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Abstract
Myxoma virus (MYXV) is a poxvirus with a strict rabbit-specific host-tropism for pathogenesis.
The immunoregulatory factors encoded by MYXV can suppress some functions of immune
effectors from other species. We review their mechanisms of action, implications in therapeutics
and the potential to improve MYXV as an oncolytic agent in humans.
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Myxoma virus (MYXV) belongs to the Leporipoxvirus genus within the poxviridae family
and is the causative agent for myxomatosis in the European rabbit [1]. MYXV in the wild
exhibits a strict host tropism such that it is not pathogenic in any known host species
(mouse, human, etc.) other than the European rabbit. Despite this narrow rabbit-specific host
range in nature, MYXV has proven to be capable of infecting a wide variety of human
cancer cells in culture, and can selectively eliminate cancerous tissues for either xenografted
human cancers in mice, or syngeneic murine cancers in rats and mice. In these cases, for
both immunocompromised and immunocompetent murine hosts, MYXV replication is
completely restricted to tumor tissues and the virus does not propagate to any detectable
degree in normal tissues. In stark contrast, within the rabbit host MYXV spreads
systemically in a broad spectrum of host tissues and can dismantle essentially all the
functional elements of the rabbit innate and acquired immune responses.

It has been documented that MYXV infection rapidly leads to systemic immunosuppression
in European rabbits. Depletion of lymphocytes in the draining lymph node has been reported
as early as 24 hours after intradermal infection of MYXV [2]. It has also been reported that
upon MYXV infection, all T cell subsets (CD4+, CD8+, and CD4+CD8+ T cells) decreased,
while MYXV’s effect on B cells was less pronounced [2]. In particular, the CD4+ T cell
subpopulation was affected more severely compared to other T cell subsets. In addition, the
ability of lymphocytes to proliferate was also compromised during the course of MYXV
infection [3]. This systemic MYXV-induced immunosuppression is utterly unique to
infected European rabbits. In contrast, the virus is rapidly cleared by innate immune
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responses in all tested vertebrate hosts outside the lagomorph family of leporid hosts,
including mice and humans. Thus, MYXV is considered a safe candidate oncolytic virus for
potential human clinical trials. In addition, several of the targeted gene knockout constructs
of MYXV, such as vMyx-M135KO and vMyx-M063KO, have lost the ability to be
pathogenic even in rabbits while maintaining their oncolytic properties against human
cancer cells, and thus represent newer-generation oncolytic candidate MYXV variants that
are essentially avirulent for all known vertebrate host species [4].

In recent years, MYXV has been shown to possess oncolytic activity in a variety of
preclinical cancer models [5,6]. Studies on the potential immunoregulatory properties of
MYXV outside the rabbit host will lead to a better understanding of the immune responses
elicited by the host (particularly mouse or human) upon MYXV infection and of their
potential modulation in the animal models that are used to evaluate the therapeutic benefits
of MYXV-based oncolytic treatments. Similar to the rest of the poxvirus family members,
dozens of diverse immunoregulatory factors are encoded by MYXV [1]. In this review, we
will focus on MYXV immunoregulatory factors with potential impacts on MYXV-based
oncolytic applications as assessed in cellular or animal-based models (Table 1).

The impact of type I interferon (IFN) and tumor necrosis factor (TNF)
The type I IFN pathway plays a crucial role in shaping MYXV host range in pathogenic and
non-pathogenic hosts. In primary murine embryonic fibroblasts (pMEFs), within 4 hours
after MYXV infection early events during the viral infection triggers the activation of
Erk1/2 signaling and drives downstream events including the expression of type I IFN, the
activation of STAT1 dependent signaling, IRF3 activation, and the upregulation of IRF7
expression. These induced innate cellular events in response to infection ultimately restrict
MYXV replication and spread in murine pMEFs [7]. However, when pMEFs were
spontaneously immobilized by serial passages in culture (called iMEFs), the cellular
mechanisms responsible for sensing MYXV infection were abrogated, thus preventing the
induction of type I IFN and allowing productive MYXV infection [8]. Unlike early-stage
pMEFs that are nonpermissive for MYXV replication, in the immortalized iMEFs that have
acquired a MYXV-permissive phenotype, in response to other nonviral ligands the
activation of IRF3, STAT1 and TLR3 pathways as well as the ability to produce type I IFN,
were all normal; however, the activation of Erk1/2 in response to MYXV infection could no
longer be detected and type I IFN was never induced by the MYXV infection [8]. The
mechanism, by which Erk1/2 is activated during the early stage of MYXV infection in
pMEFs, but not iMEFs, remains unclear. It will be intriguing to correlate this ability to
recognize MYXV infection to cytoplasmic or pattern recognition sensors that operate in
pMEFs but are apparently absent or selectively inactivated in immortalized iMEFs.

In normal primary human cells, the successful inhibition of MYXV replication depends not
only on type I IFN, but also on the production of tumor necrosis factor (TNF) in infected
cells. In primary human fibroblasts, unlike pMEFs, MYXV infection is partially resistant to
inhibition by type I IFN. In order to completely inhibit MYXV viral replication in primary
human fibroblasts, both type I IFN and TNF need to be present [9]. The partial resistance of
MYXV to type I IFN in primary human fibroblast is likely due to the inhibition of type I
IFN-induced phosphorylation of the Janus kinase Tyk2 during infection [10], which
consequently prevents the activation of downstream transcription factors (e.g., STAT1).
Recently, it has been shown that MYXV replication in human primary fibroblasts is
profoundly inhibited by a unique synergistic antiviral state induced upon co-stimulation with
TNF plus type I IFN [11]. Importantly, most human cancer cells tested to date are unable to
induce this IFN/TNF synergistic state and this defect may contribute to the selective
replication of MYXV in a variety of human cancer cells [12]. Note that primary human cells
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of different lineages do not respond identically to MYXV infection; for example in primary
human macrophages, unlike primary human fibroblasts, MYXV infection causes RIG-I
mediated co-stimulation of both TNF and type I IFN expression [9] thereby restricting
MYXV replication in these cells. Significantly, when primary human macrophages are
mixed with primary human fibroblasts, all the cells become resistant to MYXV because the
IFN and TNF induced in the MYXV-infected macrophages render all the cells in the co-
culture uniformly resistant to MYXV infection in a paracrine fashion (unpublished
observations). The sensing of MYXV infection by RIG-I in primary human macrophages
leads to IRF3/IRF7 activation and sustained expression of both TNF and type I IFN [9]. It
was also shown that in primary human macrophages, the induction of TNF or type I IFN
after MYXV infection was independent of TLR4, MyD88, MDA5 or Trif [9]. Although
RIG-I senses MYXV infection and triggers these signaling cascades that lead to the
induction of IFN and TNF in primary human macrophages, the MYXV sensors that operate
in other classes of primary human cells remains to be defined. Indeed, the innate cellular
sensors for cytoplasmic DNA viruses like MYXV may very well turn out to be different for
cells of different lineages.

Given the crucial role that innate antiviral cytokines like type I IFN plays in determining the
host range of MYXV, it is not surprising that this virus encodes several known or predicted
modulators of the rabbit versions of type I IFN. Structure studies on the MYXV M156
protein revealed that this protein is a structural mimic of the cellular eIF2α and a viral
pseudosubstrate for PKR, even though its sequence identity with eIF2alpha is only 19%
[13]. The type I IFN inducible, double-stranded RNA-dependent protein kinase (PKR) is a
protein kinase important for cellular responses against viral infections. The N-terminal
portion of PKR contains two double stranded (ds) RNA binding motifs. Binding of PKR to
ds-RNA produced during a viral infection promotes dimerization and trans-
autophophorylation of the protein that results in the activation of the kinase domain.
Activated PKR can induce antiviral responses by: 1) phosphorylation of eIF2α resulting in
the inhibition of both cellular and viral protein synthesis and 2) the activation of NFkB and
its downstream targets involved in cellular innate immunity (reviewed in [14]). In vitro
M156 was shown to be an efficient substrate of PKR and to efficiently compete for
phosphorylation with cellular eIF2α. The VACV K3L protein and the swinepox C8L protein
are also viral mimics of eIF2α and inhibitors of PKR [15,16]. However the protein-protein
interactions that lead to the inhibition of PKR by these three viral eIF2α mimics appear to be
distinct and unique to each viral protein. Importantly, of the three eIF2α viral mimics tested
to date only M156 has been reported to be phosphorylated upon binding to PKR [13]. Thus
M156 may utilize a different mechanism of PKR inhibition when compared to C8L or K3L.
Studies have also shown that the host may also in turn evolve to counteract viral mimicry. In
a recent study, using the PKR-K3L model system, it was reported that PKR has evolved and
undergone periods of strong positive selection in primates and that these evolutionary
mechanisms may help overcome viral mimicry [17]. In fact, mutant PKR proteins have been
identified that have decreased binding to K3L and therefore are resistant to its inhibitory
effects, but yet still retain their binding affinity for eIF2α [18]. In the past years, the genomic
sequences of naturally occurring strains of MYXV have been obtained. In Californian
MYXV isolates, which are more virulent to European rabbits compared to South American
strains, M156 has been found to be duplicated [19]. These findings support the prediction
that M156 is a virulence factor for MYXV, and suggest that careful analysis of the protein-
protein interaction dynamics between M156 and the PKR family members from various host
species may be particularly revealing about why MYXV exhibits such strict tropism for
rabbits.

MYXV also encodes the M029 protein, a putative homologue of the VACV E3L gene
product (with 24% identical to the C terminal 2/3 of E3) that is a known inhibitor of PKR.
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VACV E3 inhibits PKR by binding and sequestering dsRNA and by direct interaction with
PKR. By binding to dsRNA, E3 also antagonizes the 2′–5′oligoadenylate (2–5OA)
synthetase enzyme, another type I IFN inducible enzyme that inhibits protein synthesis
during viral infections [20]. OAS binds to dsRNA and produces 2–5OA from ATP, which in
turn activates RNase L. Activated RNaseL causes the degradation of both cellular and viral
mRNA thereby inhibiting protein translation [21]. In addition, E3 has also been shown to
inhibit the activation of IRF-3 and -7 which induce the expression of type I IFN [22].

Thus, MYXV may counteract the type I IFN induced immune responses through the
activities of the M156 and M029 proteins. The contributions of these viral proteins to the
host range of MYXV remain to be determined. However, in addition to its role in innate
immunity, PKR can also control apoptosis, cell growth and differentiation and its activities
are regulated by oncogenes. Thus, not surprisingly, cancer cells can exhibit dysregulation of
PKR signaling [23]. It remains to be formally tested if M156’s interaction with PKR will be
relevant to the pathogenesis of MYXV in rabbits or to its host range for cancer cells or if
M029 is a true functional homolog for VACV E3.

Viroceptors
Viroceptors are virus-encoded mimics of immune receptors. For example, MYXV encodes a
secreted version of the cellular TNF receptor, called M-T2, but this anti-TNF viroceptor is
specific for only rabbit TNF and is unable to bind or inhibit TNF from murine or human
sources. Thus, this helps to explain why MYXV replication in primary human cells is so
sensitive to inhibition by human TNF.

Other targets of MYXV viroceptor inhibition include IFNγ and members of the chemokine
pathway. For example, M-T7 of MYXV encodes a secreted IFNγ receptor belonging to the
vaccinia virus B8R family. M-T7 can efficiently antagonize the anti-viral effects of rabbit
IFNγ through direct binding in a species-specific manner. As in the case of the MYXV M-
T2 TNF inhibitor, the M-T7 IFNγ inhibitor cannot bind or inhibit IFNγ from human or
murine sources. However, M-T7 has another distinct role in preventing immune cell influx
to the site of infection by promiscuously binding to the heparin-binding domain of a broad
range of chemokines (including members from C, CC, and CXC chemokine subfamilies).
This particular inhibitory activity of M-T7, however, operates in a species-independent
manner and can target chemokines from rabbit, murine or human sources. M-T7 can disrupt
the solid surface of chemokine gradients formed by the attachment of these chemokines to
the endothelial wall through their C-terminal heparin-binding domains. This property of M-
T7 was exploited to prevent vessel wall plaque generation after angioplasty balloon-
mediated vascular injury in a rat model [24] where significantly reduced macrophage influx
and post-injury intimal hyperplasia were detected. This demonstrated that the administration
of purified M-T7 protein may provide a therapeutic benefit by attenuating harmful
inflammatory responses in diseases mediated by systemic inflammation. In another report, in
order to prevent ischemia reperfusion, one of the most important risk factors in antigen-
independent graft failure, purified M-T7 protein was used to efficiently inhibit leukocyte
infiltration in a rat renal transplantation model [25]. In a rat aortic transplantation model of
vasculopathy, an inflammatory process leading to transplant failure, purified M-T7 protein
administrated immediately after transplant surgery effectively inhibited plaque growth and
reduced macrophage and T lymphocyte infiltration through the modulation of chemokines
from the CC subfamily [26]. Gene therapy involving the intramuscular delivery of a naked
plasmid encoding M-T7 was also shown to prevent angiogenesis by reducing the VEGF164
surrounding an implanted foreign body in addition to attenuating macrophage influx [27].
Thus, M-T7 can not only reduce systemic inflammation but also disrupt the process of
angiogenesis by neutralizing VEGF164. Furthermore, M-T7 promotes its anti-inflammatory
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and anti-plaque growth functions by inhibiting the interaction between chemokines and
glycosaminoglycans (GAGs) and not the interaction between chemokines and their
corresponding receptor [28]. These robust anti-inflammatory effects of M-T7 translated into
therapeutic benefits prolonging survival and reducing inflammatory infiltration in a renal
allograft transplantation model [28]. Note that the anti-inflammatory properties of M-T7 are
independent of the host species, unlike its ability to inhibit IFNγ, which is utterly rabbit-
specific.

MYXV encodes an additional secreted chemokine viroceptor, designated M-T1. M-T1 can
bind specifically to chemokines of the CC subfamily independently from its heparin binding
through the consensus domain at their C terminus [29]. Therefore, it can interrupt the solid
CC chemokine gradient and disrupt the trafficking of effector cells towards the site of viral
infection in a species independent manner. Treatment with M-T1 protein showed therapeutic
effects by reducing early monocyte and CD2+ lymphocyte cell infiltration that caused
vasculopathy in a rat aortic allograft transplant model [26] and in a mouse transplantation
model [28]. Thus, M-T1 is an additional example of an anti-immune viroceptor that targets
its ligand (in this case, chemokines) in a species-independent fashion.

Cancer often associated with inflammatory and angiogenic events which shape the tumor
microenvironment. When evaluating the efficacy of oncolytic viruses (OVs) in this dynamic
microenvironment, lymphocyte infiltration (either directed against the virus or targeted
against a cancer antigen) and angiogenesis are two important factors whose modulation may
profoundly affect the overall therapeutic effects. These factors will also directly affect the
ways in which OVs might be genetically modified for the purpose of generating better
second generation OVs for specific cancer types. In the case of MYXV as a candidate OV,
how to take advantage of the functions of M-T7 and M-T1 will depend on the therapeutic
strategy used. One question that arises is whether these viral genes should be deleted from
the MYXV genome for the purpose of improving immune cell infiltration and promoting a
better anti-tumor immune response. Alternatively, should these MYXV genes be retained in
order to inhibit angiogenesis and anti-viral immune responses? These are questions that can
be addressed experimentally in the future.

Serine protease inhibitors (Serpins)
In the MYXV genome, four viral genes encoding Serpin-like proteins have been reported:
SERP-1, SERP-2 (a gene related to cowpox crmA that functions as an inhibitor of
intracellular caspase 1 and Granzyme B) [30], SERP-3 [31], and M152 (a gene homologous
to an intracellular serpin, leupin) [32]. SERP-1 is the most studied among MYXV encoded
Serpins and the purified protein has been shown to have significant therapeutic value as a
stand-alone drug in the treatment of chronic inflammation associated with surgical trauma or
diseases such as angioplasty, transplantation, and rheumatoid arthritis, etc. [33].

SERP-1 is a serine protease inhibitor (Serpin) encoded by the MYXV M008.1 gene and is a
virulence factor with anti-inflammatory properties. During MYXV infection in European
rabbits, SERP-1 is expressed abundantly and undergoes various post-translational
modifications (e.g., N-linked glycosylation) prior to being secreted to subsequently
antagonize inflammatory responses. When it is circulating systemically in a healthy rabbit,
SERP-1 has a half life of 1.3 days and does not seem to accumulate in any particular organ,
thus closely resembling the behavior of heparin cofactor II [34]. It can inhibit a broad
spectrum of human protease enzymes, including the ones responsible for thrombolytic and
thrombotic processes, e.g., urokinase-type plasminogen activator (uPA), tissue-type
plasminogen activator (tPA), plasmin, thrombin, and factor Xa, etc. These inhibitory effects
of SERP-1 are rendered through its interaction with target proteinases via a reactive center
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loop localized at Arg319- Asn320 [35] (P1-P1′), with protease-inhibitor therefore anti-
inflammatory functions, and at P2-P7, inhibiting plasmin function, mononuclear cell
activation, and thrombosis etc [36]. SERP-1 can directly associate with activated monocytes
and T cells and render its inhibition in adherent through modification of filamin and β-
integrin in an uPA receptor (uPAR) dependent manner [37]. Purified SERP-1 protein was
proven to have effective therapeutic effect in reducing monocyte/macrophage invasion to
sites of arterial trauma following a single picogram-to-nanogram bolus dose in numerous
animal models including rabbit, rat, and swine [38]. Thus, purified SERP-1 protein inhibits
inflammatory cascades in a wide variety of hosts, including humans, and it has entered into
human clinical trials to alleviate the systemic inflammation associated with acute myocardial
syndromes.

The function of SERP-1 in the context of MYXV oncolysis of tumor tissues has not been
evaluated. It can be predicted that the presence of SERP-1 can attenuate the inflammatory
effect caused by MYXV infection in the tumor microenvironment, thereby allowing
oncolysis to be more effective, but this has not yet been demonstrated experimentally.

Intracellular immunoregulatory factors expressed by MYXV
Inhibitors of Toll-like Receptor (TLR) signaling

TLRs are pattern-recognition receptors that when activated in response to pathogen
associated molecules trigger the production of type I IFN and other pro-inflammatory
cytokines. VACV encodes several proteins known to inhibit TLR signaling: A46, A52, B15,
K7 and N1. In the Pfam database of protein families and domains A46, A52, B15 (also
known as B14 in VACV WR strains) and K7 are included in one single family termed
Pox_A46, while N1 belongs to the Orthopox_N1 family [39]. Among these viral TLR
inhibitors, A46 is the only one that contains an obvious Toll/Interleukin-1 receptor (TIR)
domain. The TIR domain in A46 enables it to interact with several TIR adaptor proteins
such as MyD88, MAL (TIRAP), TRIF and TRAM, thereby inhibiting NFκB, MAP kinase
and IRF-3 signaling [40,41]. On the other hand, both A52 and K7 inhibit TLR signaling and
the activation of NFκB by associating with IRAK2 and TRAF6 [40,42,43]. However, K7
differs from A52 function in that it can also inhibit IRF-3 and -7 activations and the
induction of IRF mediated type I IFN by binding to the DDX3 protein [43]. Contrary to
A46, A52 appears to activate MAP kinase and IL-10 production [44]. B14 is another VACV
that also inhibits TLR signaling by associating with and inhibiting the IKK complex and
subsequently the activation of NFκB [45]. N1 is a VACV protein that has been reported to
bind the IKK complex thereby inhibiting the activation of NFκB and IRF-3 [46]. However,
these finding are controversial [45,47]. Interestingly, A52, B14, K7 and N1 all share a
similar BcL-2 fold [48–50]. Evolutionary analysis of these proteins in different genera of the
poxvirus family shows that K7 and A46 are unique to Orthopoxviruses, while A52, B14 and
N1 orthologues are present in other genera including Leporipoxvirus. In fact, MYXV
encodes orthologous proteins of N1, A52 and B15 named M146, M139 and M003.1,
respectively. Interestingly, the MYXV M136 protein has also been shown to be related to
the Pox_A46 family. Orthologues of this MYXV protein are found in Yata-, Capri-, Sui- and
Cervidpoxviruses, but not in Orthopoxviruses [51]. To date, no functional studies of these
MYXV proteins have been reported and their role in innate immunity and pathogenesis
remains to be determined. Activation of TLR signaling in cancer cells may promote
proliferation and metastasis, as reviewed elsewhere [52,53]. The influence of all these
potential MYXV TLR inhibitors on cancer cells with dysregulated TLR and NFκB signaling
pathways may represent strategies for improving tumor growth inhibition and viral
oncolysis.
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M135
MYXV encodes an orphan virulence factor designated M135R that operates against
unknown host immune targets [54]. It shares similarity to VACV B18R, a known inhibitor
of Type I IFN, and is expressed as a cell surface protein in MYXV-infected cells. However,
M135 does not bind or inhibit the effects of rabbit IFNα/β during MYXV infection,
suggesting that its presence is not directly associated with resistance to rabbit type I IFN
[54]. Thus, the role of M135 during MYXV infection in rabbits is currently unknown. In
addition, M135 was not essential in promoting MYXV resistance to human type I IFN in
primary human fibroblasts [10]. Nevertheless, in vitro studies have shown that a
recombinant MYXV lacking the M135 protein has enhanced oncolytic potential for cultured
human glioma cells compared to wild-type MYXV [4] and was suggested as a rabbit-safe
candidate for oncolytic application in human cancer therapy.

M013
M013 of MYXV is a pyrin domain containing protein and a virulence factor important for
the regulation of immune responses and full pathogenicity during MYXV infection in
European rabbits [55]. In the human monocyte cell line (THP1), M013’s pyrin domain
interacted with a cellular pyrin domain containing protein, ASC-1, which is a component of
the inflammasome. This interaction inhibited the activation of ASC-1/caspase 1 thereby
blocking the cellular pro-inflammatory cytokine response (i.e., the production of IL1β and
IL-18) to viral infection. In addition, M013 is capable of directly binding to NFκB1,
blocking the nuclear translocation of RelA and consequently inhibiting the NFκB signaling
pathway in human THP1 cells [56]. Thus, M013 is able to inhibit both inflammasome
activation and NFκB signaling in myeloid cells in a species-independent fashion.

M130
Recent reports have shown that the M130 protein of MYXV is a virulence factor required
for lethal pathogenesis in European rabbits [57]. The M130 protein is a member of a weakly
conserved viral protein family present only in Lepori-, Capri- and Suipoxvirus genera. It is
expressed late during virus replication and is primarily found in the cytoplasm of infected
cells [57]. A recombinant MYXV lacking the M130 protein (MYXV-M130KO) was
attenuated, with 100% of the rabbits surviving the challenge, but no host range or replication
defects were noted in cell culture. In addition, initial challenge of rabbits with vMyx-
M130KO infection protected them from lethal challenge with wild-type MYXV [57].
Previous reports have suggested that M130 exhibits sequence similarity to the viral
transactivating Tat protein of human immunodeficiency virus (HIV) [32,58]. However,
M130 appears not to be secreted or to localize to the nucleus [57] and its molecular
functions at the present remain unclear.

M153
M153 of MYXV is a viral gene containing an N-terminal LAP plant homeodomain (LAP-
PHD) motif (a RING finger-like domain). In the absence of MYXV infection, M153
expressed from a plasmid localizes to the endoplasmic reticulum (ER) [59], and in the
context of viral infection this protein relocates to endosomes [60]. In vivo, M153 functions
as a virulence factor, and infection caused by a recombinant MYXV lacking the M153R
gene in European rabbits led to a severe mononuclear infiltration contrary to the heterophil
infiltration caused by wild-type MYXV at the site of infection [59]. The molecular function
of M153 appears to be the down-regulation of MHC class I molecules during infection in a
species non-specific manner, resulting in the loss of CD8+ T cell cytotoxicity [59]. In
addition, M153 promoted the lysosomal degradation of the human CD4 molecule, thus
preventing its surface presentation [60]. The presence of lysines in the cytoplasmic tails of
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substrates appears to be a common feature that correlates with M153-induced down-
regulated of surface expression. In fact, M153 functioned as an E3 ligase in vitro that
promoted ubiquitination of CD4 and possibly other substrates as well [60].

The function of M153 in down-regulating MHC class I, CD4, and possibly other immune
signaling surface proteins in a species non-specific manner suggests the possibility of
modifying the MYXV genome by deleting this gene. The deletion of M153 from the MYXV
genome may potentially enhance the immunostimulatory effect after infecting cancer cells.
It is possible that increased lymphocyte activation and infiltration of tumor beds infected
with MYXV lacking the M153 gene along with cytotoxic killing of the tumor cells by this
virus may lead to further priming of tumor antigens, therefore, elevating the host’s immune
response against the tumor. However, this might also limit the therapeutic time window for
this MYXV knockout virus but the question remains to be investigated.

Mimicry of diverse cell surface immune recognition molecules
M128

M128 (also called viral CD47 or vCD47) is a MYXV protein with homology to cellular
CD47 proteins or integrin associated proteins (IAP). Members of the Orthopoxvirus,
Capripoxvirus, Leporipoxvirus, Suipoxvirus, and Yatapoxvirus genera as well as deerpox
virus all encode a putative CD47-like protein [61]. CD47 regulates the immune response by
influencing 12 neutrophil recruitment, leukocyte adhesion and migration and dendritic cell
(DC) migration, by affecting the differentiation of antigen presenting cells and by regulating
apoptosis of immune cells. CD47 is also considered a self antigen and binds
thrombospondin 1 (TSP1) thus playing a role in vascular physiology [62]. The M128 is
essential for lethal myxomatosis in rabbits but is not essential for virus replication in cell
culture [63]. Rabbits inoculated with MYXV lacking the M128 protein survived infection
and are protected against a lethal challenge with wild-type MYXV [63]. M128 was also
shown to be an inhibitor of macrophage activation and the production of the inducible form
of nitric oxide (iNOS), which has potent anti-viral effects [63]. The mechanism by which
M128 inhibits iNOS production and the activation of macrophages is still unclear.

M141
M141 of MYXV is a viral homolog of the cellular CD200 protein (also called vCD200). The
interaction of M141 with the CD200 receptor (CD200R) inhibits the activation of immune
cells of myeloid-linage (e.g., macrophages and DCs) [64,65]. During infection of MYXV in
European rabbits, expression of M141 on the surface of infected cells suppressed the
activation of macrophages in draining lymph nodes and reduced T cell activation in lymph
nodes [66]. In addition, M141 was detected as a component of the mature virion and was
shown to suppress the activation of infected macrophages in a murine macrophage cell
model [67] which may indirectly inhibit the activation of peripheral T cells in wild-type
MYXV infected rabbits [66].

Other MYXV host range factors
M063

M063R belongs to the C7L family of intracellular viral host range factors. However, the
M063 protein from MYXV was not able to compensate for the function of the related C7 in
a VACV C7L/K1L double knockout virus, suggesting that this MYXV protein is not a
functional homolog of the VACV C7 protein [68]. However, M063 was reported to be
essential for MYXV replication in rabbit cells in vitro and in vivo and is thus considered a
rabbit-specific host range factor [69]. Interestingly, MYXV lacking M063R is still able to
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infect cells from other species as well as, if not better than, wild-type MYXV. The function
of M063 has not yet been well defined, but an in vitro screen using various knockout
MYXVs showed that the MYXV M063R-knockout had superior oncolytic potential
compared with other targeted MYXV gene knockouts in cultured human glioma cancer cell
lines [4]. Given this report and the fact that this virus is nonpathogenic in any known species
(even the European rabbit), its increased safety and its enhanced oncolysis make it an ideal
candidate for applications in cancer treatments.

Summary and perspective: oncolytic potential of MYXV
MYXV is a relatively new candidate oncolytic virus and was first shown to possess
oncolytic potential in orthotopic human glioma models in nude mice [70]. In this study, a
single dose treatment of MYXV consistently led to significant therapeutic effects, with
87.5% and 100% cure rate in two models, using human glioma cell lines U87 and U251,
respectively. In addition, MYXV is also effective in killing ex vivo cultured primary glioma
cells derived from human patient surgical specimens. It is recognized that intracellular
abnormalities in various cell signaling pathways (eg IFN/TNF responses [12] or AKT
activation [71]) of cancer cells contributes to MYXV’s selective oncolysis. These studies
encouraged further exploration of MYXV oncolysis in other cancer models [71], as well as
for related anti-cancer applications, including the ex vivo purging of cancer initiating cells
from bone marrow transplants for patients with acute myeloid leukemia [72], and
combination therapy using MYXV as an oncolytic agent along with chemotherapy drugs
that may produce synergistic anti-cancer interactions [73].

It is important to better understand the interactions between MYXV, the targeted cancer
cells and the cancer microenvironment in order to maximize MYXV’s potential therapeutic
efficacy. In the clinical setting, a beneficial treatment with a virotherapeutic agent often can
only be conducted in a relative short treatment window before the virus gets recognized and
eliminated by the immune system of the patient. It is possible that immunosuppressive
agents may prolong the oncolytic effects and the therapeutic window of MYXV in vivo.
How to manipulate the native immunoregulatory factors encoded by MYXV in order to
maximize the selective destruction of tumor tissue in vivo needs to be further examined. The
combination of immunotherapy (e.g., cancer vaccines, therapeutic cytokines or immune cell
transplantation) and MYXV virotherapy may very well improve the overall treatment
outcome. Finally, we hope to further investigate the specific molecular mechanisms of
oncolysis elicited by this virus in different cancer cell types, as a customized treatment
strategy to different tumor types may be the ultimate solution for individual cancers.
Currently, the optimization of a more effective oncolytic MYXV by modifications of the
platform MYXV oncolytic vector (e.g., inserting therapeutic genes) from wild-type
backbone or knockout viruses with improved tumor cell selectivity or increased safety, are
currently underway in our lab [74].
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Table 1

Immunoregulatory factors of myxoma virus

Category MYXV gene product Function Therapeutic implications

PKR signaling related M156 A structural homolog of cellular eIF2α
and a viral pseudosubstrate for PKR

Not tested

M029 Truncated homolog of VACV E3, a
PKR inhibitor

Not tested

Viroceptors M-T2 A rabbit-specific TNF viroceptor Not tested

M-T7 • A viroceptor for rabbit
IFNγ

• A species-nonspecific
inhibitor of immune cell
influx by binding to
heparin-binding domain of
chemokines (members
from C, CC, CXC
subfamilies)

• Purified M-T7
protein can
attenuate
inflammatory
responses in
systemic
inflammation
disorders.

• It can also inhibit
leukocyte
infiltration after
transplantation and
prevent transplant
failure.

M-T1 A species-nonspecific viroceptor for
chemokines of CC subfamily through
C-terminal consensus domain

M-T1 can inhibit immune cell
infiltration into damaged tissue
and can prevent transplant
failure.

Serine protease inhibitors (Serpins) SERP-1 A broad spectrum protease inhibitor in
a species non-specific manner

Purified SERP-1 inhibits
inflammatory cascades and has
undergone clinical trial for
acute myocardial syndrome.

Intracellular immunoregulatory factors M135 A virulence factor in rabbit
pathogenesis of myxoma virus.
Expressed on the cell surface during
infection but its function is still
unknown.

Myxoma virus with M135R
gene knockout exhibits
improved oncolysis for human
glioma cancer cells in vitro.

M013 In human monoctyes, M013 binds to
ASC-1 and NFκB1 to inhibit
inflammasome activation and NFκB
signaling.

Not tested

M130 A virulence factor with unknown
function

Not tested

M153 • An E3 ligase that
promotes host target
ubiquitination and
degradation (e.g., CD4)

• Downregulation of MHC I
during infection

Functions of M153 are
species non-specific.

Not tested.

Mimicry of cell surface immune
recognition molecules

M128 (vCD47) A cell surface inhibitor of macrophage
activation with unknown mechanism

Not tested

M141 (vCD200) • Inhibits the activation of
immune cells with
myeloid linage through
interaction with CD200
receptor.

Not tested
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Category MYXV gene product Function Therapeutic implications
• A component of the

myxoma virus virion, it
suppresses the activation
of murine macrophages
during infection in vitro.

Others M063 MYXV with M063R gene knockout
loses the ability to infect rabbits.
M063 is a rabbit-specific host range
factor of unknown function.

M063R knockout MYXV has
been shown to have superior
oncolytic effect to human
glioma cancer cells in vitro.
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