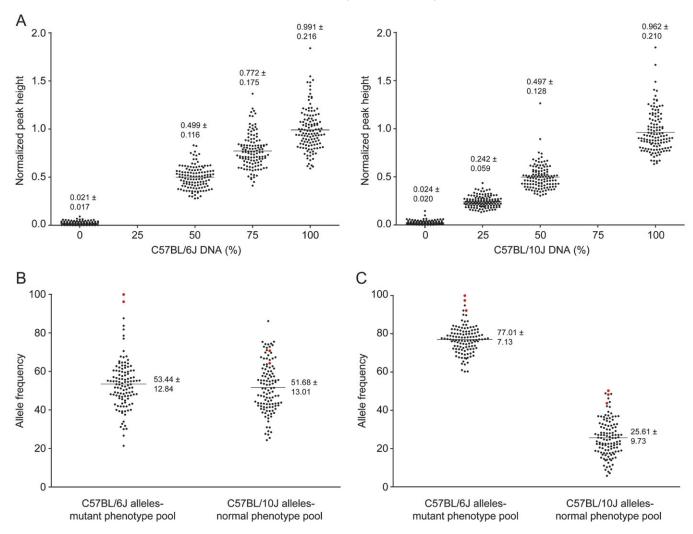


FIGURE 2.—Estimated C57BL/6J and C57BL/10J allele frequencies in *june gloom* and *mayday circler* mutant and normal phenotype pools at 124 SNP sites. (A) Normalized peak heights, calculated as described in MATERIALS AND METHODS, for each of 124 markers in samples with known ratios of C57BL/6J:C57BL/10 genomic DNA. For each individual marker, a standard curve was generated and fitted to a line by linear regression. Values, mean \pm SD; lines represent mean. (B and C) C57BL/6J and C57BL/10J allele frequencies at each of 124 markers in the mutant and normal phenotype DNA pools, respectively. Shown in red are data points representing the marker with the highest linkage score and those flanking it. Values, mean \pm SD; lines represent mean. *june* gloom samples (B) and *mayday circler* samples (C) are shown.

alleles was calculated as the interpolated allele frequency multiplied by the total number of alleles. *P*-values were determined separately for the mutant phenotype and normal phenotype pools and then combined using Fisher's method to give a *P*-value for linkage reflective of data from both pools. Finally, a linkage score, defined as $-\log_{10}(p)$, was calculated for each marker.

In addition, a "synthetic LOD score" was calculated for each marker on the basis of the nearest integer approximation of concordance between marker genotype and phenotype and different assumptions were applied, depending upon whether a backcross or intercross had been performed. For example, given 12 F_2 mice with the *june gloom* phenotype (where an intercross was performed) and an estimated allele frequency of 80% C57BL/6J (=*P*), 20% C57BL/10J (=*Q*) at a particular marker, we assume genotype frequencies would correspond to P^2 B6/B6; 2PQ B6/B10; and Q^2 B10/B10, or 0.64 (B6/B6), 0.32 (B6/B10), and 0.04 (B10/B10). The most probable numbers of mice of each genotype, rounded to the nearest integer, would then correspond to $0.64 \times 12 = 8$ (B6/B6), $0.32 \times 12 = 4$ (B6/B10), and $0.04 \times 13 = 0$ (B10/B10) mice (8:4:0). Calculation of the synthetic LOD score would then be based on 8 instances of concordance out of 12, with the expectation of 25% concordance for each event. A synthetic LOD score of 2.55 would be calculated.

In the second example, given 13 F_2 mice with *mayday circler* phenotype (where a backcross was performed) and an estimated allele frequency of 80% C57BL/6J, 20% C57BL/10J at a particular marker, 26 alleles would be assumed to exist in the pool of DNA. This would correspond to a nearest estimate of 21 B6 alleles and 5

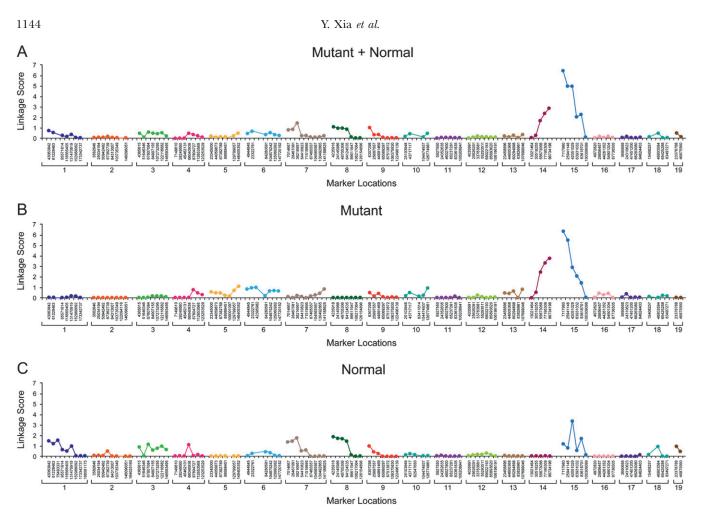


FIGURE 3.—Linkage scores for *june gloom* (intercross genetic mapping). Scores for all mice combined (A), for the mutant phenotype pool (B), and for the normal phenotype pool (C) are shown.

B10 alleles and thus to five heterozygous calls at the locus and eight C57BL/6J homozygous calls at the locus. Calculation of LOD would be based on 8 instances of concordance out of 13 events, with the expectation of a 50% concordance for each event. Hence a synthetic LOD score of 0.39 would be calculated.

For june gloom and mayday circler mapping, linkage scores for all markers are graphed in Figures 3 and 4, respectively. The june gloom phenotype showed strongest linkage with marker B10SNPS0212 at position 7,117,980 bp on chromosome 15 ($P < 2.91 \times 10^{-7}$). In support of bona fide linkage with the june gloom phenotype, a peak at the same locus was also observed when the mutant phenotype and normal phenotype samples were analyzed separately (Figure 3, B and C). Although an upward trend in the composite linkage score was observed at the distal end of chromosome 14, it does not achieve significance. The allele frequencies and linkage scores from the normal phenotype sample do not support linkage of these loci to the mutant phenotype, *i.e.*, C57BL/10J allele frequencies close to the expected value of 50% and linkage scores near zero were observed. The mayday circler phenotype showed peak linkage with marker B10SNPS0144 at position

87,513,872 bp on chromosome 9 ($P < 2.48 \times 10^{-4}$). The same locus exhibited the strongest linkage with the mutant phenotype when mutant phenotype and normal phenotype samples were analyzed separately (Figure 4, B and C). A lower peak was also observed on chromosome 2, but here allele frequencies and linkage scores for the normal phenotype sample, but not those of the mutant phenotype sample, supported linkage of these loci to the mutation. Smaller linkage score peaks may indicate the presence of modifier loci.

The synthetic LOD scores of the top-scoring markers for *june gloom* and *mayday circler* phenotypes were 7.3 (for B10SNPS0212) and 7.8 (for B10SNPS0144), respectively (Figure S2 and Figure S3). Although these values are more familiar to workers who routinely map mutations and are strongly suggestive of linkage, we consider the synthetic LOD score to be less reliable than the *P*-values calculated on the basis of the χ^2 distribution, since the number of mice with each genotype is not directly assessed in BSA.

On the basis of sequencing data collected for >30 G3 mice, an average of 21 mutations alter coding sense in each G3 mouse, about one-third of them homozygous.

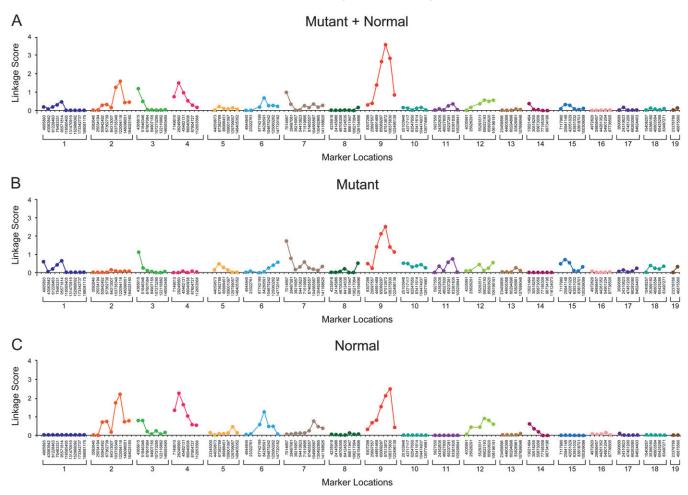


FIGURE 4.—Linkage scores for *mayday circler* (backcross genetic mapping). Scores for all mice combined (A), for the mutant phenotype pool (B), and for the normal phenotype pool (C) are shown.

Therefore a mutation found close to the marker with peak linkage is very likely to be causative for the phenotype in question. If necessary, the genotypes of individual F_2 mice at markers near the linkage peak may be examined to define the boundaries of a critical region.

In the case of june gloom, we identified Slc45a2 (GenBank: NM_053077; MGI: 2153040), located 3.8 Mb from B10SNPS0212, as a candidate gene for the phenotype that when mutated causes varied degrees of hypopigmentation of the eyes, skin, and hair, as observed in mice homozygous for the spontaneous underwhite (uw) mutation (NEWTON et al. 2001), and the cardigan, galak, gray goose, sweater, and zuckerkuss mutations generated by ENU mutagenesis in our laboratory (see http://mutagenetix.scripps.edu). A T-to-C transition was identified at position 22,723 of the Slc45a2 sequence in *june gloom*, corresponding to nucleotide 1228 of the mRNA transcript. The mutation causes a serine-to-proline substitution at amino acid 378 of SLC45A2, predicted to be possibly damaging by the PolyPhen-2 SNP effect prediction tool (ADZHUBEI et al. 2010).

Myo6 (GenBank: NM_001039546; MGI: 104785), located 7.5 Mb from B10SNPS0144, was identified as a candidate gene for the *mayday circler* phenotype and was directly sequenced. Mutations in *Myo6*, such as the classical *Snell's waltzer* (*sv*) mutation (AVRAHAM *et al.* 1995), result in circling, head tossing, and hyperactive behavior. A T-to-A transversion at position 929 of the *Myo6* transcript was found in *mayday circler* mice. The mutation converts codon 236, normally encoding cysteine, to a premature stop codon.

The SNP panel we have described should be sufficient to map any robust trait induced on the C57BL/6J background through outcross to C57BL/10J followed by backcrossing or intercrossing, although embryonic lethal mutations may be localized more efficiently using a balancer strategy (BoLEs *et al.* 2009). Phenotypes with reduced penetrance can be mapped using BSA by analyzing only animals with the mutant phenotype. BSA is more time and cost efficient than traditional mapping, with a cost of approximately \$200 in reagents for each DNA pool subjected to genotypic analysis by capillary sequencing. However, BSA demands accurate assessment of phenotype, because individual mice with "questionable" phenotypes cannot be excluded in *post hoc* analysis.

This work was supported by the Canadian Institutes of Health Research (to S.M.V.), the National Institutes of Health grant 5 PO1 AI070167 (B.B.), and broad agency announcement (BAA) contract HHSN272200700038C (B.B. and C.C.G.).

LITERATURE CITED

- ADZHUBEI, I. A., S. SCHMIDT, L. PESHKIN, V. E. RAMENSKY, A. GERASIMOVA *et al.*, 2010 A method and server for predicting damaging missense mutations. Nat. Methods **7:** 248–249.
- AVRAHAM, K. B., T. HASSON, K. P. STEEL, D. M. KINGSLEY, L. B. RUSSELL et al., 1995 The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat. Genet. 11: 369–375.
- BOLES, M. K., B. M. WILKINSON, A. MAXWELL, L. LAI, A. A. MILLS *et al.*, 2009 A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines. BMC Genet. **10**: 12.
- BRAUER, M. J., C. M. CHRISTIANSON, D. A. PAI and M. J. DUNHAM, 2006 Mapping novel traits by array-assisted bulk segregant analysis in saccharomyces cerevisiae. Genetics 173: 1813–1816.
- COLLIN, G. B., Y. ASADA, D. S. VARNUM and J. H. NADEAU, 1996 DNA pooling as a quick method for finding candidate linkages in multigenic trait analysis: An example involving susceptibility to germ cell tumors. Mamm. Genome **7:** 68–70.
- CROKER, B., K. CROZAT, M. BERGER, Y. XIA, S. SOVATH *et al.*, 2007 ATP-sensitive potassium channels mediate survival during infection in mammals and insects. Nat. Genet. **39:** 1453–1460.
- FESTING, M. F. W., 2010 Inbred strains of mice and rats. Mouse Genome Database (MGD), Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, Maine. (http://www.informatics. jax.org/external/festing/search_form.cgi).
- HOEBE, K., X. DU, J. GOODE, N. MANN and B. BEUTLER, 2003a Lps2: a new locus required for responses to lipopolysaccharide, re-

vealed by germline mutagenesis and phenotypic screening. J. Endotoxin Res. 9: 250–255.

- HOEBE, K., X. DU, P. GEORGEL, E. JANSSEN, K. TABETA *et al.*, 2003b Identification of Lps2 as a key transducer of MyD88independent TIR signaling. Nature **424**: 743–748.
- McCLIVE, P. J., D. HUANG and G. MORAHAN, 1994 C57BL/6 and C57BL/10 inbred mouse strains differ at multiple loci on chromosome 4. Immunogenetics 39: 286–288.
- MICHELMORE, R. W., I. PARAN and R. V. KESSELI, 1991 Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA **88**: 9828–9832.
- MONTAGUTELLI, X., 2000 Effect of the genetic background on the phenotype of mouse mutations. J. Am. Soc. Nephrol. 11(Suppl 16): S101–S105.
- NEWTON, J. M., O. COHEN-BARAK, N. HAGIWARA, J. M. GARDNER, M. T. DAVISSON *et al.*, 2001 Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4. Am. J. Hum. Genet. **69**: 981–988.
- RAWLS, J. F., M. R. FRIEDA, A. R. MCADOW, J. P. GROSS, C. M. CLAYTON et al., 2003 Coupled mutagenesis screens and genetic mapping in zebrafish. Genetics 163: 997–1009.
- SLINGSBY, J. H., M. B. HOGARTH, E. SIMPSON, M. J. WALPORT and B. J. MORLEY, 1995 New microsatellite polymorphisms identified between C57BL/6, C57BL/10, and C57BL/KsJ inbred mouse strains. Immunogenetics 43: 72–75.
- TAYLOR, B. A., and S. J. PHILLIPS, 1996 Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics 34: 389–398.
- WICKS, S. R., R. T. YEH, W. R. GISH, R. H. WATERSTON and R. H. PLASTERK, 2001 Rapid gene mapping in caenorhabditis elegans using a high density polymorphism map. Nat. Genet. 28: 160– 164.

Communicating editor: T. R. MAGNUSON

GENETICS

Supporting Information

http://www.genetics.org/cgi/content/full/genetics.110.121160/DC1

Bulk Segregation Mapping of Mutations in Closely Related Strains of Mice

Yu Xia, Sungyong Won, Xin Du, Pei Lin, Charles Ross, Diantha La Vine, Sean Wiltshire, Gabriel Leiva, Silvia M. Vidal, Belinda Whittle, Christopher C. Goodnow, James Koziol, Eva Marie Y. Moresco and Bruce Beutler

> Copyright © 2010 by the Genetics Society of America DOI: 10.1534/genetics.110.121160

FILE S1

62,367 single nucleotide discrepancies between genomic DNA sequences of C57BL/6J and C57BL/10J mice identified by SOLiD sequencing.

Most of these discrepancies have not been validated by capillary electrophoresis.

File S1 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.110.121160/DC1.

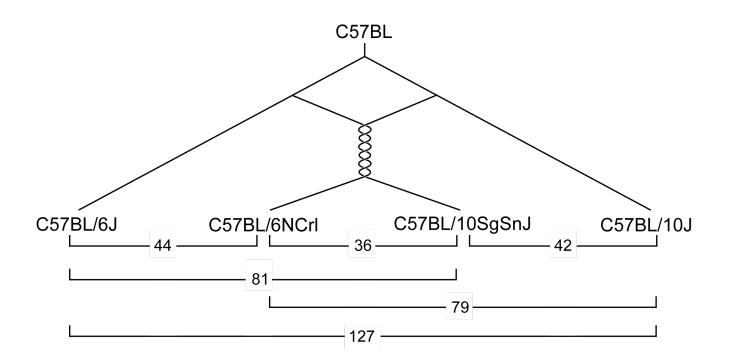


FIGURE S1.—Inferred ancestry of C57BL/6J, C57BL/10J, C57BL/6NCrl, and C57BL/10SgSnJ strains based on the number of nucleotide differences identified between strains out of 127 polymorphic sites. Numbers represent sites that differ by genotype for the indicated pairs of strains. Hypothesized introgression of C57BL6NCrl and C57BL/10SgSnJ strains is denoted with intertwined lines.

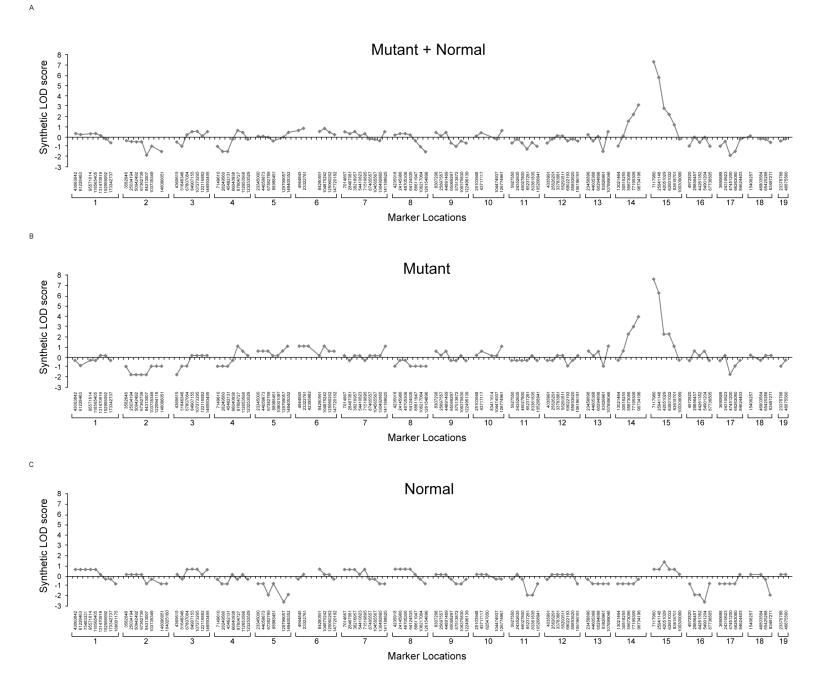


FIGURE S2.—Synthetic LOD scores for *june gloom* mapping. Scores for all mice combined (A), mice with the mutant phenotype (B), and mice with the normal phenotype (C) are shown.

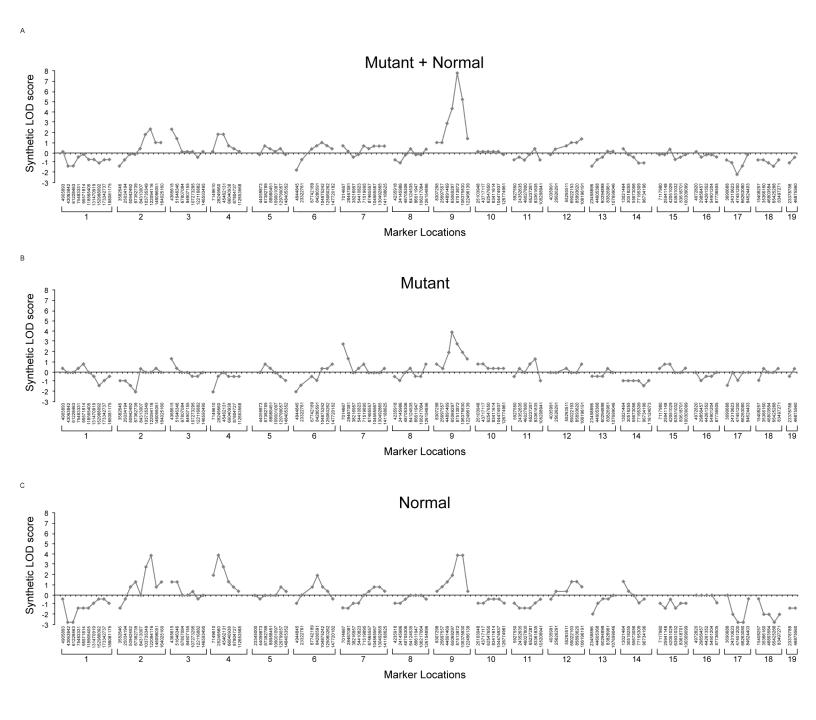


FIGURE S3.—Synthetic LOD scores for *mayday circler* mapping. Scores for all mice combined (A), mice with the mutant phenotype (B), and mice with the normal phenotype (C) are shown.

TABLE S1

127 SNPs between C57BL/6J and C57BL/10J mouse strains

					Coord					
					w/in					
Chr	AssemblyCoord	B6Allele	B10Allele	Amplicon Id*	Amplicon	PCRSize	PCR_F	PCR_R	Seq_F	Seq_R
1	4905893	С	А	B10SNP2G0001	229	568	TGTCCGTGGCACAGAATACAGTG	TCAGCCCCAGGTTTCAAAGCTC	GTGAGACACCTGCTACTTCTGAG	CCTGATGCCTGTGGATACTAAAAAG
1	43063842	Т	А	B10SNPS0005	299	502	TTTTGCCCACAAGGTCGAGGACAG	TGCTCAAGGCCACGTTTCCCTAAC	GTAAAGTGCCTACTGTGCAAAC	GCCACGTTTCCCTAACTTGAAG
1	61228463	Т	С	B10SNPSG0001	152	494	ACTCTGGATTTGCCTATCATTGTGACTC	GCAAACCTGTGTAATGAGCACCAAG	GACTCTAAAGTCACCACTTTGTG	CTGTGTAATGAGCACCAAGTATACC
1	75483331	G	А	B10SNP2G0002	305	496	CAACCTTGAGTGTGATCTCTCCCG	GTGCGTGTCCTTATTAAGCCCCTG	CATAGGTATAGCTCGGCACTG	ATTAAGCCCCTGTCCCCC
1	95571814	Т	С	B10SNP2G0015	207	983	TGAGTTTTCAAACCAGAACACAAAGCAG	GCCCAGCTTCTATTCACCAAAATGC	GCAGGAAGGAGCCTGTG	TCTGATAGCAGCCTTCAGATG
1	118565405	С	А	B10SNP2G0019	247	635	GCATAGGTGGTTCTGAATCTGGTCC	CAACATCATGTTCCCTGCTGAGTCC	ACACTGAAGTTCTGTACTGGC	GAGTCCAACTCTGCATTATTCTG
1	131470919	С	Т	B10SNPS0014	186	650	TTTTAAGCATGAGGTAGTCAGGGCAC	ACAAGCACACCTGTCATCTGGTTC	CATTTAATGGAAGAGCAAGACTCC	TTGCAGGCTCAATGACAAGC
1	152988092	С	Т	B10SNPSG0013	203	435	ACCATGACACCTGGGACTCTGAAC	TCCCTGTCAAGGCTTGCTGAAAG	CCTGGGACTCTGAACCAAGATG	AGTCTCAAATTTCAGCCCCC
1	173342737	Т	А	B10SNPSG0020	241	412	TCCGAGGCGCATTATCCGCTAAAC	CCAGTGCCCAAGTGCATCATGTTC	GCGCATTATCCGCTAAACTAAGG	CAAGTGCATCATGTTCAAGGC
1	188081175	А	G	B10SNPS0019	189	668	AAGCCAGCATCTGTCACCTTGACC	TCTGTCCTGGAAGAAGAAGCCAGAG	TTGACCCCGTGGAAGGTG	GGTGACAGCAAAATTCCCAGTTC
2	3582646	А	G	B10SNPS0021	154	437	ACCGATTTACTGTGACTGACTGCAC	GGGCTTTCTAAATGGCACCAGACC	TGACTGCACAGGTGCTCAAG	AAGCTAACCTTCTTGACGTGG
2	25034194	С	G	B10SNPS0024	156	446	AGCCGGGAATCCTGTAACCATCAC	AGCAGAGCCTTACTTTCATCAAGCC	CATCACCTAAGAAGTTCTGTGGGTAG	TCTGAGATGCTTGCCCAGAAC
2	50942492	С	Т	B10SNPS0026	232	491	ATGTGCTTCTTCTGATGTGACCCTG	TGCAGTCTAGCTTCTCCCTAGTGG	TGATGTGACCCTGTCCTTTG	TTTCCTGAGGTCAGCACAG
2	67362739	G	А	B10SNPS0028	213	534	CTCAGAGGTCATGGTGTTGCACAG	TGGGTGGGTAGTAAGATCCCCAAG	CATGGTGTTGCACAGTTTTGG	GCTCTCCGCTGGGAATAAAATC
2	84313007	А	G	B10SNPS0030	313	759	ACAAACACATGGCTCCTGGCTC	GAAGTTGTGGTCCAGATATGCCCTC	GGTTCATCATCTTCCTGAGAGACTG	TCCCCAAGTGCTGGGATTAA
2	103735349	С	А	B10SNPS0032	403	589	TGTTCACTGAACGCCATAGCCC	CCAACTTTGCACAGGTTCACGC	GTTATCACCATGCTCTAGATGAGG	ACAGGTTCACGCCTGATCC
2	122094116	Т	G	B10SNPSG0021	491	651	GCTCTACATAAGGCGGAAGGCAG	GCATCCTGAAGAAGCCCACAGC	GAGAGTGGTTCTAGTACATTTTCTTC	CTGAGGCCCTGGATAGCAAG
2	146096051	С	Т	B10SNPS0036	325	539	ACTGATGCCATGAACCTCAAGAAGG	GGAAACATGTCCATCCCCGTTACAC	AAAAGGCAGGTGTTTACATCTTGG	CCGTTACACGAGTGCAGAATG
2	164025160	А	G	B10SNPS0037	304	559	AGGAGAACTGAGCTGTGCCATCTG	CCCTGGACAACCTTGACTTGAAGTG	AGCTGTGCCATCTGTCAAAG	ACTTGAAGTGAGTGGCCC
3	4365615	Т	С	B10SNPS0041	208	546	TCCTCACGGTGAAGATAGGACAGG	TGCATCAGTGTCCACCTTCAACAG	TGAAGATAGGACAGGTTTGATCCTAC	TGTCCACCTTCAACAGAAGGC
3	51646346	Т	С	B10SNPS0046	193	435	TTATCCACTGCCAAGTCTGCTGCG	TCAGCCAGTTCACACAACAAGGTTC	GCTGCGTGCTCATATTGAAC	GTTCACACAACAAGGTTCTAGATGG
3	67807084	G	А	B10SNPSG0029	157	702	TGTCTCCTGAAAGGACTTGAGGCAG	AGCCGTAGCACTCCCTCATAAGTAG	TTGAGCATGTCAACCGCAGT	GAGAGAACAAGTGTTTCTCCTCAG
3	84907155	Т	С	B10SNPS0050	157	452	ATCAGGAGACAGCCAGCCCATTTC	TGTCAAAGACGCCCACAAGTGAG	GCCAGCCCATTTCTCTAGAAAC	GCCTTAGAACTTGGAAGCATC
3	107273295	А	G	B10SNPS0051	376	558	TGTATCTCCCTTGGAGCCTAAGACC	TGAAATGAATCCACAGCCAGCTCG	AAAGGTTCCCAAGGTGTCTC	CAGCTCGTGGAGCCTTTAAATG
3	122116882	С	Т	B10SNPSG0034	238	407	ATGAGGACAAGTCCTGAAGCGACC	CCGGAGAAGCCCCTGAAGTTAATG	AGCGACCGGGTCAAATAC	GTACAATAAATCAGTGGTCCAGGC
3	146593495	С	Т	B10SNPS0056	227	686	CCCAGCCTGGTGTGAACCTTTTAAC	TCTGCTAAACCCTCATGTGGCAATG	AGTTTCAACTGCATGACCTAGC	CTCATGTGGCAATGTCAGGC
4	7149610	С	Т	B10SNPSG0036	213	643	GCTCCAGAAGTACCATCAGCGG	GTGGCTGAGACAGCCTCAAGTAAC	GTACCTAGACACATCCAGAAATTATC	CAAGTAACTGAGATATGTGCTGCC
4	28249560	Т	С	B10SNPS0060	380	693	TTCTTACTAGAGAACCCAGTGGAGAGC	GGCTGCTGCATTTAGTATCCCATGAC	TGGGATGTGAAAGGCTCTAGC	CCCATGACTGGTAGATGGATTCTAAC
4	45462131	Т	G	B10SNPS0062	188	488	CTGGCGACACTGTAACTCCTTACTG	TGGAAATAGATGCTCCCTCCCTGC	ACTGAATGAATTGATAGGTCCTCTGG	GCCTATCAGTGGGACTCATTACG
4	66040938	А	G	B10SNPS0064	224	575	CCTTCAGGGAGTGAAAGTTGGGAAC	AGTGCCCACCCAGACCTTGTAATC	TTGGGAACAGGCACAGC	TGTCACTCAGGAATACACATGG
4	87804727	С	А	B10SNPS0065	370	549	AGGACCCCAGAAGGTTTACCAGAG	GCCAGGAAGTTCAAGAAGGATGCTC	TGTCGGCCATCTACAATGGAG	TTCAAGAAGGATGCTCTAGAAGG
4	112653568	G	Т	B10SNPS0067	340	564	GCACATGAGAGACCAATGAGTCCATC	TGCGACTTTTGGAGAGTGACACAATAG	ACTGACTTGAGATTGGATGCTC	TTGGAGAGTGACACAATAGTAAATTC

Y. Xia et al.

4	126253529	G	С	B10SNPS0069	208	401	TGCCCACATTGCTAAATAGAGTGCG	TGGCTCTGAGTGTCATCTTCCAAAC	TTGCTAAATAGAGTGCGTCCCAG
5	23345000	А	G	B10SNPSG0050	444	692	CAGTCGGAGCTACTCAGCAAGATTC	CTGGGACTAATAGATGAGGTTCAAGCG	TAGCCAGATATGGTGGTACACTC
5	44059873	А	G	B10SNPS0077	299	530	GTCTCAGCTCTCTGCTCATTGGAAG	ACCTGCCACTGTCTGATTGTGC	GACAGAAATGGTCCTTTGCATTC
5	67382789	А	G	B10SNPS0079	328	479	TTGAAGTTCAGATCCATCCCGAAGC	CTGTTGGAATGGACAAAAGCAAGCC	ATAAGCTCCGAGTTCCGAGTTG
5	88988451	G	А	B10SNPS0081	262	719	TGCCAAGTATGTTAGGCCAAAAGCAA	TCTCCATGCACTACACACTGTTACAGA	GAGGGGTTAAATCACACATACAC
5	109001097	С	А	B108NP2G0043	153	459	GTGAGACCTTAGCTGTTCAGAGGC	TCTGTGAGGCAGAGTCCACACAAG	TGGGACGATTTGCCTGC
5	129799057	Т	С	B10SNPS0086	380	741	ACCTTCTGTGAAAACCGCCTCC	GCACCAAGTGACCAGATGTCATCTC	AGGGGAACCATTTCTGCGAC
5	148405352	С	Т	B10SNPS0087	248	576	TGTCAATGGAGCAAGCACTACGAG	ATGATGTTGTCAAGCCCCACCC	CTACGAGAGTTTGGACACCTC
6	4944845	С	А	B10SNPS0089	220	749	AGCTGAGGTCATCCTACAGTAATGAGC	CTTTCACGCAGCTAGGCAAAGC	CTCGGAGAACAGGACAGC
6	23322761	Т	А	B10SNPS0091	291	444	TGATTCACCCAGTCCATGCTAATCAAG	TGGAATGAATCCTGCCAGCACTC	CTCAGGATAAGCTTTTTTAAGGGTG
6	42395982	С	Т	B10SNPSG0054	210	427	AGCTTGGCTATGTCCTTGGGCAAC	AGGCAGTCCCAGCACTTTGAAAATG	ATGTCCTTGGGCAACATGAC
6	67742189	С	А	B10SNPSG0061	211	405	TGCAGGCAGGAGGCAATTTGAGTC	AGACAGTCTTCCAGAATGGGGAGC	GAGGCAATTTGAGTCTTATCTCC
6	84280591	С	Т	B10SNPS0097	241	703	CAGATAGGTGTGGATGGATCATGGC	TCCCATGTTCAGGATGGAGGAAGG	GATGGATCATGGCTTAAGATCCC
6	104875242	А	С	B10SNPS0099	315	656	GCAGCTTTTAGAGCAGAGCATTCAC	TGAATCCATCAACAGGAAGGAAGCC	TTTAAAGCCTGTGACGACCAAAG
6	125060262	А	G	B10SNPSG0065	236	400	AGGAAGCCCCTAAGATGCCTAATGG	CAAATTGACTGCCTGGAGAAAAGACAC	ATGATGGCAGTGCCCTAATC
6	147720182	А	G	B10SNPS0104	230	493	TTCTCTCAGTTCAAAGTGCAGAGCC	CCCGAGATGTTTTCTTGACTCCCAG	AGAGCCATCTGGTGCAAC
7	7014667	Т	С	B10SNPS0105	469	691	GGAAGCTGTCTCATGGAAATCCACG	TGCATTTCCTGGGCTCCAGAAAG	TGAAACCTGCTTGCTCAGGG
7	28467081	Т	А	B10SNP2G0049	228	748	TGTAAGCAGCCCAGACCTGCAT	TGAGCTTCTCACAGTCCACCCA	CAGACCTGCATCTCAGCG
7	38216957	А	С	B10SNP2G0052	162	496	GTGTCACTTGAAGCAGCCAGAGAG	TTGCCCAGAAAGAATAGTCGCCC	GCAGCCAGAGAGTTTCTTTTATTACG
7	54410823	С	Т	B10SNP2G0058	280	674	CGTGTGTCAAGTCTAGTGATGAGCC	TGACTTAGTGAACCTGCAAATATCACCC	AAGGCCCTACTCCTACATGA
7	71519895	G	Т	B10SNP2G0060	347	644	GCACATACAAGAGCCTGGTATAGCAA	AAATACGCCAACATTTTCCCCTTTGTC	CTAACACCTTAAAGTGTGGGGGAG
7	87465557	G	А	B10SNPS0113	424	709	ATCCAAGAGAGCCTCTCCTTGAGC	CAGCCACCATTCAGTGTACAGTCC	TTCTGGGGTCACATAGGCAC
7	104565567	А	G	B10SNPS0115	239	410	TTCTGTCCTCTGTAGGAGGTCACG	TGAGAACGACGCTGCTGAAACG	TTCTCAATACTGGGTGAGAAGGC
7	130492865	А	G	B10SNPS0118	175	690	TTATGCCTGGAGCCAACTTCAGC	CTCCTGGAGATGACCTTTTGGTCAC	GCCACCAACAAAGACCTGAG
7	141188625	А	G	B10SNP2G0065	253	599	ACGAACATTGGCTCCTGTACACC	CTGGGGAGAACGAGACACACATTAC	TGTGTCAGAATGCATCGCC
8	4235918	С	Т	B10SNPS0122	163	541	TCACAACAAGCTGGAGACTCTGCC	TGTCTGAGCTGCACAAAACCGAC	TGGAGACTCTGCCCACCC
8	24145986	С	Т	B10SNPS0123	496	651	TTTGTAGGACAGCACAGGTTCCG	CCCTCAGGTGAGCAGCAGAAATTC	AGCGTCAAGGCTGTCACTAC
8	48705306	G	А	B10SNPS0126	607	778	TTGAATCCATGACAATCACCTCCCG	ACTTCCCTCCCTGACTGTGAAACG	GGGAAATGCCTCCATGAGATCC
8	64124535	G	А	B10SNPS0127	213	470	TGAAAACATCTCTCCTTACACAGCCTG	GTCAAGGTAACTCAGCCACTTCCTC	TCCACTGTATAAAGTACCTAAGAGG
8	86611947	С	Т	B10SNPS0130	382	573	CAAGGTGGTGACCATTGCTTCCTG	TGGCTGAGCAACACCTAAGGCAAC	GCAGGCACCAGCTACTATGAG
8	106217064	С	А	B10SNPS0132	216	520	TGTAACCAACATGGCTGCGTTCTC	TATGTGGAAAGCCAACCAGGCCAG	TGCGTTCTCTGGAAGCAC
8	126154896	А	G	B10SNPS0133	173	590	TGGTAAAACCCATCCCAAGCGG	AGTCGGGGCACATTCACAACTAC	CGGCAGAGCTGTAAGTCTGG
9	8307298	Т	С	B10SNP2G0067	178	531	GATCATTTACCAAGGTCCGTGCTAGG	TCAGGCAGTATAAGGCTCCCATTCTC	CAAGGTCCGTGCTAGGGATAATC
9	25697557	А	G	B10SNPSG0092	379	595	AGGAGAAACTGCCTGTTCAAACCC	TCAAGACCTGGTCCTAAAGACCCTG	CCCATACAAAGTCATTTCTGGACTG
9	44891469	G	А	B10SNPS0139	301	540	CAAGCGGTTAGAGTTTGGGGTCAC	CCTCCGGCTGAATTGGAATTGCAC	TATGGCAGTAGGTCTGACCC
9	65069297	А	Т	B10SNPS0141	191	720	CTGTCTTCCAGTCACAAGCTCTCAG	GAACGCACATGGCACCCATTTTC	AGTCACAAGCTCTCAGCTCTG
9	87513872	Т	G	B10SNPS0144	244	433	TGGCTGTGACGCTGTAGGTAAAAG	GTAGACTTGGAGGGCAAACCACTC	AAAGCTACGGCTTTTCAGCTTG
9	106375830	Т	С	B10SNPS0145	192	554	TGGCATACGCTTGACCTGGAAAC	AGACAAGGTCCAGTGCCCGTTATC	CCTGGAAACTGGTCAAGGTTG
9	122496139	А	Т	B10SNPS0147	229	632	GCCTGCACAGGGATTTATATCTGCC	TGTACCCCAAAGCATTAGCCTGC	GCCTCAATTAGATGTTCCAGAAGC

GTGTCATCTTCCAAACAGAACTGG GAACAGAAAATCTATGTGTGTGCTTG AGTTATCTGGAGCATTGCTTTTTTG AGCCAACCAAAGGACTGTG GCTGGCCTTGAAATTACGC CCTGGACCATTCAGCAGATG TGACCAGATGTCATCTCACATGC TCTAGTCATAGACTACTAGGTGGAG CCTTCTGGGATGAAACTCAGGTC TGCCAGCACTCATCCTTTG CCAGCACTTTGAAAATGTAGAGC TCCAGAATGGGGAGCCAGAG TTTCACAGCCAGGAATGTGAC GGCATGACCCTACTTATGCTAC CTGGAGAAAAGACACTCTTCTCTTAC GTGATACTCTGAGGCTTAACATTAGC CTGGGCTCCAGAAAGTTCATATTC CCAAGGGTGACTTTGAACTTC ATCCCAGAGAGATTTGTGCC TACTTCTGAAGGCTGAAGACACTG ATTTGCTCCGGCCCAAAG CATGCCAGTGATGATATTTGCC CTGCTGAAACGGAGGAGG AGTGTTTCTGCAAGTCAGCC CGATGGAATCCCATTGAGCTTC GCAGTCCCTCATAAAGGGTG GTGAGCAGCAGAAATTCAAAATCTAC CCTGACTGTGAAACGAGAAATAAC AGCTCAGTCTCTGTGAAACG TAAGGCAACACCACAGATGAG GTGTTTATCAACAGAAGGCTCAAG AACAGGCAGTGTTCCTGAC TCCTTCCCAAGGTGATTTGATAG TGAAATAGCCCTGGTATCCCG GGAATTGCACCTTGAAACATGC TGGGCTATGCAGTAAACTCC GGCAAACCACTCTCTCTTTGTTG TCCGAGTACAAGGTGAACTCTG TTGACAGGGTCATTCCACAG

Y. Xia et al.

10	25103948	А	Т	B10SNPS0152	159	517	CATAATTTGTTCTTCCCAGGCCACTGA	AGGACATGGATAAACCAAGCCACATTT	CCACTGATTCAGTTTGGAGCC	CTGTCTACCCAGAGGTGTAGAAAC
10	43717117	С	Т	B108NP80153	148	403	TTCAGAATACCTTCCACGCCATCG	GGCTAGAAAACAGCACGCTTTTCTC	CATCGCTGTTCTTCAGTTTGG	TCTGCCACAAGACAAAGTCTTTTC
10	62547650	С	Т	B10SNPSG0099	450	619	TGTTTAGGCCACCTCAATGGCTC	GGCTGATGAAATTCACAAACTGCCC	AGCTCTATAAGCAGTCTGGC	TGCCCATCGTACCTTAAAATAAC
10	83411614	С	Т	B10SNPS0157	183	443	TGCCGTCTAAGAGTGTCCAGCTATC	TGTCATGTCCACAGCATTAACTCCC	AAGAGTGTCCAGCTATCATCTTC	CATGCAGCTAAGGTTAGGTACTC
10	104474937	А	С	B10SNPS0159	227	766	GTGAAGTCAAATATTGCCAACAGAGCC	TCACATGGGTCGAATCAGAAATCGTC	ATCATGTACCACACTTTCAGTTTGG	CAGACTGTGGTATAATGGACTCTC
10	126774961	С	А	B10SNPS0162	459	689	TTGATGAAAGCCACCAGGGAGC	GCCAACTTTATGTCAGGGTCCCAG	GCCGTTCCTTCAAAGAATCTGAG	TCCCAGGGTTATGGAGCAG
11	5927550	А	G	B10SNPS0163	367	553	ACCCTCTGTGGAAGACAAAGCAGC	GCATTCTCTGAACCTGATGGGGGAC	ATATGAACTGTCCTCACACTGG	ACCTGATGGGGGACCTTCAAG
11	24352635	Т	С	B108NPS0165	339	562	GGAATTGGCTCGGAAATCTGCAATG	TGGCTTCTAGGTACTAGACGGCAAG	AAATCTGCAATGGGCTTGCTTC	CCTCTGAACTCGATCTATTAGGGC
11	46027800	G	Т	B10SNPS0168	175	447	GGAACAGGCCAGAAATCAGGCTTC	TTCACCCCGCAGGTTGTCAAAG	AGAAATCAGGCTTCCCACAC	ACATTGCTTTGTAGGCCACG
11	65237281	А	G	B10SNPS0170	178	634	TCAGATCCCATGAACTTCAATGAGCTG	TGGAGCCAGAGTCACACCATTAGG	TGAACTTCAATGAGCTGTTAGAAGG	CAACAGTTCCTCAGCTAGTGATG
11	83361835	С	Т	B10SNPS0171	297	452	AAAGGGCAGACCCTCATTCCAGAG	AAAGCTTGCAGCCCAGAGTCTAC	ACACACAGCTTTAAGTCTGTGC	GCCCAGAGTCTACTGCAAAAAG
11	105208941	А	С	B10SNPS0173	273	487	TGTGTGAGAGCCGAAATGCCAG	GAAGACGTAGCCCGAACATCTTCC	AACACCACTGTGGATCGG	TCTTCCCAGAACCACCTGC
12	4035991	С	Т	B10SNPS0175	391	622	GTAATCTGTGACCCTTTGGGAGCC	GCTGCCTTTGTCTGATAGGAGACC	CCCTTTGGGAGCCATTTAAGAAC	TCTTTCTCGGAGGGCACAG
12	25626291	А	G	B10SNPS0178	153	465	AGACCTGAACTTCTCAGTGTTCCCC	TTGTCTCAGAGGCCAGGCAGAATC	CTCAGTGTTCCCCAGGTG	GATCCCTGGACCCAATGTAG
12	33783681	Т	G	B10SNPS0179	541	729	GCCATCCAGTCAGCTTGCTAACATTTC	TGGCAGAGAATCACAAGACTCTCCAG	GAACCTTGCTCAATGGCTCAG	AAGACTCTCCAGGCCGC
12	55293511	С	G	B10SNPSG0101	196	690	CCAAGGCTTCGACCCAGATGTTAG	CCATTACAATCAGGGACGTGGTCAG	GCAGTTGTTGCTTCCTAAAACC	TGAGGCACTACAGGTGAAGT
12	69022193	Т	С	B10SNP2G0069	480	666	TGAGAGACACGCAGATTCCCACAG	ACGTGGTAATGGGTCCTTGTAGCC	CCTTGACCAAGGTATCATTGAGAAG	ATGGGTCCTTGTAGCCATTTAAC
12	85893620	Т	С	B10SNPS0184	222	434	CTTACCACATAGCTCATTGGCACCC	GTACCTATTTCCCCAAGCCAGCAG	ATTGGCACCCACCACTGG	GCTGTTGGAATTTAAGAAAGAAGTCC
12	106196191	G	С	B10SNPS0185	181	499	GCCCCTGAGAACAAGTGTTAGTCC	TGCCTCAGTGCATACAAGTTCCC	GAGAACAAGTGTTAGTCCTTCCTG	TGTCCATACACACTTGTGGTAG
13	23458896	Т	А	B10SNPS0190	231	607	GACATCACAACTGCTCTCAGTAGCC	CCAGATGCACATTGGAGACCCAAG	CTGCTCTCAGTAGCCAAGAAATTATG	TTCAGTCTGAGACTTGGCTAC
13	44605368	G	А	B10SNPS0192	242	482	GGTCAGCACTTTCAAGGTAGGAAGC	GACTCTAGTGAGTGGGGCATTTGAGC	AGCTCAGAAGAACAGTGTCC	AGCTCTGGGTATGCTGAGAC
13	60294898	Т	С	B10SNP2G0077	196	444	AAGCTGGCAGCCAACTTCTGAC	ACATGCCCACGAGAGACTAGGTAG	CCAACTTCTGACAGGGGC	GAAGAACGTGTCCGAGTTTTAG
13	83826961	Т	G	B10SNPSG0116	201	467	ACCCAAAGTGAGGCAATGCTGG	ACTCCGTCTACATATGAGGAGCAGG	CAATGCTGGAGATAGAAAACCTTG	GTTGACTTGACTGACTCATATTCG
13	107699046	G	А	B10SNPS0198	190	409	TGGAAAAGGCTGCTTCAGACCAC	ATTGACAGACCTGAGCCCATCCAG	GCTGCTTCAGACCACATGTTAAG	ATCCAAACTCTTTCAGGGATGGC
14	13021464	С	Т	B10SNPS0200	325	657	GGAATCCCATATGCTAACTGCTTCCTG	TGCCTGACATAAGCGATAGAAACGG	TGGAGACTCGTCTCACACTG	GAAACGGGACTTTATTACTGGC
14	30518255	С	Т	B10SNPS0202	155	504	ACTGCAATCAGGTGTGAATGCTGAC	AGTGCCGTTGAAGTAGCCACTCTC	TGTGAATGCTGACACTGCC	TCTTCCCAAATAGGTTGCAGG
14	55673056	Т	G	B10SNPSG0125	199	535	TACCAGTCACTGCGTTGCTGTG	AGCAGAGGTAACTCCTTCCTTCCC	GCTGTGTGTCTGCCACC	AGTTGTGATGCCAACAGCTC
14	77195309	С	Т	B10SNPSG0131	196	416	ATGCAACTCTGCCCTGATTACTCG	GAAAGCGGCGTCAAAATGTTCCTC	CCCTGATTACTCGTGGTCTTG	GCGTCAAAATGTTCCTCTGTTATG
14	96734196	С	А	B10SNP2G0083	303	518	GACCCTACCCATGTAAACATAAGTGCAG	CACCCTCCAAGACCCATTGTCATATC	TTAATCCCAGCACTTGGGAG	TTGTCATATCTTCCAAAATTTGTGTC
14	116124073	А	G	B10SNPSG0139	694	851	GACCGACTGGGACCTTTTACATGATTT	TTCATTCTTCATGCACAGAGGGGGAC	ATTGAATCTCCTCAGGCTCAAGG	GGACTTCGGACATAGACATTCTTC
15	7117980	А	G	B10SNPS0212	318	493	TGAAAAGGTCATTCGGGCATCCAG	TCTTCAGCAAACAAGTGGGGAAGC	GAATGTCCCTCTGGGAATCAC	GGGAAGCCCTCCACACTC
15	25941148	С	Т	B10SNPS0214	161	826	AATGGCTTTACCCTTTTGGCTTATGGAT	GCGGAAACCTTTCCTTCTGGTGAC	TATTCAAGCAGTACCTCTAACTGAC	AGTAAGCCTTACAGATGGGTCTC
15	42051029	А	G	B10SNPSG0142	150	966	AAAGGCTTGCTCACGTCCCCTG	CCCAAGGCTGCACAACTAAATGAGA	CCTGCTGCTTTCCAAGGTTAG	TTGTCCCAAGAGCTGTAACG
15	63931032	G	А	B10SNPS0218	165	797	TAGCAGCGTGTCTTCTGAGAAGGG	AGTAGTTCTCCATCTGGACCAGACAAC	GGGTCATTTTCTCAAGGAAACTACAG	CTACATAGTGAGTTCCAGGCCAG
15	83618701	G	А	B10SNPS0219	234	440	CAAGACTTAAGCCAGTCCCCAAGTG	GTTTTCAGACAGTAGCCTGCCTCC	TAGGCCCAGAACTGTCAAACTTG	TGCCTCCAGAAAACAGAGCTTAG
15	100309099	G	А	B10SNP2G0093	174	457	CCAAGAACAGTGCAGCTTACTCTGG	TGGCTTAGTGCAACACAGTGGAGG	CGGCAGTGGTTTTTTTTTTTTTGCC	CCCATGATAGTGACGAGGAGAA
16	4972820	А	G	B10SNPSG0155	302	538	TGCAAGCACATCTGAGCTGAAGAG	GCTGGCACAGCACTTGCTCATTAG	AGCAAAGTCAGGGCCTATTC	GTCTTCAACAGGATTGTCAAGCG
16	29856457	А	G	B10SNPS0225	466	651	AGCAACCACAGCGTGAGTTTCC	CACCCTTGAGTTTTCAAGACCCACC	CATGAGAGCCATTGCATGGTG	GAGTTTTCAAGACCCACCTTCAAC
16	44261352	А	G	B10SNPS0227	183	414	AGATGCTTCCCTGCTGTAAGGTCC	ATGTCACGGTAAGATGCAGTGTCAG	TGTAAGGTCCTCCAGGACAC	TAAGCAGCACTGCCTTTCAG

8 SI

16	54901204	G	А	B10SNP2G0097	727	950	GCATTCCCCTTAATTCAGTTCAACCACA	ACTCAGAGATTTACTTGCCTCTGTCTCC	TCTGAGACTAGAGTAGCAGCCTC	CTCTGTCTCCTGAGACTAAAGG
16	87736505	С	Т	B10SNPS0232	315	479	GCTTGCCATTTAGCCAGACACAAC	TCCTTGCGCCTTAGAGAATGCC	ACCATAGGTAGTAGATTCTGCG	GCCTTAGAGAATGCCGTTTTGATAC
17	3690688	G	А	B10SNPS0234	207	544	TTATCACAGGCAGGCAAGCAGG	TGTGGTTTCCAGCCCGACAAAG	GCAAGAAGAAGGGCTCCTG	GGTGGAAAGGAAACTCTTTACCTTG
17	24310623	Т	А	B10SNPS0236	306	472	ACAGAATCTGTCTTGCTCTGCTTGG	GGGCACACATCCCTTTATCTAGCAAAC	GGCTCCTCGATAAGTTTGAATATCAC	ATCTAGCAAACCCATTTCTGGC
17	47451200	G	А	B10SNPS0237	387	587	GGCTCTGCTGATGACCTGTTCAAG	CGCTGGCCTGGGAATAAGTGTATTG	TGTGGCTGAACACTCATAAGC	AAGTGTATTGGTAGCCATCAGC
17	66263080	G	А	B10SNPS0239	484	693	ACAGAATCAGACTTCCTGCTTGCC	CCTGTCCAACTGTTACCCACATGG	ATTGCCAGGCTCTGTAGCAAG	GGTAGAATCCAATCCAGTGTCATC
17	84624403	А	G	B10SNPSG0168	254	478	AGTTACGCAAGTACCCCTGTGCTC	ACATGGCTCACTAGGCCCTTTCTG	GTGCTCTTCATCCTCCAAGG	TACTGCCTCATCATCTGCTG
18	15408257	С	Т	B10SNPSG0174	385	638	GTTCAGACCAGAGAGCTTGGCTTG	GTCCTCAAATAGCACTGCCTGACAC	ACCCTAATTTTATCAGGGGTGC	TGCCTGACACAAGTCCTG
18	35366160	А	Т	B10SNPSG0180	241	722	CTGGGAAGATCAAGGCCAAGTACTG	AGGTTACCAAAGCTCCAAGTTGCTC	CAAGGCCAAGTACTGTTTCATTG	GTGGCCTTAAATCTCAGTACTCAGG
18	46803584	Т	С	B10SNPS0247	196	483	CTCCAGGATCTCAGTTGTATCTGTTGC	GGATGCTCGGTGAAGTCTGACTTAC	GTATCTGTTGCATGGCTCAC	GGGCATTATAGATCCCGGTATACAC
18	65425288	С	Т	B10SNPS0249	155	440	GCACTGATTCCAATGGGCACATGAC	ACAATGGCATGGCTCTTCCAGAC	GACTATGAAGGCATACGCACTTTAC	CTTCCAGACTAGCCTTGTAGAGAG
18	83497271	G	А	B10SNPS0251	176	426	GGCAAGTTTCCGAGGAAAATCTGC	TGATGGTGCCTTTGTACCACAGTG	CAATTGCAGAGAAGTGGCAGG	AGGACATCTTGTCCGATACTG
19	23378788	Т	G	B10SNPS0255	358	615	ACACAACTGTGTTGACCAGGGGAC	TTGCCCACATCTCATTAGGCTATGC	ACCAGGGGACGATCTTTGTAG	ACATCTCATTAGGCTATGCCTTTGG
19	46875560	А	G	B10SNPS0258	402	563	GATTTGTACCCTGTGGATGGAAGCC	TGCTGCTGTCACTCTGTGAAGAGC	TGAGCACACAGTTGGTCGTC	GAGCTTTTGTCTTTGTAACTCCAG
Х	55120804	А	G	B10SNP2G0120	169	621	GCTTTTGCTTGGCCTTCAGCAGAC	AACCCTCGGCACTGTGAAGCATTG	TTGGCCTTCAGCAGACAAAAAG	CTTACCAGGAACACGTCTGTTAG
Х	147904667	А	G	B10SNP2G0150	151	502	TGTACCTACTGAAGTCCAGTGAGGC	GCAGAGAGTGAACTGCACCATAGC	CCAGTGAGGCAGTAACTGTCAG	GGAAAAATCTGCCCAGTACTTTTCG
Х	158414344	G	Т	B10SNPSG0223	180	692	ACTGCCATTCCTGAAATCCCAACTG	TGGACAACAGGCATTCCTGGAGAC	TCCCAACTGAATTATTGATCTTCAC	ACACACATCTCCTTGGAATTGG

*Please go to <u>http://mutagenetix.scripps.edu/docs/B6_B10_SNP_Trace_Files.ppt</u> to see DNA sequencing traces for all markers.

TABLE S2

Genotypes of C57BL/6J, C57BL/10J, C57BL/6N, and C57BL/10SnJ strains at 127 SNP sites

Chr	AssemblyCoord	Amplicon ID	C57BL/6J_Allele	C57BL/10J_Allele	C57BL/6NCrl_Allele	C57BL/10SgSnJ_Allele
1	4905893	B10SNP2G0001	С	А	С	А
1	43063842	B10SNPS0005	Т	А	Т	А
1	61228463	B10SNPSG0001	Т	С	С	С
1	75483331	B10SNP2G0002	G	А	А	А
1	95571814	B10SNP2G0015	Т	С	Т	Т
1	118565405	B10SNP2G0019	С	А	С	С
1	131470919	B10SNPS0014	С	Т	С	Т
1	152988092	B10SNPSG0013	С	Т	С	Т
1	173342737	B10SNPSG0020	Т	А	Т	А
1	188081175	B10SNPS0019	А	G	G	G
2	3582646	B10SNPS0021	А	G	G	G
2	25034194	B10SNPS0024	С	G	С	С
2	50942492	B10SNPS0026	С	Т	С	С
2	67362739	B10SNPS0028	G	А	А	А
2	84313007	B10SNPS0030	А	G	А	А
2	103735349	B10SNPS0032	С	А	С	С
2	122094116	B10SNPSG0021	Т	G	Т	G
2	146096051	B10SNPS0036	С	Т	С	Т
2	164025160	B10SNPS0037	А	G	А	G
3	4365615	B10SNPS0041	Т	С	С	С
3	51646346	B10SNPS0046	Т	С	Т	Т
3	67807084	B10SNPSG0029	G	А	G	G
3	84907155	B10SNPS0050	Т	С	С	С
3	107273295	B10SNPS0051	А	G	G	G

3	122116882	B10SNPSG0034	С	Т	С	\mathbf{C}
3	146593495	B10SNPS0056	С	Т	С	\mathbf{C}
4	7149610	B10SNPSG0036	С	Т	С	\mathbf{C}
4	28249560	B10SNPS0060	Т	С	С	\mathbf{C}
4	45462131	B10SNPS0062	Т	G	G	G
4	66040938	B10SNPS0064	А	G	G	G
4	87804727	B10SNPS0065	С	А	С	А
4	112653568	B10SNPS0067	G	Т	Т	Т
4	126253529	B10SNPS0069	G	С	G	\mathbf{C}
5	23345000	B10SNPSG0050	А	G	А	G
5	44059873	B10SNPS0077	А	G	G	G
5	67382789	B10SNPS0079	А	G	G	G
5	88988451	B10SNPS0081	G	А	А	А
5	109001097	B10SNP2G0043	С	А	С	\mathbf{C}
5	129799057	B10SNPS0086	Т	С	С	\mathbf{C}
5	148405352	B10SNPS0087	С	Т	С	\mathbf{C}
6	4944845	B10SNPS0089	С	А	С	А
6	23322761	B10SNPS0091	Т	А	А	А
6	42395982	B10SNPSG0054	С	Т	С	\mathbf{C}
6	67742189	B10SNPSG0061	С	А	А	А
6	84280591	B10SNPS0097	С	Т	С	\mathbf{C}
6	104875242	B10SNPS0099	А	С	С	\mathbf{C}
6	125060262	B10SNPSG0065	А	G	А	G
6	147720182	B10SNPS0104	А	G	G	G
7	7014667	B10SNPS0105	Т	С	С	\mathbf{C}
7	28467081	B10SNP2G0049	Т	А	ND*	ND*
7	38216957	B10SNP2G0052	А	С	С	\mathbf{C}
7	54410823	B10SNP2G0058	С	Т	Т	Т
7	71519895	B10SNP2G0060	G	Т	Т	Т
7	87465557	B10SNPS0113	G	А	G	G

7	104565567	B10SNPS0115	А	G	G	G
7	130492865	B10SNPS0118	А	G	G	G
7	141188625	B10SNP2G0065	А	G	G	G
8	4235918	B10SNPS0122	\mathbf{C}	Т	\mathbf{C}	\mathbf{C}
8	24145986	B10SNPS0123	\mathbf{C}	Т	\mathbf{C}	Т
8	48705306	B10SNPS0126	G	А	А	А
8	64124535	B10SNPS0127	G	А	G	А
8	86611947	B10SNPS0130	\mathbf{C}	Т	\mathbf{C}	Т
8	106217064	B10SNPS0132	\mathbf{C}	А	\mathbf{C}	А
8	126154896	B10SNPS0133	А	G	G	G
9	8307298	B10SNP2G0067	Т	\mathbf{C}	\mathbf{C}	\mathbf{C}
9	25697557	B10SNPSG0092	А	G	G	G
9	44891469	B10SNPS0139	G	А	А	А
9	65069297	B10SNPS0141	А	Т	А	Т
9	87513872	B10SNPS0144	Т	G	Т	G
9	106375830	B10SNPS0145	Т	\mathbf{C}	Т	Т
9	122496139	B10SNPS0147	А	Т	А	А
10	25103948	B10SNPS0152	А	Т	А	А
10	43717117	B10SNPS0153	\mathbf{C}	Т	\mathbf{C}	Т
10	62547650	B10SNPSG0099	\mathbf{C}	Т	\mathbf{C}	\mathbf{C}
10	83411614	B10SNPS0157	\mathbf{C}	Т	Т	Т
10	0 104474937	B10SNPS0159	А	С	А	С
10	126774961	B10SNPS0162	\mathbf{C}	А	А	А
11	5927550	B10SNPS0163	А	G	А	G
11	24352635	B10SNPS0165	Т	С	Т	Т
11	46027800	B10SNPS0168	G	Т	G	Т
11	65237281	B10SNPS0170	А	G	G	G
11	83361835	B10SNPS0171	\mathbf{C}	Т	С	С
11	105208941	B10SNPS0173	А	С	А	А
12	4035991	B10SNPS0175	\mathbf{C}	Т	\mathbf{C}	Т

12	25626291	B10SNPS0178	А	G	G	G
12	33783681	B10SNPS0179	Т	G	Т	Т
12	55293511	B10SNPSG0101	С	G	G	G
12	69022193	B10SNP2G0069	Т	С	Т	\mathbf{C}
12	85893620	B10SNPS0184	Т	С	Т	\mathbf{C}
12	106196191	B10SNPS0185	G	С	G	\mathbf{C}
13	23458896	B10SNPS0190	Т	А	Т	А
13	44605368	B10SNPS0192	G	А	G	А
13	60294898	B10SNP2G0077	Т	С	Т	\mathbf{C}
13	83826961	B10SNPSG0116	Т	G	Т	Т
13	107699046	B10SNPS0198	G	А	G	G
14	13021464	B10SNPS0200	С	Т	С	С
14	30518255	B10SNPS0202	С	Т	С	С
14	55673056	B10SNPSG0125	Т	G	Т	G
14	77195309	B10SNPSG0131	С	Т	С	С
14	96734196	B10SNP2G0083	С	А	С	С
14	116124073	B10SNPSG0139	А	G	А	G
15	7117980	B10SNPS0212	А	G	G	G
15	25941148	B10SNPS0214	С	Т	С	\mathbf{C}
15	42051029	B10SNPSG0142	А	G	А	G
15	63931032	B10SNPS0218	G	А	G	А
15	83618701	B10SNPS0219	G	А	G	G
15	100309099	B10SNP2G0093	G	А	G	G
16	4972820	B10SNPSG0155	А	G	G	G
16	29856457	B10SNPS0225	А	G	G	G
16	44261352	B10SNPS0227	А	G	А	А
16	54901204	B10SNP2G0097	G	А	G	А
16	87736505	B10SNPS0232	С	Т	С	\mathbf{C}
17	3690688	B10SNPS0234	G	А	G	G
17	24310623	B10SNPS0236	Т	А	Т	Т

Y. Xia et al.

17	47451200	B10SNPS0237	G	А	G	G
17	66263080	B10SNPS0239	G	А	G	G
17	84624403	B10SNPSG0168	А	G	G	G
18	15408257	B10SNPSG0174	\mathbf{C}	Т	ND*	ND*
18	35366160	B10SNPSG0180	А	Т	Т	Т
18	46803584	B10SNPS0247	Т	\mathbf{C}	С	С
18	65425288	B10SNPS0249	С	Т	С	С
18	83497271	B10SNPS0251	G	А	G	G
19	23378788	B10SNPS0255	Т	G	Т	Т
19	46875560	B10SNPS0258	А	G	А	G
Х	55120804	B10SNP2G0120	А	G	G	G
Х	147904667	B10SNP2G0150	А	G	G	G
Х	158414344	B10SNPSG0223	G	Т	G	Т

*not determined