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ABSTRACT

The range of possible gene interactions in a multilocus model of a complex inherited disease is studied
by exploring genotype-specific risks subject to the constraint that the allele frequencies and marginal risks
are known. We quantify the effect of gene interactions by defining the interaction ratio, CR ¼ K R=K I

R,
where KR is the recurrence risk to relatives with relationship R for the true model and K I

R is the recur-
rence risk to relatives for a multiplicative model with the same marginal risks. We use a Markov chain
Monte Carlo (MCMC) procedure to sample from the space of possible models. We find that the average
of CR increases with the number of loci for both low frequency (p ¼ 0.03) and higher frequency (p ¼ 0.25)
causative alleles. Furthermore, the probability that CR . 1 is nearly 1. Similar results are obtained when
more weight is given to risk models that are closer to the comparable multiplicative model. These results
imply that, in general, gene interactions will result in greater heritability of a complex inherited disease
than is expected on the basis of a multiplicative model of interactions and hence may provide a partial
explanation for the problem of missing heritability of complex diseases.

ALTHOUGH many genome-wide association studies
(GWAS) have been performed and have found

hundreds of SNPs associated with higher risk of
complex inherited diseases, those SNPs so far account
for only a small fraction of the inherited risk of those
diseases (Altshuler et al. 2008). Several not mutually
exclusive explanations have been proposed for the
‘‘missing heritability,’’ i.e., the heritability that is not yet
accounted for by SNPs found in GWAS (Manolio et al.
2009): (i) common alleles of small effect that have
not been found because GWAS done so far have been
underpowered, (ii) low-frequency alleles of moderate
effect that are difficult to find using HapMap SNPs,
(iii) rare copy-number variants that are not in strong
linkage disequilibrium (LD) with HapMap SNPs, (iv)
inherited epigenetic factors that are not in strong LD
with HapMap SNPs, and (v) interactions among caus-
ative alleles that conceal their true contribution to heri-
tability. In this article we investigate the last possibility
and determine the extent to which interactions may
account for missing heritability.

Our analysis is in the same spirit as that of
Culverhouse et al. (2002). We assume that the risk of
being affected by a complex disease is determined by an
individual’s genotype at two or more loci and that the
frequencies of causative alleles and the average risks
for each one-locus genotype (the marginal risks) are

known. Culverhouse et al. (2002) assumed the mar-
ginal risks were the same for all genotypes and all loci.
In that case, causative alleles have odds ratios of 1;
they contribute to risk only through their interactions.
Culverhouse et al. found the risk function that maxi-
mized the heritability and showed that the maximum
possible heritability attributable to interactions in-
creased with the number of loci. They concluded that
it is quite possible that interactions among loci that have
no main effect could contribute substantially to the
heritability of a complex disease and indeed could
account for ‘‘virtually all the variation in affection status
for diseases with any prevalence’’ (Culverhouse et al.
2002, p. 468).

We generalize the analysis of Culverhouse et al. in
three ways. First, we allow causative alleles to have odds
ratios .1. Second, we explore the entire space of
models instead of focusing only on the risk model that
maximizes heritability. Third, we examine how the
importance of gene interactions depends on the ‘‘dis-
tance’’ between a risk model and a comparable multi-
plicative model. We show that gene interactions can
substantially increase the heritability of risk as measured
by recurrence risk, KR, and that the effect increases with
the number of loci carrying causative alleles. Further-
more, we show that these results are true even if more
weight is given to models that are closer to a comparable
multiplicative model.

Geometrically, the space of feasible genotype-specific
risks subject to the aforementioned constraints (i.e., that
the allele frequencies and marginal risks are known)
corresponds to a high-dimensional convex polytope,
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and the computational problem of interest involves
integrating a quadratic function over the polytope. The
dimension of the polytope grows exponentially with the
number of loci, and, therefore, analytic computation is
intractable for more than two loci. Hence, we devise a
Monte Carlo approach to tackle the problem. Note
that, because of high dimensionality, rejection algo-
rithms are not appropriate for this kind of problem. We
instead employ a Markov chain Monte Carlo (MCMC)
algorithm based on a random walk that always stays
inside the polytope. We present empirical results for
up to five loci and obtain a closed-form formula for
the minimum of KR over the polytope; the latter result
applies to an arbitrary number of loci. Interestingly,
the minimum of KR decreases as the number L of loci
increases, but the average of KR over the polytope in-
creases with L.

MULTILOCUS MODEL OF RISK

Model constraints: We assume that the risk of an
individual being affected by a dichotomous complex
disease depends on the genotype at L diallelic loci. We
use f(k) to denote the probability that an individual with
the L - locus genotype k ¼ (k1, . . . , kL) is affected, where
ki¼ 0, 1, 2 indicates the number of copies of the higher-
risk allele (denoted by Ai) at locus i. Note that 0 # f(k) #

1 for all genotypes k. We assume that the frequency pi

of Ai in a population is known. Further, we assume that
the loci are unlinked and are in Hardy–Weinberg and
linkage equilibrium.

The average risk in the population is

K ¼
X

k

PrðkÞf ðkÞ; ð1Þ

where Pr(k) is the probability of genotype k in the
population and the sum is over all genotypes. The
marginal risks for each one-locus genotype are obtained
by averaging over the other loci:

�f iðkÞ ¼
X

k9¼ðk91;...;k9LÞ:k9i¼k

Prðk9 jk9i ¼ kÞf ðk9Þ: ð2Þ

In this article, we assume that these one-locus marginal
risks �f i kð Þ are known for each locus i and genotype k.
Necessarily,

ð1� piÞ2 �f ið0Þ1 2pið1� piÞ �f ið1Þ1 p2
i

�f ið2Þ ¼ K ; ð3Þ

for all loci i.
Recurrence risk and the induced multiplicative

model: To characterize a risk model, we begin with the
recurrence risk, KR, which is the risk of the disease to a
relative with relationship R of an individual that has the
disease. Risch’s (1990) recurrence risk ratio, lR, is
defined as KR/K. The increase in KR over K indicates the
effect of causative alleles shared by the two relatives

because of identity by descent. In our notation, the
recurrence risk corresponding to a risk model f ¼
f kð Þð Þk2 0;1;2f gL is given by

K RðfÞ ¼
1

K

X
k2f0;1;2gL

X
k92f0;1;2gL

f ðkÞf ðk9ÞPrðk; k9 jRÞ

2
4

3
5;
ð4Þ

where Pr(k, k9 j R) denotes the joint probability of the
L-locus genotypes of two relatives with relationship R.
In this article, we are concerned with the recurrence risk
in full siblings, parents and offspring, half siblings, and
first full cousins. Since we assume that all L loci are
unlinked, the joint probability can be decomposed as

Prðk; k9 jRÞ ¼
YL
i¼1

Prðki ; k9i jRÞ;

where Prðki ; ki9jRÞ is the marginal joint probability for
locus i. See Liu and Weir (2005) for details on
computing Prðki ; ki9jRÞ for various relationships.

We define for any risk model the multiplicative model
with the same average risk K and marginal risks �f i kð Þ.
We call this model the induced multiplicative model. It
satisfies

f Iðk1; . . . ; kLÞ ¼
1

K L�1

YL
i¼1

�f iðkiÞ: ð5Þ

The recurrence risk for the induced model fI ¼
f I kð Þð Þk2 0;1;2f gL is denoted by

K I
R :¼ K RðfIÞ ¼

1

K L�1

YL
i¼1

K
ðiÞ
R ; ð6Þ

where the one-locus recurrence risk K ðiÞR for locus i is
defined as

K
ðiÞ
R ¼

1

K

X2

k¼0

X2

k9¼0

�f iðkÞ �f iðk9ÞPrðk; k9 jRÞ
" #

: ð7Þ

The quantity we use to characterize the deviation of a
risk model f from the induced multiplicative model is
the interaction ratio

CRðfÞ ¼
K RðfÞ

K I
R

:

For a multiplicative model, CR ¼ 1. If CR , 1, then KR is
smaller than expected under a comparable multipli-
cative model. In that case, assuming a multiplicative
model would overestimate the actual heritability of risk
as measured by KR. If CR . 1, assuming a multiplicative
model would underestimate the actual heritability of
risk, in which case gene interactions are concealing
some of the heritability.
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The space of disease risk models: In what follows, we
provide a geometric description of the space of disease
risk models that are consistent with given constraints.
Since f(k) 2 [0,1] for all k, the 3L-tuple f ¼
f kð Þð Þk2 0;1;2f gL takes value in the 3L-dimensional unit

hypercube, denoted Y. Note that different points in Y
correspond to different disease risk models.

For each locus i 2 {1, . . . , L} and genotype k 2 {0, 1, 2},
Equation 2 relates the disease risk function f to the
marginal risk �f i kð Þ. More explicitly, we have

�f iðkÞ ¼
X

k¼ðk1;...;kLÞ: ki¼k

f ðkÞ
Y
j 6¼i

qj ;kj

2
4

3
5; ð8Þ

where qj ;kj
denotes the equilibrium frequency of geno-

type kj at locus j, given by

qj ;kj
¼

ð1� pjÞ2; if kj ¼ 0;
2pjð1� pjÞ; if kj ¼ 1;
p2

j ; if kj ¼ 2:

8<
:

Note that the 3L equations in (8) are not all indepen-
dent, since, for each i 2 {1, . . ., L},

K ¼
X2

k¼0

qi;k
�f iðkÞ ¼

X
k¼ðk1;...;kLÞ2f0;1;2gL

f ðkÞ
YL
j¼1

qj ;kj

" #
: ð9Þ

Now, suppose that K, pi, and �f i kð Þ are given, for each
locus i and genotype k. Then, (8) and (9) define 2L 1 1
linearly independent affine hyperplanes H1, . . ., H2L11

in the unit hypercube Y, and the intersection of those
hyperplanes restricted to Y defines the space D of
disease risk models consistent with the given informa-
tion; i.e.,

D ¼ Y\H 1\ : : :\H 2L11:

Note that D is a convex polytope of dimension 3L� 2L� 1
embedded in the 3L-dimensional Y. The induced model
with the risk function fI(k) shown in (5) is consistent with
the given constraints (8) and (9), and it corresponds to
a particular point in the polytope D.

In our study, instead of specifying the marginal risks
�f i kð Þ directly, we assume a multiplicative model within
each locus and specify the genotype relative risk GRRi

for each locus i. Under this assumption, the marginal
risks are related by �f i 1ð Þ ¼ GRRi

�f i 0ð Þ and �f i 2ð Þ ¼
GRR2

i
�f i 0ð Þ, and the first equality in (9) implies

�f ið0Þ ¼
K

ð1� piÞ2 1 2pið1� piÞGRRi 1 p2
i GRR2

i

: ð10Þ

Since �f i 0ð Þ; �f i 1ð Þ; �f i 2ð Þ are linear in K, note that K I
R

defined in (6) is proportional to K.
Sampling from the polytope: The main computa-

tional problem involved in our work concerns comput-
ing the expectation E CR fð Þ½ �with respect to the uniform

distribution over the polytope D. The dimension of the
polytope grows exponentially with the number of loci,
rendering analytic integration intractable for more than
two loci. Hence, we employ a Markov chain Monte Carlo
algorithm to estimate the expectation.

Over the past 20 years, there have been a series of
theoretical developments (e.g., see Dyer et al. 1991;
Kannan et al. 1997; Lovász and Vempala 2006) on fully
polynomial-time randomized approximation schemes
for computing the volume of convex bodies in Rn . The
key component of these algorithms concerns the prob-
lem of sampling points uniformly at random from con-
vex bodies. The convexity property implies that one
can devise an MCMC algorithm with acceptance rate 1.
In our work, we employed the hit-and-run sampling
algorithm (Smith 1984; Lovász 1999), which goes as
follows: Suppose that the current state in the Markov
chain is xt 2 D. To sample the next state, choose a
direction uniformly at random and move uniformly
along that direction, restricted to D. The point after the
move is the next state xt11 2 D.

The mixing time of the hit-and-run algorithm has
been shown to be O*(n3), after some appropriate pre-
processing (Lovász 1999), where n denotes the dimen-
sion of the ambient space. We remark that there are
at least two sources of complication in applying this
complexity result in practice. First, it is an asymptotic
result and the O* notation actually hides a large con-
stant, as well as the dependence on error parameters.
Second, in the application we are considering, the di-
mension n grows exponentially with the number L of
loci. Hence, to check convergence, we took an empirical
approach, by keeping track of the running average of
CR (f).

For L ¼ 2, 3, 4, we ran our sampler for 20 million
iterations, taking samples every 20 iterations to compute
the expectation E CR fð Þ½ �. For L ¼ 5, we used 30 million
iterations, again taking samples every 20 iterations to
compute E CR fð Þ½ �. For a few parameter settings, we tried
using 100 million iterations and obtained results very
close to that for 30 million iterations. In all runs, we
started the chain at the induced multiplicative model fI.
The computation was done using a single core of a Mac
Pro with two 3.0-GHz Quad-Core Intel Xeon processors,
and the running time for a given parameter setting was
88 sec for L ¼ 2, 822 sec for L ¼ 3, 2.2 hr for L ¼ 4, and
28.3 hr for L ¼ 5.

RESULTS

Random sampling of risk models: With L diallelic
loci, there are 3L genotypes and hence 3L d.f. for an
arbitrary risk function. If we fix the marginal risks at
each locus, the risk function is subject to 2L 1 1
constraints (Culverhouse et al. 2002). This can be
seen by noting first that there are 3L marginal risks but
that (3) implies that only two of those marginal risks are
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independent. The average risk, K, must be specified
also, adding one more constraint. Even for small L,
there is a large range of risk functions subject to these
constraints. There are 4 d.f. in the risk function for L ¼
2, 20 for L¼ 3, 72 for L¼ 4, and 232 for L¼ 5. To explore
efficiently the space of feasible risk functions subject
to these constraints, we implemented an MCMC algo-
rithm described in the previous section. That algorithm
allowed us to randomly sample risk functions from the
space of feasible risk functions subject to the given
constraints. In our empirical study, instead of specifying
the marginal risks directly, we assumed a multiplicative
model within each locus and specified the genotype
relative risk GRRi for each locus i. Recall that specifying
K, pi, and GRRi completely fixes the marginal risks for
locus i; see (10).

Figure 1 summarizes the results for full and half
siblings. The results for parents and offspring are similar
to those for full siblings. For full first cousins, the overall
effect of gene interactions is weaker than for half
siblings but the average CR still increases with L. The
qualitative pattern for K ¼ 0.005 is the same for both
low-frequency (p ¼ 0.03) and higher-frequency (p ¼
0.25) causative alleles but the average of CR is larger
for rare alleles. Similar results were found for K ¼ 0.02.
The average CR increases with L and the probability that
CR . 1 is nearly 1 even for L ¼ 2. That is, gene in-
teractions will tend to make the true similarity of rela-
tives larger than expected if the multiplicative model
is assumed to be correct, and the effect is more pro-
nounced when causative alleles are rarer.

The results in Figure 1 were based on the assumption
that all loci have the same genotype relative risks and
allele frequencies. When there are both rare and com-
mon alleles, the increase in average CR increases with
the proportion of rare alleles, except when L ¼ 2. See
Figure 2.

Nonrandom sampling of risk models: The above
results were obtained by sampling all feasible risk
functions with equal probability. On intuitive grounds,
however, it is reasonable to assume that risk functions
that are closer in some sense to the induced multipli-
cative model are more likely alternatives than risk func-
tions that are more unlike the induced multiplicative
model. This assumption embodies the intuition that,
although genes are not completely independent in
their effect on risk, they are more likely to be partially
independent than they are to interact in a completely
arbitrary way. To test whether taking account of the sim-
ilarity to a multiplicative model affects the above con-
clusions, we define a distance between a risk function f
and the induced multiplicative risk function fI to be

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

k1;...;kL¼0

f ðk1; . . . ; kLÞ � f Iðk1; . . . ; kLÞ½ �2
vuut : ð11Þ

This is a Euclidean distance in the ambient space with 3L

dimensions.
In exploring the space of feasible models, we com-

puted the d for each model. The left side of Figure 3
shows the cumulative distribution of d for one of the sets

Figure 1.—Expected increase in the
interaction ratio (CR) and the fraction
of models for which CR . 1 as functions
of the number of causative loci, for
low- and high-frequency alleles. The
average CR increases with the number
of loci and the probability that CR . 1
is nearly 1 for all loci. The effects of
gene interactions are more pronounced
when causative alleles are rarer. We
used K ¼ 0.005 and pi ¼ p for all loci
i. Within each locus, we assumed a mul-
tiplicative model and set the genotype
relative risk (GRR) to 1.25. For all loci
i, the corresponding marginal risks are

�f i 0ð Þ; �f i 1ð Þ; �f i 2ð Þð Þ ¼ 0:0049; 0:0062;ð
0:0077Þ for p ¼ 0.03 and �f i 0ð Þ;ð
�f i 1ð Þ; �f i 2ð ÞÞ ¼ 0:0044; 0:0055; 0:0069ð Þ
for p ¼ 0.25. See (10).
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of parameter values. Other results are similar. The right
side of Figure 3 shows the conditional average of the
interaction ratio CR for full siblings, given that the
distance d from the induced multiplicative model is
within the yth percentile. The graph shows that, except
for risk models that are very close to the multiplicative
model, the average of CR is nearly the average obtained
by randomly sampling risk models. In other words, even
models of risk that are similar to the induced multipli-
cative model conceal on average substantial amounts of
heritability.

The minimum of CR: The extrema of CR over the
space of feasible disease models can be computed
numerically using quadratic programming methods.
Surprisingly, it turns out that we can actually obtain a
closed-form formula for the minimum of CR by consid-
ering the following interpretation of the recurrence risk
(4): Given an individual a in a population, let Xa denote
an indicator random variable such that Xa ¼ 0 (re-
spectively, Xa ¼ 1) if the individual is unaffected
(respectively, affected) by a given complex disease.
Then, for two relatives a and b with relationship R, the
recurrence risk (4) can be written as

K R ¼ K 1
CovðX a ;X b jRÞ

K
:

Since the recurrence risk K I
R for the induced multi-

plicative model is completely determined by the given

constraints, minimizing CR ¼ K R=K I
R is equivalent to

minimizing KR, which in turn translates to minimizing
the covariance term Cov(Xa, Xb j R). Now, since Cov(Xa,
Xb j R) can be partitioned into additive, dominance, and
interaction variance components (James 1971)—which
are all nonnegative—we conclude that the minimum
Cov(Xa, Xb j R) is attained by a model with vanishing
interaction variances. In such a model, Cov(Xa, Xb j R) is
given by a sum of one-locus variance components over
the L loci:

CovðX a ; X b jRÞ
K

¼
XL

i¼1

K
ðiÞ
R � K

h i
:

In summary,

minCR ¼
K 1

P
L
i¼1ðK

ðiÞ
R � K Þ

K I
R

¼ K L�1 K 1
P

L
i¼1ðK

ðiÞ
R � K ÞQ

L
i¼1K

ðiÞ
R

" #
:

ð12Þ
In the symmetric case with pi ¼ p and �f i kð Þ ¼ �f i kð Þ, for
all loci i, the risk function f(k) that minimizes CR is given
by

f ðk1; . . . ; kLÞ ¼ n0a0 1 n1a1 1 n2a2;

where nk is the number of loci with genotype k and
ak ¼ �f kð Þ � K L � 1ð Þ=L.

Figure 2.—Expected increase in the
interaction ratio as a function of the
number of loci with rare causative al-
leles, given the total number of loci is
L. Except for the case of L ¼ 2, when
there are both rare and common al-
leles, the increase in average CR in-
creases with the proportion of rare
alleles. The same parameter values as
in Figure 1 are assumed here. In partic-
ular, rare risk alleles are assumed to
have frequency p¼ 0.03, while common
risk alleles are assumed to have fre-
quency p ¼ 0.25.
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It can be checked that numerical optimization based
on the method of Lagrange multipliers produces results
that coincide with (12). In the cases we considered in
this article, the marginal risks �f i 0ð Þ; �f i 1ð Þ; �f i 2ð Þ are
linear in K. Therefore, the K ið Þ

R are proportional to K,
and hence the minimum of CR is independent of K.
Shown in Figure 4 are plots of the minimum of CR for
pi ¼ p and GRRi ¼ 1.25 for all loci i. Note that the
minimum of CR decreases as the number of loci in-
creases and that the rate of decrease is more rapid for
larger values of p. It is interesting that the average of CR

increases with the number L of loci, despite the fact that
the minimum of CR decreases as L increases. Computing
the maximum of CR is a more difficult problem, both
numerically and analytically, and we do not address it in
this article. For L # 4 and special values of K and p,
Culverhouse et al. (2002) estimated the maximum of
CR for purely epistatic models, in which case �f i kð Þ ¼ K
for all i ¼ 1,. . ., L and k ¼ 0, 1, 2.

DISCUSSION

In human genetics, gene interactions are regarded
with ambivalence. On one hand, what has been learned
about metabolic pathways and gene-regulatory net-
works makes clear that genes and gene products may
interact in so many ways that independent effects of
individual genes are probably the exception rather than
the norm (Cordell 2002; Carlborg and Haley 2004;
Moore and Williams 2005; Phillips 2008). On the
other hand, tradition, convenience, and a large body of
evidence from quantitative genetic studies encourage
the use of models of disease risk that assume causative
loci are independent in their effects or are additive on
an underlying scale of disease liability (Risch 1990;
Hill et al. 2008; Wray and Goddard 2010). Although
many statistical methods have been developed to detect
interacting genes in GWAS data sets (Marchini et al.
2005; Zhao et al. 2006; Zhang and Liu 2007; Gayán

et al. 2008), those and similar methods are intended to
test for specific pairs of loci that interact and not the
overall importance of gene interactions to the average
risk and heritability of complex diseases.

In this article, we quantified the potential effects of
gene interactions. We showed that, whether or not there
are detectable marginal effects of individual loci, gene
interactions will tend to increase the heritability of
disease risk as measured by the recurrence risk, KR,
from what is expected on the basis of the assumption of
no gene interactions. Furthermore, a greater increase in
heritability is expected if there are more causative loci
and when causative alleles are rare rather than com-
mon, and the pattern is found even with models of
disease risk that are closer than average to a model that
assumes no gene interactions. Therefore, relatively weak
interactions among multiple causative loci could conceal
substantial heritability.

Figure 3.—Effects of nonrandom
sampling of risk models for L ¼ 4. The
left plot shows the cumulative probabil-
ity that a randomly sampled risk model
has a Euclidean distance d (measured
as a fraction of the empirical maximum
possible distance dmax) from the induced
multiplicative model for low- and high-
frequency causative alleles. The right
plot shows the conditional expectation
of the interaction ratio CR for full sib-
lings, given that the distance from the in-
duced multiplicative model is within the
yth percentile. This result implies that
even models of risk that are similar to
the induced multiplicative model con-
ceal on average substantial amounts of
heritability. The same parameter values
as in Figure 1 are assumed here.

Figure 4.—A graph of the minimum interaction ratio CR

for full siblings plotted against the number of causative loci.
The minimum of CR does not depend on K. Also, it decreases
as the number of loci increases, and the rate of decrease is
more rapid for larger values of p. It is interesting that, al-
though the minimum of CR decreases as the number L of loci
increases, the average of CR over the polytope increases with L.
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The magnitude of the effect of interactions depends
on the frequencies of causative alleles. To illustrate what
our results mean, consider the case with low-frequency
causative alleles (p ¼ 0.03), each of which increases
disease risk by a factor of 1.25. If there are five such loci,
the interaction ratio, CR for full siblings is �1.57 (see
Figure 2) for K¼ 0.005. If these five loci were identified
and the GRRs estimated and a multiplicative model of
interactions is assumed, we could conclude that these
loci together would cause the recurrence risk KR to
exceed K by a factor of 1.01. As a consequence, we would
conclude that these five loci contribute very little to the
increased risk to full siblings of an affected individual.
However, our results indicate that, if the interaction
model is sampled randomly from the space of models
with the same GRRs, these loci would cause KR to exceed
K by an average of 1.59. Furthermore, this would be true
even if the risk model were chosen to be close to a
multiplicative model in the sense we defined above.
In this example, then, most of the increase in the risk to
close relatives would be concealed if the true model
were not multiplicative. The effect is weaker for higher-
frequency risk alleles. If p ¼ 0.25, CR for full siblings
is �1.14. The increase in KR ¼ 1.05 if a multiplicative
model is assumed. The expected increase for a ran-
domly chosen model of interactions is �1.20.

Untyped rare causative alleles may enhance the po-
tential role of epistasis in explaining missing heritability.
As our results show, the effect of epistasis on heritability
is more pronounced for rare causative alleles than for
common ones. Suppose c common causative alleles
were typed in a GWAS, while r rare causative alleles were
not typed. Our results (see Figure 2) suggest that the
recurrence risk KR for the c 1 r loci can be substantially
greater than that for the c common causative alleles only
and that this difference in general grows with the num-
ber r of untyped rare causative alleles. In contrast, the
recurrence risk K I

R in the induced multiplicative model
will be similar in the two cases.

Our analysis cannot tell us whether gene interactions
actually contribute to disease risk and the heritability
of complex disease. Only empirical studies can do that.
But our results indicate that there is ample room for
gene interactions to have a strong effect on disease
heritability. It is not necessary to assume extreme or
bizarre types of gene interaction. Most deviations from
independent gene action have an important effect on
heritability, so the possibility of extensive interactions
should be kept in mind when interpreting the results of
GWAS and family studies of complex inherited diseases.
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