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Abstract

Background: The effective geometric modeling of vascular structures is crucial for
diagnosis, therapy planning and medical education. These applications require good
balance with respect to surface smoothness, surface accuracy, triangle quality and
surface size.

Methods: Our method first extracts the vascular boundary voxels from the
segmentation result, and utilizes these voxels to build a three-dimensional (3D) point
cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit
indicator function is computed from the oriented 3D point cloud by solving a
Poisson equation. Finally the vessel surface is generated by a proposed adaptive
polygonization algorithm for explicit 3D visualization.

Results: Experiments carried out on several typical vascular structures demonstrate
that the presented method yields both a smooth morphologically correct and a
topologically preserved two-manifold surface, which is scale-adaptive to the local
curvature of the surface. Furthermore, the presented method produces fewer and
better-shaped triangles with satisfactory surface quality and accuracy.

Conclusions: Compared to other state-of-the-art approaches, our method reaches
good balance in terms of smoothness, accuracy, triangle quality and surface size. The
vessel surfaces produced by our method are suitable for applications such as
computational fluid dynamics simulations and real-time virtual interventional surgery.

Background
In surgical planning, treatment evaluation, and medical education, the geometric mod-

eling of vascular structures is of vital importance. Three-dimensional (3D) models can

help surgeons better understand the branching patterns and complex topology of vas-

cular structures in a short time for better and quick decision making during surgery by

providing straightforward information on the morphology of the vessels, the spatial

relationships among these vessels and other relevant anatomic structures, and an intui-

tive depiction of curvature and depth relations [1-4].

The surface modeling techniques of vascular tree structures can be broadly classified

as either model-based or model-free techniques [1]. Generally, the former methods

require vessel centerline extraction and vessel diameter determination from segmented

vessels [5]. Based on the centerline model (defined by the centerline and radius), geo-

metric primitives such as cylinders [6] and truncated cones [7] are employed to fit the

vessel surface for visualization. Unfortunately, the smoothness of the surface produced
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by these methods is poor, especially where the vessel branches. At these points, transi-

tion is unavoidably discontinuous and therefore has significant artifacts, resulting in

very low visual quality. To achieve high-quality surface, other advanced surface repre-

sentations have been investigated, such as, B-spline surfaces [8], simplex meshes [9],

convolution surfaces [10], and subdivision surfaces [11,12]. Most of these methods

yield desirable smooth surfaces; however, they suffer from low accuracy, badly shaped

triangles or a large number of polygons.

The most common model-free technique of surface reconstruction in medical visua-

lization is Marching Cubes (MC) [13]. Although effective in capturing overall shape,

this technique has two major limitations. One limitation is that the generated surface

heavily relies on the chosen isovalue and a slight change in value may result in great

change in both the topological and geometrical features of the generated surface. The

other limitation is that the visual quality is very low because the generated surface con-

tains strong aliasing artifacts. Furthermore, these artifacts may lead to unstable numeri-

cal problems when the generated surface is applied for computational fluid dynamics

(CFD) simulations. Recently, Schumann et al. [14,15] presented a model-free technique

that could produce smooth surface from vessel segmentation. The technique is based

on multi-level partition unity (MPU) implicits [16] originally dedicated to reconstruct

the surface from 3D point clouds.

However, the main drawback of model-based methods is that their assumed models

are unable to represent the underlying image data, and are therefore inappropriate for

vessel diagnosis where high accuracy of surface representation is required. These meth-

ods assume that the cross-section of vessels is circular, whereas the pathologic vessels

in clinical practice such as aneurysms might generally have a non-circular shape (e.g.

ellipse) [2,5]. In contrast, model-free methods make no model assumptions and repre-

sent the underlying data with high fidelity. Therefore the reconstructed surface from

model-free methods could be used for vessel diagnosis.

this paper, we present a model-free approach that relies on a prior vessel segmenta-

tion result, point extraction, Poisson equations and adaptive polygonization. With the

proposed weight function, the triangulation algorithm in the gap-stitching stage can

produce a two-manifold triangulation that maximizes the minimal angle of the triangle.

Our approach yields a both morphologically correct and topologically preserved two-

manifold smooth surface that is scale-adaptive to the local curvature of the surface by

increasing/decreasing the size of triangles in regions with low/high curvatures. In addi-

tion, our method generates fewer and better-shaped triangles that are suitable for

applications such as CFD computations and finite element analysis, and does not

require other additional geometry processing techniques to improve triangle quality or

to reduce number of triangles.

This paper is organized as follows. Details of our method are described in Sections

Method. The results and discussion are presented in Section Results and Discussion.

Finally, our conclusions are given in Section Conclusions.

Methods
Overview

The pipeline of the presented approach to the geometric modeling of vascular tree

structures is illustrated in Figure 1. The pipeline begins with a 3D binary volume data
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from segmented image (1 represents the voxels of the vessel structures and 0 repre-

sents the background). The boundary voxels between the segmented vessel and the

background are extracted and used to build a 3D point cloud. Then, a 3D implicit

indicator function is computed from the oriented 3D point cloud by solving a Poisson

equation. Finally the surface model is generated by a proposed polygonization algo-

rithm for explicit 3D visualization.

Point extraction

The point extraction step aims to faithfully represent the boundary of the vessel using

3D point clouds. Generally, point generation from volume data is driven by the voxel

grid of the segmented result [14,17]. Braude et al. [17] used the boundary voxels to

directly generate the point cloud; unfortunately their work failed to represent very thin

vessel branch which might be represented as lines. To reconstruct the very thin vessel

structures and to prevent aliasing artifacts, we use a similar adaptive point extraction

technique [14,15] in our pipeline. The technique relies on the constellation of adjacent

object voxels and outer boundary voxels that are closest to the given object voxels, e.g.

if there is only one object voxel in the 3D-6-neighborhood, one point will be generated

in the center of the boundary face, which is defined as the voxel adjacent to the object

neighbor voxel, as illustrated in Figure 2. To sufficiently represent the thin vascular

branch, voxels representing thin structures are first identified by a top-hat-transforma-

tion with a 3x3x3 structuring element, after which all outer boundary voxels adjacent

to thin structures are refined into eight subvoxels [14].

Normal vector estimation

To define a vector field for computing the indicator function, we need to estimate the

normal vectors of the extracted point cloud. Generally, a normal vector is computed

Figure 1 Pipeline of the geometric modeling of vascular tree structures. Pipeline of the geometric
modeling of vascular tree structures.

Figure 2 Example of point extraction. Example of generating point (blue) based on constellations of
object voxels (grey) and outer boundary voxel (blue).

Wu et al. BioMedical Engineering OnLine 2010, 9:75
http://www.biomedical-engineering-online.com/content/9/1/75

Page 3 of 16



based on the image gradient of a given voxel in the segmentation result. However, this

method may not be effective when the neighborhood of a voxel is symmetrical because

the points are placed in the centers of the boundary faces. In this case, according to

Schumann et al. [14,15], the normal of the face is taken as the normal of the generated

point. This method is simple; however, it may achieve undesirable results when the

voxel size is large. To avoid this problem and robustly estimate the normal vector for a

given sample point, we use a method relying on covariance analysis [18]. The 3x3 cov-

ariance matrix C for a sample point P is defined as follows:
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where {pi,1, pi,2,..., pi, k}is the k nearest neighbors of the point P. Since C is symmetric

and positive semi-definite, all eigenvalues are real-valued and all eigenvectors form an

orthogonal frame. The eigenvector corresponding to the smallest eigenvalue is taken as

the normal vector of the point P.

Indicator function

After obtaining the point clouds with oriented normals, many techniques are available

to reconstruct them for surface visualization. For a comprehensive introduction to

these techniques, please refer to a recent survey [19]. One popular surface reconstruc-

tion technique is the implicit function technique. This technique first constructs a 3D

function that approximates/interpolates the point samples and then polygonizes the

reconstructed surface. The main advantage of this type of technique is that it can

reconstruct a watertight surface from different 3D models with any topological com-

plexity. We choose the Poisson surface reconstruction [20] technique to model the ves-

sel surface because, unlike the MPU technique [16], it is robust to recover fine details

from noisy data and does not need to resort to heuristic partitioning or blending for

surface fitting.

The basic idea behind Poisson surface reconstruction is to utilize the vector field

V

to compute the indicator function ψ (defined as 1 at points inside the surface and 0 at

points outside). At points near the surface, the gradient of ψ is a vector field that is

equal to the normal vector field. Hence, the problem of computing the ψ turns into

finding a function whose gradient best approximates the

V , i.e. min || || ∇ −


V .

After applying the divergence operator, the problem becomes a standard Poisson pro-

blem [20]:

Δ ≡ ∇ ⋅ ∇ = ∇ ⋅ 

V (2)

To reconstruct fine details, an adaptive octree ξ defined by the position of the sam-

ple points is used to represent the implicit function, and each node O Î ξ of the tree

is associated with a function Fo when the following conditions are satisfied [20]: 1)

the vector field can be expressed as the linear sum of the Fo; 2) the matrix represen-

tation of the Poisson equation can be solved efficiently; and 3) the representation of

the indicator function can be accurately evaluated near the surface. For every node
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o Î ξ, the Fo is set to be the unit-integral centered about the node o and scaled by

the size of o:

F q F
q c

w w
F q f

q
d( ) ( ) , ( ) ( )= − =1

23 (3)

where q is the sample point; c and w are the center and width of the node O, respec-

tively; d is the maximum tree depth; and f is a Gaussian filter with unit variance.

To allow for sub-node precision, the gradient field of the indication function is

defined as follows:

 
V q F q n

s S
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Where S is the input data with a set of samples s Î S, each consisting of a point and

an inward-facing normal !n ; Ω is the set of eight depth d nodes closest to the sample

point; and ϖ is a trilinear interpolation weight. After defining the vector field, the indi-

cator function is obtained by solving the Poisson equation Eq. (2) using a conjugate

gradient solver.

Polygonization

To explicitly visualize the implicit surface, we need to triangulate the implicit surfaces

from the computed indicator function. Our polygonization algorithm consists of two

stages: mesh-expanding and gap-stitching.

Mesh-expanding stage

We first introduce how to compute the radius of the curvature of a given point and

then describe the mesh-expanding procedure. We choose a point x near the surface,

and compute its corresponding surface point p, and the surface normal at p, denoted

by np, using an iterative procedure known as Newton step [21]. The radius of curva-

ture at point p is estimated by calculating the radius of curvature of several geodesics

that cover p, and taking the minimum one [22,23]. Assuming a set of surface point qi
with surface normal nqi

, are close to the point p, let di be the distance between p and

qi, and θi be the angle between np and nqi
, as illustrated in Figure 3. The radius of the

curvature at point p is then calculated by

r p
di

i
( ) min(

sin( )
)=

2 2
 (5)

Figure 3 Illustration of calculating the radius of curvature at a given point. The illustration of
calculating the radius of curvature at a given point.
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Starting from point p, we construct six triangles as an initial mesh. First, the point p

is surrounded by constructing a regular hexagon q1, q2,...,q6 in the plane tangent to p.

To adapt to the local curvatures of the surface, we project q1, q2,...,q6 onto the surface

to estimate r, the radius of curvature at point p. Then, the generated regular hexagon

is adjusted, whose edge lengths are r·r, where r is a user-defined constant. Finally, the

vertices of the hexagon are again projected onto the surface, and denoted as p1, p2,...,

p6. The triangles formed by the hexagon p1, p2,...,p6 with p are the first six triangles of

the mesh (see Figure 4). This mesh is considered as the seed element and is expanded

by progressively growing triangles from its boundary edges.

Once the initial mesh is generated, its boundary edges are placed into a queue. We

then take an edge, denoted as (u, v), from the queue. A new point p is created if u, v

and p form an equilateral or close-to-equilateral triangle. The new triangle Δuvp is

coplanar and opposite to the existing triangle containing the edge (u, v). After point p

is placed onto the implicit surfaces to estimate curvature, it is changed on the original

plane such that the lengths of the edges (p, u) and (p, v) are equal tor·r. Finally, the p

is once again placed onto the implicit surfaces (Figure 5).

The newly constructed triangle Δuvp is added to the mesh if it satisfies two condi-

tions. One is that both edge (p, u) and edge (p, v) should make an angle of at least

50 degrees (the maximal angle is 70 degrees) with the edge (u, v) in the old mesh. The

other condition is that the triangle Δuvp should not approach existing triangles

too closely. These two conditions guarantee that the resulting triangles are close-

to-equilateral and the gap generated by this stage is not too narrow to sew in the sub-

sequent gap-stitching stage. If any one of the boundary triangle in the mesh (denoted

as T) is closer to triangle Δuvp than one-third of the length of the longest edge in T

and triangle Δuvp, then the triangle Δuvp is not added to the mesh. Otherwise, the tri-

angle Δuvp is added to the mesh and the boundary edges (p, u) and (p, v) are placed

into the queue. The mesh-expanding terminates when the queue is empty.

Figure 4 The generation process of initial mesh. First generating a regular hexagon (the dashed lines in
blue) in the plane tangent to p, and projecting the vertices of the hexagon onto implicit surfaces to
estimate curvature. Then adjusting the edge length of the hexagon to r·r, and finally, projecting the
vertices of hexagon onto surface again to generate an initial mesh, consisting of vertices p1,...,p6 and p.
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Gap-stitching stage

To stitch the gap produced in the mesh-expanding stage, as shown in Figure 6 (left), it

should first be identified. Since the gap is a closed loop of boundary edges in the

mesh, and the mesh produced after mesh-expanding stage is a connected two-manifold

surface, the gap can be stitched as described below.

Let F(i, j, k) be a weight function defined on the set of all triangles (pi, pj, pk) that

could be possibly generated in triangulating the polygon pi,..., pj, 0 ≤ i <j <n and let wi, j

be the minimum total weight that can be achieved during the triangulation process.

Then the triangulation algorithm proceeds as follows:

i. For i = 0, 1,..., n - 2, let wi, i+1 = 0, and for i = 0,1,...,n - 3, let wi,i+2: = F(i,i+1,i

+2). Set j: = 2.

Figure 5 A fragment illustrating the mesh-expanding procedure. The red lines are boundary edges of
the mesh and stored in a queue. From the boundary edges, new triangles are progressively generated.
Note that the blue lines combined with one boundary edge will construct a new triangle if it satisfies two
specified conditions. If two boundary edges make an angle less than 70 degrees, the three vertices on
these two edges are used to produce a new triangle, see the triangle consisting of the green dashed line
and the other two boundary edges.

Figure 6 Polygonization of a trifurcate model. A long gap is produced upon the termination of mesh
expanding stage (left), and is sewed in the subsequent gap-stitching stage (right).
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ii. Put j: = j + 1. For i = 0,1,..., n − j − 1 and k = i + j. Let

w w w v v vi k i m k i m m k i m k, , ,: min[ ( , , )]= + +
< <

Φ . Let Oi, k be the index m where the mini-

mum is achieved.

iii. If j <n − 1, then return to step 2; otherwise the weight of the minimal triangula-

tion is w0,n-1.

iv. Let Θ: = � and call the recursive function Trace with the parameters (0, n − 1).

Function Trace (i, k):

If (i + 2) = k, then Θ: = Θ∪Δvivi+1vk;
Else

1) Let o: = Oi,k;

2) If o ≠ i + 1, then Trace (i, o);

3) Θ: = Θ∪Δvi vo vk;
4) If o ≠ k − 1, then Trace (o, k)

End else.

At the end of the algorithm, Θ contains the required triangulation of polygon p0,...,

pn-1. The triangulating steps are similar to the schemes described in [24,25], but differ-

ent in defining the weight function F(i, j, k). Barequet and Sharir [24] suggested the

function as the area of triangle (i, j, k), whereas Liepa [25] designed it by combining

the dihedral angles between the neighboring triangles with areas of triangles. However,

when the holes are highly irregular, the resulting mesh may not be a topologically pre-

served two-manifold surface. To avoid this, we propose a strategy wherein the angles

of potential triangle (pi, pk, pj), i < k < j, denoted as T, are first taken into account,

with the minimal angle of triangle T being maximized. The dihedral angles and area

are then considered the same time. Therefore, we define triples as follows:

Φ( , , ) ( , , )i k j A=   (6)

where a is the maximized minimal angle of triangle T, b is the maximal dihedral

angle between triangle T and its neighborhoods, and A is the area of triangle T. The

ordering in F is designed to give precedence to a over b, and b over A:

( , , ) ( , , ) : (( )

( )

(

     
   
   

1 1 1 2 2 2 1 2

1 2 1 2

1 2 1 2

A A< ⇔ > ∨
= ∧ < ∨
= ∧ = ∧∧ <A A1 2))

(7)

The addition operator sums the area but retains the maximized minimal angle and

the “worst” (i.e., largest) dihedral angle:

(a1,b1,A1)+(a2,b2,A2):=(m1,m2,A1+A2)

where m1 = min(b1, b2), and m2 = max(b1, b2).
With our weighting function, the triangulation algorithm can produce a two-mani-

fold triangulation that maximizes the minimal angle of triangle T. After triangulation,

the patching triangles are subdivided to make their density similar to the density

of surrounding mesh [25,26]. An example of gap stitching is illustrated in Figure 6

(right).
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Results and Discussion
We have applied the presented model-free approach to the geometric modeling of a

variety of vascular trees, namely, cerebral (Figure 7), liver (Figure 8) and aorta trees

(Figure 9). The binary segmentation results of the liver and cerebral tree are from our

manual segmentation whereas the aorta tree is from the public resource (http://www.

ircad.fr). Table 1 summarizes the properties of the data tested in this paper. The pro-

duced surfaces, as shown in Figure 7, are smooth, especially at transition, and do not

show aliasing artifacts. A close visualization shows that the morphology of vascular

structures and thin structures (even the thin elongated structures) can be recon-

structed with the correct topology.

We evaluated our method in terms of surface smoothness, surface accuracy, trian-

gle quality, surface size and efficiency on the tested dataset. We also compared our

approach with the conventional model-free algorithm, i.e. MC algorithm, and state-

of-the-art algorithms, i.e. model-free MPU-based algorithms (MPU-based) [14,15],

and model-based subdivision surface algorithm (SS-based) [11,12]. In our experi-

ments, the implementation of SS-based is slightly different than in [11,12]. In [11,12],

after obtaining an initial mesh from the centerline model, the Catmull-Clark scheme

[27] is applied to generate the vessel surface; thus the surface is a quadrilateral mesh.

Since the surfaces produced by MC, MPU-based and our method are all triangular

meshes, for the convenience of comparison, we applied the Loop scheme [27]

with three iterations to produce vessel surface (for regular meshes, the surfaces

yielded by the Loop scheme and Catmull-Clark scheme are both C2-continuity [27]).

For the MPU-based algorithm, we attempted to select parameter settings suggested

in [14,15] with the best results. In our approach the user-defined r is set to 0.15 in

the mesh-expanding stage and the parameters k is set to 10 in the normal vector

estimation stage.

Surface smoothness

We compared our approach with MC and MPU-based algorithm when applied to the

same segmentation result. As illustrated in Figure 8, the surface produced by the MC

(Figure 8a) has a visually low surface quality and contains a great variety of artifacts,

Figure 7 A cerebral vessel surface model produced by our approach. A cerebral vessel surface model
produced by our approach
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which might disturb the visual interpretation of the vessel surface and therefore affect

decision making during diagnosis. In contrast, the surfaces generated by both the

MPU-based (Figure 8b) and our approach (Figure 8c) are highly smooth.

To validate the smoothness of the surface, we computed the distribution of the cur-

vature value on the surface. The curvature map can directly help us observe the flaws

and roughness of the surface that are not easily identified by human eyes. Here, we

computed the root mean square (RMS) curvature of both the maximal kmax and the

minimal kmin principal curvatures respectively, and RMS is defined as

( ) /max mink k2 2 2+ . The principal curvatures are computed based on a finite-differ-

ences technique [28].

Figure 9 Comparison of triangle quality for an aorta tree. Surface model generated by the MC (a),
MPU-based method (b), SS-based method (c) and our method (d). The bottom row is a zoomed region
corresponding to the rectangle region of the top row.

Figure 8 Comparison of the geometric modeling results on a liver tree. Surface model generated by
the MC algorithm (a), MPU-based algorithm (b) and our approach (c). Color-coded visualization of the root
mean square curvature distribution for the generated surface using MC algorithm (d), MPU-based
algorithm (e) and our approach (f).
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Figure 8d, Figure 8e, and Figure 8f show the curvature distribution of the MC sur-

face, MPU-based surface and the surface generated by our method respectively. It can

be seen that due to the substantial staircase artifacts, the curvature distribution of the

MC surface is highly inhomogeneous compared to that of both the MPU-based

method and our method. For the thin vessel structures, the distributions of other

methods are similar to that of the MC surface. The difference of surface smoothness

between our approach and MPU-based algorithm is not very apparent. The reason is

that these two approaches both utilize an implicit descriptor as the underlying surface

representation. Although the smoothness of the MC surface can be improved with

additional geometry processing techniques, e.g. smoothing filter, this unfortunately

leads to volume shrinkage, collapse of thin vessel structures and unfaithful representa-

tion of the underlying data [29].

3.2 Surface accuracy

We analyzed the accuracy of the generated surface on the assumption that the input

binary segmentation result of our pipeline had been validated correctly. To provide a

quantitative comparison of the surfaces, we measured the distance error between two

surfaces using the MESH tool [30]. The tool utilizes Hausdorff distance to calculate

the maximum, mean and RMS errors between two specified surfaces. In this experi-

ment, the surface generated by the MC algorithm is taken as reference surface

(although it is not the most accurate technique to visualize the segmentation result, it

has been the de facto standard in medical surface visualization and has been widely

applied in numerous radiological workstations [5,15]).

Table 2 lists the mean, maximum and RMS errors for the tested dataset. The maximum

error of SS-based method is larger than twice a voxel size, and is also larger than that of

both the MPU-based and our method, whose maximum error is less than a voxel size.

The reason is that, aside from the simplified model assumptions of circular cross-sections,

approximating subdivision scheme leads to volume shrinkage for a closed surface during

its convergence to the limit surface. Due to the same point extraction strategy, the errors

between MPU-based and our method are very similar. However, the maximum error

remains larger than half of a voxel size. This occurs in the feature regions of the vessel sur-

face, such as small concave and convex regions, which are not represented by sufficient

points, even though an adaptive subsampling technique is applied [14,15].

Triangle quality

Like surface accuracy, triangle quality is an important factor in achieving accurate

results in many simulations. CFD simulations require the input surface to be free from

block and staircase artifacts; therefore, the triangle meshes should have a good quality

with regard to edge ratio [31]. Degenerated triangles such as thin and elongated trian-

gles may lead to numerical unstability in CFD simulation, and may even make the

simulation impossible. Smooth transition at the points where the vessel surface

Table 1 Summary of properties of the data sets Sample table title

Dataset Modality Resolution Voxel size

Liver tree CT 512 × 512 × 279 0.6563 × 0.6563 × 0.5

Cerebral tree MRA 512 × 512 × 170 0.51 × 0.51 × 0.80

Aorta tree CT 512 × 512 × 167 0.961 × 0.961 × 1.80
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branches is also a prerequisite. Furthermore, the triangle size should not change

abruptly, and surface regions with high curvature are desirably represented by small

triangles.

Figure 9 demonstrates the comparison of triangle quality for the aorta tree. It can be

seen once again from the zoomed region that the MC surface contains strong staircase

artifacts and badly shaped triangles, and is not naturally smooth at the transition of

the branches. The surface generated by the MPU-based method has a smooth transi-

tion, but also contains degenerated triangles. Although these triangles can be removed

by invoking additional mesh quality improvement techniques [15], special care must be

taken to preserve vital surface features during the optimization process. Because of the

good underlying property of subdivision surface, the surface produced by the SS-based

method is composed of well-shaped triangles, with smooth transition at the branches.

However, the surface accuracy of the SS-based method is low (see Section Surface size)

and unsuitable for CFD simulations [31]. Similar to the SS-based method, the surface

of our method also has a smooth transition without badly shaped triangles. Addition-

ally, the triangle size yielded by our method is adaptively scaled to the local differential

geometric surface characteristics. The surface areas with high curvature are repre-

sented by smaller triangles, whereas triangles become large in the relative low-curva-

ture region. Meanwhile, the triangle size from small to large is changed gradually.

Edge ratio is one measure for triangle quality, and is defined as τ = |t|0/|t|∞, where |

t|0 is the minimum edge length of a given triangle, and |t|∞is the maximum length

[32]. It is straightforward to see that τ ≤ 1, whereas the equality occurs when the trian-

gle is equilateral, and τ converges to zero if the triangle is highly needle-shaped. An

ideal triangular mesh has triangles that are all equilateral, and should adapt to local

surface properties, such as curvature. Figure 10 shows the distributions of edge ratio

for aorta tree. It can be seen that the MC and MPU-based methods yield approxi-

mately 5% very badly shaped triangles (τ < 0.1) such as thin elongated triangles, and

less than 6% well-shaped triangles (τ ≥ 0.8). Moreover, these two methods suffer from

enormous standard deviations of ratio. In contrast, approximately 50% of generated tri-

angles (τ ≥ 0.8) by SS-based and our methods are close-to-equilateral. Unsurprisingly,

the two latter methods with small standard deviation yield no thin elongated triangles.

However, our method produces some triangles (less than 1%) with relative small ratio

(τ = 0.3). These triangles are constructed to stitch the gap in the polygonization.

Surface size

Here surface size refers to the total number of triangles and vertices approximating a

surface. Surface size affects surface accuracy, surface rendering speed, and human

interactive response. In the MPU-based method, Bloomental’s implicit polygonizer [33]

Table 2 Accuracy of MPU-based method, subdivision surface-based method and our
method for the tested dataset Mean, max and RMS denote mean distance error,
maximum distance error and root mean square distance error

Dataset MPU-based SS-based Our method

mean max RMS mean max RMS mean max RMS

Liver tree 0.098 0.321 0.016 - - - 0.098 0.320 0.115

Cerebral tree 0.084 0.512 0.106 0.171 1.782 0.213 0.082 0.510 0.104

Aorta tree 0.225 1.635 0.373 0.512 3.776 0.892 0.226 1.635 0.374
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is applied to produce a triangular mesh. In the polygonization, if the grid size is set too

large, the size of generated triangle is also very large, resulting in a loss of finer details

such as thin vessel structures. If the grid size is too small, the polygonization process

will be time-consuming; the surface size will be huge and will slow down interactive

rendering frame rates. Mesh simplification techniques are therefore usually invoked as

a subsequent step to reduce the surface size. However, this step may lead to a loss of

both topological and geometrical features, and may even produce degenerated triangles

during the simplifying process. In the SS-based method, the smoothness of the surface

is increased with the iteration of subdivision; unfortunately, the number of polygons

grows exponentially. Each iteration of subdivision yields a three-time increase in poly-

gon due to the underlying topological refinement rules. In our method, the size of tri-

angle can be adapted to the local curvature of the surface. This feature can save many

triangles in representations. In actuality, using many small triangles to represent sur-

face regions with low curvature, such as a flat region, does not significantly improve

surface smoothness but increases surface size.

Table 3 reports several statistics for the surface sizes of the three tested data. Com-

pared with the MC and MPU-based method, our method generally saves approxi-

mately 20% and 10% in the number of triangles, respectively, whereas for a vessel tree

consisting of many highly curved branchings such as cerebral tree, the saving is more

than 30% and 20% respectively. The surface size produced by the SS-based method at

third iteration is smaller; however, it will be greatly larger at fourth iteration than that

of MC and MPU-based method. Taking the cerebral tree as an example, the number

of vertices and triangles after four iterations of subdivision are up to 102443 and

204976, resulting in triangles smaller than the original voxel.

Computational efficiency

Our method utilizes implicit function to describe vascular structures; therefore, it

requires an evaluator for the indicator function defined at all extracted points in space.

The function is obtained by solving Poisson equations using the efficient linear solvers

[34]. The computational cost mainly depends on the complexity and the resolution of

input objects. In the mesh-expanding stage, the time is largely spent on calculating

curvature radius and movement of points onto surface. However, in the gap-stitching

stage, due to the O(n3) performance complexity of the triangulation algorithm, the

Figure 10 The distribution of edge ratio of the aorta tree. The distribution of edge ratio of the aorta
tree.
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time for this stage comprises approximately one-fifth of the entire time. However,

the proposed approach is much slower when compared to the MC, MPU-based or

SS-based method. Taking the cerebral tree, the most complex tested dataset, as an

example, the overall time for our method is 127 seconds, whereas the MC only

requires 5 seconds. The performances of this data for the MPU-based method and

SS-based method are 53 and 66 seconds respectively.

Conclusions
We have presented a model-free method for the geometric modeling of vascular struc-

tures. Our method yields both a topologically correct two-manifold and a geometrically

smooth vessel surface. An important feature of the presented method is that it pro-

duces a surface that is scale-adaptive to the local curvature of the surface. This mini-

mizes the number of triangles in the representation, leading to faster interactive

rendering frame rates and saving much computational time in post-processing proce-

dures, such as real-time blood flow simulations and collision detections in virtual inter-

ventional surgery.

We validated our method to a variety of vascular structures and compared the results

with other state-of-the-art techniques, both model-based techniques and model-free

techniques, in terms of surface smoothness, surface accuracy, triangle quality, surface

size and efficiency. Compared to the MC and MPU-based methods, the surface gener-

ated by our method achieves comparable accuracy; however, it is more suitable for appli-

cations that require high-quality triangulations such as CFD computations and finite

element analysis, because our method yields smaller surface size, better-shaped triangles

and no thin elongated triangles. Therefore, invoking additional geometry processing

techniques to improve mesh quality or to reduce surface size is not necessary for the

presented method. Mode-based methods, such as the SS-based method, can produce

smooth surface and well-shaped triangles. The simple circular model assumption results

in a low accuracy that is inappropriate for vessel diagnosis or CFD simulations, but can

be used for certain situations where accuracy is not very important, such as in medical

educations. Fortunately, very recent work [35] showed that with an elliptical model

assumption, the surface accuracy of SS-based method could be improved. The experi-

mental results demonstrate that our method reaches a better balance with regard to sur-

face accuracy, surface smoothness, triangle quality and surface size.

The investigation of computational efficiency has revealed the limitation of our

method in its current implementation. Fortunately, implementing the time-consuming

steps, such as the triangulation step on CUDA, a parallel computing engine developed

by NVIDIA [36], seems to be a promising solution to the limitation and might be part

of future work. Although the presented method makes no model assumption and

achieves high accuracy, it does not imply that our method can be directly applied to

Table 3 Surface sizes for three vessel surfaces generated by the MC, MPU-based
method, SS-based method and our method

Dataset MC MPU-based SS-based Our method

vertex triangle vertex triangle vertex triangle vertex triangle

Liver tree 95920 191920 84404 168888 - - 76728 153536

Cerebral tree 33788 67685 29505 59120 25567 51244 23347 46706

Aorta tree 48869 97520 44484 88753 40452 80604 34173 68163
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diagnostic tasks, because our pipeline takes the binary segmentation result as input,

and supposes that the segmentation is validated correctly. Therefore, combining the

validation of input data with the pipeline as a preprocessing step is also planned for

future studies.
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