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ImprovedHiddenMarkovModels forMolecular Motors, Part 1: Basic Theory
Fiona E. Müllner,†‡ Sheyum Syed,§ Paul R. Selvin,§{ and Fred J. Sigworth†*
†Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut; ‡Department of Cellular and Systems
Neurobiology, Max Planck Institute of Neurobiology, Munich-Martinsried, Germany; and §Department of Physics and the Center for Physics of
Living Cells, {Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois
ABSTRACT Hidden Markov models (HMMs) provide an excellent analysis of recordings with very poor signal/noise ratio made
from systems such as ion channels which switch among a few states. This method has also recently been used for modeling the
kinetic rate constants of molecular motors, where the observable variable—the position—steadily accumulates as a result of the
motor’s reaction cycle. We present a new HMM implementation for obtaining the chemical-kinetic model of a molecular motor’s
reaction cycle called the variable-stepsize HMM in which the quantized position variable is represented by a large number of
states of the Markov model. Unlike previous methods, the model allows for arbitrary distributions of step sizes, and allows these
distributions to be estimated. The result is a robust algorithm that requires little or no user input for characterizing the stepping
kinetics of molecular motors as recorded by optical techniques.
INTRODUCTION
Single-molecule studies have contributed tremendously to
the understanding of molecular motors. High-resolution
fluorescence-based tracking has revealed step sizes and
detailed mechanisms of myosin V, VI, and kinesin proces-
sivity (1,2). Recent optical trap studies have measured the
individual step size of RNA polymerase to be ~3.4 nm as
it translocates along a double-stranded DNA (3). Motor
activity in these experiments is detected by nanometer-scale
position changes of a reporter tag that is rigidly attached to
the molecular motor and recorded with a charge-coupled
device camera or a quadrant photodetector. The interpreta-
tion of the recordings is complicated by the presence of
substantial measurement noise, by the nonuniform step
size seen in some motor types, and the mismatch in time
between the detector’s integration and the transitions in
a motor’s mechano-chemical cycle.

The standard approach to the analysis of motor recordings
is to employ a step-detector algorithm to identify the times
and sizes of motor position changes (4). From this idealiza-
tion of the recording, histograms of step sizes and dwell
times are constructed as a first step in building a chemi-
cal-kinetic model of the motor’s reaction cycle (5). As an
alternative, signal processing techniques based on hidden
Markov models (HMMs) allow a more powerful analysis
strategy to be used.

First, the entire digitized recording is used in estimating
the model parameters. These parameters are the transition
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probabilities (the discrete-time analogs of kinetic rate
constants) and the distributions of step sizes. The estimates
are generally better than those obtained in the conventional
analysis because the HMM strategy does not rely on a local
assignment of step times and sizes.

Second, once the HMM model parameters are known,
they can be used in obtaining an idealized time course of
the motor activity. In simulations described here and in
the following article (6), we find that this idealized time
course agrees better with the true, noiseless motor position
than what is obtained with conventional step detectors.

HMMs have been widely used for computer voice recog-
nition (7) and for DNA sequence analysis (8). HMM signal-
processing techniques are also routinely used in the analysis
of single ion channel recordings, providing useful informa-
tion even when the recordings have a signal/noise ratio too
low to allow conventional interpretation of the data (9–12).
Similarly, HMMs have been applied to single-molecule
fluorescence fluctuations, in which the molecular system
switches among several states (13). HMMs are naturally
suited as descriptions of single-molecule activity because
each state in the reaction sequence can be identified as a state
of a Markov model, where the transition to a new state
depends only on the current state of the system. Identifying
the states and transition probabilities of models for molec-
ular motors is of particular interest because these models
reflect the details of reaction cycles. From the point of
view of an experimenter, such Markov models are said to
be hidden because the measurements are corrupted by noise,
and also because, in many cases, some of the state transi-
tions produce no observable effect.

Molecular motors present a special challenge to the appli-
cation of HMMs. Like other single-molecule systems,
motors undergo transitions among a small number of what
we will call molecular states. However, the observable quan-
tity is the molecule’s position, a variable that reflects the
doi: 10.1016/j.bpj.2010.09.067
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ongoing accumulation of elementary steps of random size.
This sort of variable is not represented in classical HMMs.
Milescu et al. (14) first showed that a periodic Markov
model can describe the position variable, with the accumu-
lation of random deviations modeled as a sum of Gaussian
random variables. With the resulting HMM these authors
were able to provide maximum-likelihood (ML) estimates
of motor parameters and also obtain the restored time
course. They also noted that, in principle, an HMM could
be constructed in which each possible value of the position
variable corresponds to a state of the model.

A model of this sort has been constructed by Beausang
and co-workers (15,16) for studying DNA looping kinetics
as reported by a DNA-tethered bead. These authors extend
the HMM framework to a diffusive HMM with many states,
with each state corresponding to a particular combination of
the molecular state and the distance of the bead from its
central position. This model is able to describe the Brownian
motion of the bead as the DNA tether changes its effective
length because loops are formed by the binding of protein
complexes to the DNA. The result is a method for deter-
mining the microscopic kinetics of the loop-forming
reactions.

We report here the implementation of another HMM, one
which describes both the molecular state and the position of
a processive molecular motor. This variable stepsize HMM
(VS-HMM) allows the characterization of motor stepping
behavior. In comparison to the algorithm of Milescu et al.
(14), it is more computationally intensive, but functionally
more versatile. The algorithm allows the characterization
of motor activity with arbitrary distributions of step sizes,
and for its operation little prior knowledge about the step-
ping characteristics is required.
THEORY

Markov model

Although the behavior of a molecular motor is a continuous-
time process, we employ a discrete-time Markov model
because the observations occur at discrete times. We denote
these times by t ¼ 1, 2,.T, reflecting the sequence of
frames of data acquisition by an electronic camera. The
position of the motor is also represented as a discrete quan-
tity, which is chosen to be sufficiently fine-grained (with the
quantum being smaller than the noise standard deviation) so
that the discrepancy from the true, continuous value is
negligible.

The position at time t is taken to be xt ˛ {1, 2,.M}, an
integer representing the position in quanta of, for example,
1 nm. Adopting the framework of a discrete stochastic
model (17), the motor can also be found in any of several
molecular states, which describe the particular conforma-
tion of the molecule and its occupancy by ligands such as
ATP. The molecular state at time t is st ˛ {1, 2,.n}. The
special feature of the VS-HMM described here is that the
position and the molecular state together form a composite
state (st, xt) and provide a complete description of the system
at a given time. According to the Markov assumption, the
probability of making a change in the state in the system
depends only on the current composite state.

A typical model may have only n ¼ 2 molecular states,
but could have the position represented by M ¼ 1000 or
more values (Fig. 1, A and B). The result is a Markov model
with a very large total number nM of composite states. In
practice, however, changes in the position variable from
one time point to the next are bounded and relatively small;
we call these position-change steps. A simple way to exploit
the local nature of steps is to replace the position variable x
with a variable u ˛ {1, 2,.m} having reduced range, but
which is periodic (Fig. 1 C), such that xt ¼ ut þltm, where
lt is an integer and a typical value of m might be 100. We
use this periodic coordinate throughout the signal process-
ing algorithms, but at the end are able to restore the original
x coordinate by unwrapping the periodic variable using the l
values.

Using the standard HMM notation (18), we let the molec-
ular state transition probabilities be given by the matrix A
having elements

aij ¼ Pðstþ 1 ¼ jjst ¼ iÞ
giving the probability of a molecular transition from i to j
during the interval (t, t þ1). The matrix A is related to the
matrix of rate constants Q for the underlying chemical
kinetics according to

A ¼ eQdt

where dt is the sample interval. A useful approximation is to
assume that, at most, one step is occurring per sample
interval, in which case

AzI þ Qdt: (1)

This approximation allows a simple interpretation of the
elements of A obtained from the HMM analysis, but is valid
only when dt is sufficiently small. From an experimental
standpoint, the interpretation of recordings is always diffi-
cult when they are sampled so slowly that multiple transi-
tions occur within one sample interval.

The problem of missed events, well known in the analysis
of single-ion-channel kinetics, also arises in this context. A
more rigorous way to obtain the Q matrix from the hidden
Markov model is described in the Supporting Material.
However, as long as shot noise predominates over instru-
mentation noise (e.g., camera readout noise), there is no
penalty—apart from computation time—in choosing dt to
be small and presenting the HMM analysis with unfiltered
data sampled at a high rate. A reasonable choice of dt would
be one that makes the dwell time in each molecular state at
least 5–10 sample intervals. In this case, the diagonal
Biophysical Journal 99(11) 3684–3695



FIGURE 1 Models of molecular motor activity.

(A) A two-state model for a linear molecular motor.

The system starts in molecular state i ¼ 1 with its

fluorescent label (oval) at position u ¼ 0. After

a certain dwell time, the molecule undergoes

a conformational change swinging its trailing leg

forward, displacing the label by w ¼ 4 units and

settling into state 2. Subsequently, the molecule

makes a transition back to state 1 with the label

making a displacement of w ¼ 1. (B) Two transi-

tions of a Markov model describing the molecule

in panel A. Initially, the molecule has a probability

of a11 ¼ 0.8 of staying in state 1 with a mean dwell

time of 1/(1–0.8)¼ 5 time units in this state. When

the molecule makes a transition to state 2, it can

change position with a step of size w ¼ 3, 4, or

5 units; exemplary step of four units in bold (with

transition probability c12(4) ¼ 0.1). After a dwell

in state 2 (mean dwell of 10 time units), a transition

can be taken back to state 1 with size w ¼ 1, 2, or

3 units (step of one unit in bold). (C) The position

values are wrapped around into a periodic coordi-

nate system, exploiting the local nature of changes

in the motor’s position. (D) An example simulation

of a molecular motor that moves with alternating

short (10 or 20 nm) and long (64 nm) steps.

Average dwells after short and long steps are 10

and 5 time points, respectively. Gaussian noise

with s ¼ 7 nm was added to simulate the noisy

trace (gray dots). (Inset) Simulated step probabili-

ties c12 and c21. (E) An enlarged section (box in

D) showing details of the time course. A fit by

eye (solid line) yields the apparent step size distri-

bution shown in the inset.
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element of A corresponding to the probabilities of remaining
in the ith molecular state would lie between 0.8 and 0.9. The
mean dwell time in state i can be estimated as

ti ¼ 1

1� aii
: (2)

We assume that a molecule’s position changes only when
there is a molecular state change. Let the random variable w
be the size of a position step. For a transition from molecular
state i to state j, the step size has the probability density
fij(w). We can write the overall probability of a transition
from the composite state (i,u) to (j,u þ w) in this model as

cijðwÞ ¼ Pðstþ 1 ¼ j; xtþ 1 ¼ u þ wjst ¼ i; xt ¼ uÞ;
given by

cijðwÞ ¼
�
aiidðwÞ; i ¼ j
aijfijðwÞ; isj

; (3)

where d is the discrete delta function. An example trajectory
of a model with n ¼ 2 states is shown in Fig. 1 B.

In general, the composite transition probability cij(w) can
take any form as long as it is nonnegative and satisfies the
stochastic condition
Biophysical Journal 99(11) 3684–3695
X
j;w

cijðwÞ ¼ 1:
This general Markov model can be used in cases where only
some molecular transitions are accompanied by a step, as
seen in the case of a kinesin labeled on one head (1) or in
a number of other complex kinetic schemes (5). It is also
possible to create a so-called one-state model in which there
is only n ¼ 1 molecular state. In this case, Poisson random
stepping is modeled by having c11(0) be nonzero (reflecting
the probability of no step) and also c11(w) > 0 for some
nonzero step sizes w. Such a one-state model is useful for
describing observations when the underlying molecular
reaction scheme is unknown.
Hidden Markov model

In the hidden Markov model, the state of the system is not
known exactly, because of silent kinetic transitions and
also because of measurement noise. In the simple descrip-
tion of the measurement process used in this article, the
observed position variable is represented (in periodic coor-
dinates, as in the previous section) as yt ¼ ut þ gt, where
ut is the true position at the instant t and gt is a random
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variable, having a normal distribution with zero mean and
standard deviation st, representing additive noise. The
measurement we have in mind is the determination of the
center of a Gaussian spot representing the fluorescence of
a single molecule, as analyzed by Thompson et al. (19). In
practice, the variance in this measurement comes from
shot noise, and therefore we set

s2
t ¼ s2

0I0=It; (4)

where s0 is a parameter to be determined, the nominal stan-
dard deviation; I0 is the maximum reporter fluorescence
intensity in the entire recording; and It is the intensity at
time point t. This noise model allows for recordings in
which blinking or other variations in fluorescence intensity
produce changes in the reliability of the reporter’s position
measurement.

The noise model is formally described by a so-called
emission probability function that gives the probability of
the observation y, given a particular state of the underlying
Markov model. The Gaussian noise results in a Gaussian
probability density that depends on the position variable u,

btðyt; utÞ ¼ �
2ps2

t

��1=2
exp

�� ðyt � utÞ2=2s2
t

�
: (5)

Goals of the hidden Markov analysis

There are two goals of the analysis.
The first is to estimate the parameters of the model,

including the step-size distribution and the dwell times in
molecular states. This is done by ML estimation, yielding
asymptotically unbiased estimates. That is, these estimates,
even from data with very low signal/noise ratios, are guaran-
teed to approach the correct values if the statistical model of
signal and noise is correct, and if sufficiently long record-
ings are available.

Further, the quality of estimates can be judged from like-
lihood intervals and likelihood ratio tests. Let l ¼ (p, C, s0)
be the parameters of the VS-HMM which are to be opti-
mized: p is a vector of the initial probabilities, C is the
matrix of transition probabilities (Eq. 3), and s0 is the noise
parameter. The likelihood is defined to be the probability
P(Yjl) of the observed data sequence Y¼ y1, y2,., yT given
the model l. For numerical convenience, it is the log likeli-
hood L ¼ ln P(Yjl) that is maximized.

The second goal of the analysis is to construct an ideal-
ized time course of the molecular behavior from the obser-
vations. This process, called restoration, aims at restoring
the noiseless position and the hidden molecular-state infor-
mation. The resulting dwell-time sequence can then be
analyzed through the construction of dwell-time histograms
(5) or by direct fitting of models (20). Unfortunately the
restoration is not guaranteed to be unbiased, but if it is based
on correct model parameters it will tend to enforce the
correct step sizes and dwell times. To perform restoration
we use the Viterbi algorithm (21), which finds the most
likely sequence of composite states.

Forward-backward algorithm

In principle, the likelihood can be computed by constructing
all possible sequences of composite states of length T, and
summing for each sequence S the probability that the
sequence would occur, times the probability that the
sequence underlies the observations,

PðYjlÞ ¼
X
S

PðSjlÞPðYjS; lÞ: (6)

Here the probability-of-state sequence

S ¼ ðii; u1; i2; u2;.iT ; uTÞ;
given the model parameters

l ¼ ðp;C;sÞ;
is

PðSjlÞ ¼
pi1u1ci1i2ðu2 � u1Þ ci2i3ðu3 � u2Þ., ciT�1iT ðuT � uT�1Þ;

(7)

and the probability of the data sequence given S, because the
noise is independent from one observation to the next, is the
product of probabilities

PðYjS; lÞ ¼
YT
t¼ 1

btðyt; utÞ: (8)

Evaluation of Eq. 6 appears unwieldy, as the total number of
possible state sequences is on the order of Tmn. However, the
forward-backward algorithm forms this sum in an efficient
way, requiring only the order of m2n2T operations (18);
acceleration with the fast Fourier transform (FFT) reduces
this further to m n2T log2 m.

We follow the standard HMM formalism (18), defining
the forward variable as the probability of the observations
up to time t and the molecule being in a particular composite
state (i,u), given the model l,

atði; uÞ ¼ Pðy1; y2;.yt and st ¼ i; xt ¼ ujlÞ; (9)

with its initial value given by

a1ði; uÞ ¼ piub1ðy1; uÞ (10)

and subsequent variables obtained by recursion,

atþ 1ðj; vÞ ¼ btþ 1ðytþ 1; vÞ
Pn
i¼ 1

Pm
u¼ 1

atði; uÞcijðv� uÞ;

t ¼ 1; 2;.T

: (11)

The sum over u is seen to be a discrete convolution of at
with cij. Further, because the convolution is taken over vari-
ables u and v which have periodic boundary conditions, the
Fourier convolution theorem allows the sum over u to be
replaced by the product of discrete Fourier transforms,
Biophysical Journal 99(11) 3684–3695
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atþ 1ðj; vÞ ¼ btþ 1ðytþ 1; vÞ
Xn

i¼ 1

F�1
v

�F z½atði; zÞ�F z

�
cijðzÞ

��
;

(12)

where Fz is the discrete Fourier transform over a position
variable z and Fv

�1 is the inverse transform into the variable
v. Because the FFT has computational complexity m log2 m,
the forward algorithm has the reduced complexitym n2Tlog2
m; in our implementation the advantage of using FFTs
becomes apparent for m > 32.

At the end of the forward recursion, the likelihood is
computed according to

PðYjlÞ ¼
X
i;u

aTði; uÞ: (13)

The backward variable is defined to be the probability of the
observations from times t þ1 to T, given the composite state
(i,u) at time t and the model l:

btði; uÞ ¼ Pðytþ 1; ytþ 2;.yT j st ¼ i; xt ¼ u; lÞ: (14)

The variable at the final time point is defined as

bTði; uÞ ¼ 1; i ¼ 1.n; u ¼ 1.m (15)

and for all other previous times t ¼ T � 1, T � 2,.1, the bt
are obtained by recursion

btði; uÞ ¼
Xn

j¼ 1

Xm
v¼ 1

cijðv� uÞbtþ 1ðytþ 1; vÞbtþ 1ðj; vÞ (16)

or, using FFTs,

btði; uÞ ¼
Xn

j¼ 1

F�1
u

�F z

�
cijðzÞ

�F z½btþ 1ðytþ 1; zÞbtþ 1ðj; zÞ�
�
:

(17)

The repeated products that arise in the computation of a and
b would cause underflow except that rescaling is performed.
We follow the rescaling strategy given byLevinson et al. (18).

The product of the forward and backward variables yields
the joint probability of the observations and being in
a specific composite state at a given time, P(Y and st ¼ i,
xt ¼ ujl). Dividing this quantity by the likelihood yields
the probability gt(i,u) of the motor protein occupying
a certain composite state at a particular time, given by

gtði; uÞ ¼ Pðst ¼ i; xt ¼ ujY; lÞ

¼ PðY and st ¼ i; xt ¼ ujlÞ
PðYjlÞ

¼ atði; uÞbtði; uÞ
PðYjlÞ

: (18)

Another useful quantity is the probability of making a tran-
sition at time t from molecular state i to j with a position
change of w,
Biophysical Journal 99(11) 3684–3695
xtði; j;wÞ ¼
P
u

Pðst ¼ i; xt ¼ u; stþ 1 ¼ j;
xtþ 1 ¼ uþ wjY; lÞ;
t ¼ 1;.; T � 1:

In terms of previously defined quantities, it is obtained as

xtði; j;wÞ ¼
P
u

atði; uÞcijðwÞbðytþ 1; uþ wÞbtþ 1ðj; uþ wÞ
PðYjlÞ ;

(19)

a computation that, like the forward and backward algo-
rithms, can be accelerated by FFTs.
Reestimation of model parameters

The model parameters piu, cij, and s0 are reestimated by the
Baum-Welch formulas (22), a special case of the expecta-
tion-maximization (E-M) algorithm for ML estimation.
Because we are making a straightforward application of
the standard theory (18), we provide only the results here.

The initial probability is that of being in the composite
state (i,u) at t ¼ 1. At the kþ1st iteration, it is given simply
by gt(i,u) computed from the kth model parameters at the
first time point

p
ðkþ 1Þ
i;u ¼ g

ðkÞ
1 ði; uÞ: (20)

The reestimated value of s0 is obtained by

skþ 1
0 ¼

"
1

T

X
t

X
u;i

ðyt � uÞ2ðIt=I0ÞgðkÞ
t ði; uÞ

#1=2

: (21)

The reestimation formula for the transition probabilities
(18) can be understood as the sum of xt(i,j,w) over all t,
divided by the total number of transitions leaving from the
molecular state i:

c
ðkþ 1Þ
ij ðwÞ ¼

P
t

xðkÞt ði; j;wÞP
t;l;v

xðkÞt ði; l; vÞ : (22)

Alternatively, to allow comparison with the results of Mile-
scu et al. (14) we can model the distribution of step sizes as
a Gaussian. The k þ 1st estimates of the transition proba-
bility aij, the mean step-size mij, and its standard deviation
sij are obtained from the sum and the first and second
moments of cij(w) taken as a function of w. Then, to itera-
tively provide an E-M update, cij

(kþ1)(w) is replaced with
a normal distribution computed from these parameters,

cijðwÞ ¼ aijffiffiffiffiffiffi
2p

p
sij
exp

�
w� mij

�2
2s2ij

; (23)
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where, to preserve precision in the discrete distribution, the
quantization of w is best chosen such that sij remains larger
than unity.

Each of these reestimation formulas results in a new value
of a model parameter that increases the likelihood. The
forward-backward and reestimation process is iterated until
the likelihood approaches a stationary value. Fewer than 100
iterations are typically required to provide convergence.
Initial parameter values

Because there is no prior information about the initial state
of the system, we set the initial probability vectors to
a uniform distribution,

p
ð0Þ
iu ¼ 1

nm
:

The transition probabilities cij(w) are initialized accord-
ing to initial values of the molecular transition probabilities
aij (Eq. 3). The reestimation of cij(w) is such that if, for
a given combination of i, j, and w its value is zero, the value
of cij(w) remains zero throughout all iterations. Thus, the
initialization of c is sufficient to constrain molecular transi-
tions that do not produce steps, or to constrain step sizes to
certain bounds.

For transitions that are accompanied by position steps, we
find that cij(w) can be initialized to very broad distributions
in the step size w, for example Gaussian distributions with
standard deviations of m or more. For one-state models, it
is sufficient to make it a uniform distribution; for multistate
models, it usually suffices to make the distributions of step
sizes very broad, but slightly different for different i and j.
We find that a reasonable initial estimate for the root-

mean-square (RMS) noise s0 can be obtained by first
computing the scaled differences

dt ¼ jytþ 1 � ytj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðItþ 1 þ ItÞ=2I0

p
;

t ¼ 1.T � 1
(24)

where Itþ1 and It are the intensities at the recording times
and I0 is the maximum intensity in the data set. The initial
value s0

(0) is then obtained as the median of these differ-
ences {dt}. Assuming that steps occur between a minority
of sample pairs, the median difference provides a good
initial estimate of the noise standard deviation.
Viterbi algorithm

After maximizing L to obtain model parameters, the final
task is to restore the position variable. This can be done
with the Viterbi algorithm, which requires only the order
of m2n2T operations. It finds the sequence of composite
states

s1; x1; s2; x2;.; sT; qT
that yields the maximum joint probability P* of that
sequence and the observed data, given the particular model
parameters found earlier,

P� ¼ Pðs1; x1; s2; x2;.; sT ; xT ; YjlÞ: (25)

To do this we calculate the quantity ft(j,v), which is the
probability of the best sequence of states that ends at time
t with the composite state (j,v); and we calculate jt(j,v),
which identifies which composite state (i,u) at time t�1 is
in the best sequence that leads to (j,v) at time t.

Computation of the sequence probability and the best
path variable is started with

f1ði; uÞ ¼ piub1ðy1; uÞ: (26)

The calculation is continued iteratively with

ftðj; vÞ ¼ max
i;u

�
ft�1ði; uÞcijðv� uÞbtðyt; vÞ

�
and
jtðj; vÞ ¼ argmax

i;u

�
ft�1ði; uÞcijðv� uÞbtðyt; vÞ

�
;

t ¼ 2;.T:

(27)

Underflow is prevented in the Viterbi algorithm by calcu-
lating the logarithms of the f-variables, instead of the vari-
ables themselves.

The best path probability is then obtained as

P� ¼ max
i;u

½fTði; uÞ�; (28)

and the sequence of states yielding this probability is traced
in reverse order, starting with

ðsT; xTÞ ¼ argmax
i;u

½fTði; uÞ� (29)

and proceeding recursively as

ðst; xtÞ ¼ jtþ 1ðstþ 1; xtþ 1Þ;
t ¼ T � 1; T � 2;.1:

(30)

Software implementation

To provide artificial data for testing the algorithms, we used
a discrete-time simulator that follows a Markov chain
defined by the transition probabilities cij(w). In this simu-
lator, at most, one state transition occurs per time step. To
each position value provided by the simulator, a Gaussian
random number is added to emulate the measurement noise.
Because in all cases shown here the added noise was at least
2 nm in standard deviation, we rounded the position to the
nearest 1 or 2 nm to yield the quantized position values.

The simulator and the VS-HMM algorithms were all im-
plemented using MATLAB, in functions named StepSimu-
lator.m, ForBackF.m, and ViterbiRestoration.m. This code,
including auxiliary functions and example programs that
reproduce the analyses in Figs. 2–4 of this article, are
Biophysical Journal 99(11) 3684–3695



FIGURE 2 VS-HMM analysis of the simulation

in Fig. 1 D. (A) The transition probability distribu-

tions converge with iterations of the E-M

algorithm. The initial transition probability distri-

butions of the HMM (gray sloping lines) were

chosen to be nearly uniform but differing slightly.

(i and ii) Distributions at iterations 1–15. (iii and

iv) Distributions at iterations from 25 to 100. The

value c12 converges to 10- and 20-nm steps, c21
converges to 64-nm steps. (B) The estimated step

size distribution (red bars) are compared to the

actual step sizes used in the simulation (blue

bars). (C) The Viterbi restoration (red line) plotted

with the noisy data (gray dots) and the underlying

noiseless trace (blue line). (Inset) Convergence of

the log likelihood L with iterations of the E-M

algorithm. Positions were quantized in units of

2 nm and the position range m was equal to 84.

Each iteration of the HMM parameter reestimation

for this problem (n¼ 2, T¼ 500) required ~1.5 s of

computation time on a 2 GHz processor. (D) Confi-

dence intervals in the estimation of the 10- and

20-nm short steps. Each point in the plane repre-

sents a pair of the two short step sizes A and B.

With the short steps constrained to these two

values, the likelihood was maximized by varying

all other HMM parameters, and the log likelihood

value is represented in the contour plot, with

a contour interval of one unit and with zero corre-

sponding to the global maximum values (crosses). The two-unit drop in the log likelihood corresponds roughly to a 95% confidence interval. (Left upper part)

Computed from a 500-point simulation, the existence of two distinct small step sizes is seen to be just significant, with the likelihood values along the diag-

onal being>2 units below the maximum. (Right lower part) Corresponding result for a 1000-point dataset. Note the much sharper peaks and narrower confi-

dence intervals for the step-size values.
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available at The MathWorks File Exchange site at www.
mathworks.com/matlabcentral/fileexchange/24697.
RESULTS

We first tested the fidelity of the VS-HMM method with
a broad range of simulated problems. The computer-gener-
ated scenarios involved models with 1–4 molecular states,
dwell periods having exponential distributions with average
values from 2 to 20 time points, and noise standard deviation
ranging up to twice the smallest step size of the simulated
motor.

Fig. 1 D shows a 500-datapoint simulation of a motor like
the one diagrammed in Fig. 1 A that walks with alternating
long and short steps. The simulation does not reflect the
behavior of any actual motor, but is designed to test various
capabilities of the analysis. The large steps are 64 nm, but
the small steps are randomly chosen with equal probability
to be either 10 or 20 nm in size; at the level of noise, the
difference between these small steps is very difficult to
distinguish by conventional step detectors.

The mean dwell times after the short and long steps were
given different values of 10 and 5 time points, respectively
(a11 ¼ 0.9, a22 ¼ 0.8 in Eq. 1); the choice of a brief five-
point dwell will serve, in the following article, as a test of
the missed-event issues surrounding Eq. 1. Gaussian noise
Biophysical Journal 99(11) 3684–3695
with standard deviation s ¼ 7 nm was added to the original
signal to generate the trace shown in the Fig. 1 D. In Fig. 1 E
the solid staircase represents a subjective fit to the noisy
trace by eye; the steps found this way range between 20
and 140 nm (Fig. 1 E, inset), in contrast to the actual 10,
20, and 64 nm.

Fig. 2 shows an HMM analysis of the same artificial
recording. The gray curves in the top panels in Fig. 2 A
show the initial c12 and c21 step-probability distributions,
chosen to be nearly uniform but differing slightly. The
E-M algorithm was started with these distributions, an
incorrect value of s0, and a uniform distribution for p. By
15 iterations, the c12 and c21 distributions showed peaks at
step sizes near 15 and 64 nm (Fig. 2 A, i and ii), and after
50 iterations converged to very narrow distributions
centered on 9.5 and 20 nm for c12 and 64 nm for c21 (panels
iii and iv, Fig. 2 A). The approach of L to its final value is
seen to be nearly complete (within one natural-log unit)
after 38 iterations (Fig. 2 C, inset), while subsequent compu-
tations further sharpened the functions while producing an
insignificant increase in L. The other reestimated model
parameters after 100 iterations of E-M, a11 ¼ 0.75, a22 ¼
0.94, and s ¼ 8.6 nm, were also in excellent agreement
with their input values (0.8, 0.9 and 9 nm, respectively).

Based on the estimated parameters, the Viterbi algorithm
provided a restored position trace, shown as the red staircase

http://www.mathworks.com/matlabcentral/fileexchange/24697
http://www.mathworks.com/matlabcentral/fileexchange/24697


FIGURE 3 Sensitivity to initial guesses of step size. Analysis of a 200-

point time course with HMM algorithms. The simulation had Gaussian-

distributed step sizes of 10 5 1 nm, mean dwell time of 8 and noise

s ¼ 2 nm, chosen to match the simulations in Milescu et al. (14). Initial

guesses of step size were Gaussian distributions with mean values of 1 to

20 nm, with standard deviations of 2 nm. The estimated mean step size is

plotted as a function of iteration number. (A) Results of the HMM algorithm

of Milescu et al. (14), reproduced from their Fig. 7 B. Only starting distri-

butions with means between 8 and 14 nm result in convergence to the

correct step size. (B) Convergence of step-size estimates from the one-state

VS-HMM algorithm described in this article, employing Gaussian-con-

strained reestimation (Eq. 23) to allow a direct comparison. Convergence

is reliable with initial guesses throughout the range of 1–20 nm.
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in Fig. 2 C. Note the close similarity of the Viterbi output
with the original noiseless trajectory (blue staircase), and
the reconstructed step histogram with the actual step distri-
bution (Fig. 2 B). The concurrence between the final esti-
FIGURE 4 Estimation of a discrete step-size distribution in the presence of va

tion. A 2000-point time course was simulated consisting of 200 steps of either

sample points. (A) Step-size histogram of the 200 generated steps. (B) Conver

7, 10, or 15 nm RMS of added Gaussian noise. The value of L after 1000 iterat

butions from data having the indicated noise standard deviations s. The final esti

after partial convergence, when Lwas 1 log-unit below its final value (solid bars),

15 nm, although at a noise level of 10- or 15-nm spurious peaks in the distributi

required 1 s of CPU time using a 2 GHz processor.
mated parameters and molecular trajectory with those of
the original model demonstrates the high fidelity of this
approach. The total computation time for the analysis (100
iterations) in Fig. 2, A–C, was 70 s using a single 2 GHz
processor; here T ¼ 500 points were analyzed, the quantum
of position was 1 nm, and the numbers of states were n ¼ 2
and m ¼ 160.

The log-likelihood value can be used to determine the
significance of changes in the model parameters. Profile
likelihood confidence intervals can be placed on the param-
eters by maximizing the likelihood while some parameters
are constrained to fixed values (Fig. 2 D). Here changes in
L are shown, because the two short-step sizes in the HMM
are constrained to values deviating from the optimum (and
true) values of 10 and 20 nm. In the case of the 500-point
simulation, it is seen that the 2-log likelihood confidence
intervals extend from 18 to 21 nm for the larger step, and
6–12 nm for the smaller step. In the case of a 1000-point
simulation, the confidence intervals are much tighter. In
general, having a larger data set makes the peaks in the like-
lihood function sharper.

The VS-HMM algorithm, like the HMM algorithm of
Milescu et al. (14), maximizes the likelihood, and therefore
is expected to converge to the correct model parameters
when presented with a sufficiently large dataset. However,
one of the major advantages of the VS-HMM algorithm is
that it is much less sensitive to initial estimates of step
size. Fig. 3 compares the convergence of the two algorithms
when used to estimate Gaussian-distributed step sizes.
When the algorithm of Milescu et al. (14) is started with
an estimate that differs by >25% from the true value of
10 nm, its estimate of the mean step size does not converge
to the correct value (Fig. 3 A). The limited range of
rious levels of measurement noise; results from one representative simula-

20 or 30 nm and geometrically distributed dwell times with a mean of 10

gence of L with a one-state HMM when the simulated time-course had 3,

ions was taken to be the maximum value. (C–F) Estimated step-size distri-

mated step-size distributions c(w) (solid lines) and the distributions obtained

are plotted . The mean step sizes are recovered with high accuracy up to s¼
on also appear. In this problem (n ¼ 1, m ¼ 160, T ¼ 2000), each iteration
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convergence is intrinsic to this HMM in which the quantum
of position is the size of an individual step, even though the
size of this quantum is varied in the E-M reestimation.

On the other hand, the VS-HMM algorithm is computa-
tionally more intense, but because it models an entire distri-
bution of step sizes, it reliably converges to the true step size
from a wide range of starting values (Fig. 3 B). In this
example, the initial step-size distributions were Gaussian
with standard deviations of 2 nm. VS-HMM converges
even faster when the starting step-size distribution is very
broad, or even uniform, in which cases almost no prior
assumption is being made about step sizes. For example,
using an initial distribution that was uniform from �64 to
64 nm, the step size converges to within 2% of the true value
after only five iterations (data not shown). Because both
algorithms maximize essentially the same likelihood func-
tion, they should, in the end, yield the same results within
their ranges of convergence.

Because the VS-HMM algorithm models arbitrary step-
size distributions, it is of interest to examine its behavior
when the step size is highly variable, as is seen in some
molecular motors (23). Milescu et al. (14) found that of
the various model parameters estimated by the HMM anal-
ysis, the standard deviation of step sizes had the greatest
uncertainty. This parameter shows a strong anticorrelation
with the noise standard-deviation s. That is, essentially
the same likelihood value is obtained when a slight overes-
timation of s is coupled with an underestimation of the step-
size standard deviation. We find a similar limitation with the
VS-HMM method, where step-size distributions tend to be
sharpened in the analysis.

We simulated time courses in which the steps have
a discrete distribution or a broad distribution of step sizes.
The results from the discrete distribution are shown in
FIGURE 5 Estimation of a broad step-size distribution in the presence of me

a 2000-point time course was simulated, but in this case it consisted of variable

bution approximates a mixture of Gaussians with means of 20 and 30 nm having

when the simulated time-course had 3, 7, 10, or 15 nm RMS of added Gaussian no

(C–F) Estimated step-size distributions from data having the indicated noise st

lines) and the distributions obtained after partial convergence, when L was 1 log

distribution in panel A is recovered as spikes in the analyses of panels C–F.

Biophysical Journal 99(11) 3684–3695
Fig. 4, and are similar to the results of the simulation of
Figs. 1 and 2. Given steps of either 20 or 30 nm, the esti-
mated step-size distribution is essentially correct until the
noise standard deviation reaches the large value of 10 nm,
equal to the difference in step size, where spurious peaks
in the distribution appear. Note that even under these low
signal/noise conditions, the major peaks still recover the
original step sizes with <5 nm error.

Fig. 5 shows the results from a simulation of a broad,
double-Gaussian distribution of step sizes with peaks at 20
and 30 nm. In the VS-HMM analysis, the distribution is
sharpened into a series of narrow peaks. Comparing the
two Figs. 4 and 5, it is seen that a broad distribution of
step sizes can under some conditions be indistinguishable
from a discrete distribution with multiple closely-spaced
peaks.

However, ML estimation is asymptotically unbiased: that
is, in the limit of infinite data, the correct model parameters
should be obtained. In Fig. 6, we show the results from
a simulation with a 20-fold longer time course, with 4000
instead of 200 steps. There are more and broader peaks in
the estimated step-size distributions, and at all levels of
noise the estimated step-size distributions are distinguish-
able from the discrete-distribution case in Fig. 4. Therefore,
sharpening of distributions appears to be a problem of insuf-
ficient sampling from the step-size distribution, which can
be circumvented by supplying recordings of sufficient
length to the analysis. In all cases, the VS-HMM analysis
recovered the step sizes with a remarkably low false positive
rate, even at very low signal/noise ratios.

Fig. 7 demonstrates how likelihood values can be used to
select the correct kinetic scheme from among several
possible candidates. The analysis of the two-state, 64-10/
20-nm simulation of Fig. 1 D was analyzed with six
asurement noise; results from one representative simulation. As in Fig. 4,

-sized steps. (A) Step-size histogram of the 200 generated steps; the distri-

standard deviations of 3 nm. (B) Convergence of L with a one-state HMM

ise. The value of L after 1500 iterations was taken to be the maximum value.

andard deviations s. The final estimated step-size distributions c(w) (solid

-unit below its final value (solid bars), are plotted. Note that the continuous



FIGURE 6 Estimation of a broad step-size distribution as in Fig. 5, but from a 40,000-point time course containing 4000 steps. (A) Simulated step-size

distribution. (B) Convergence of L with a 1-state HMM when the simulated time-course had 3, 7, 10, or 15 nm RMS of added Gaussian noise. (C–F) Esti-

mated step-size distributions from data having the indicated noise standard deviations s. The final estimated step-size distributions c(w) (solid lines) and the

distributions obtained after partial convergence, when L was 1 log-unit below its final value (solid bars), are plotted. Note that the continuous distribution in

panel A is better recovered with this larger dataset as compared with Fig. 5.
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different Markov models. Models were constructed with
n¼1–4 states (n ¼ 2, correct model) and with differing frac-
tions of molecular transitions that result in steps. Models are
ranked according to the Bayesian information criterion (see
(24)), which compensates for the addition of parameters to
the model.
FIGURE 7 Using likelihood ratios to find the best model for a molecular

motor trajectory. (A) Employing 20 different simulations having the same

parameters as in Fig. 1 D, the maximum log-likelihood is compared for

six test models shown in panel B. The Bayes information criterion (24)

penalty s ¼ (k/2)ln T has been subtracted from each L value. Here k is

the number of parameters (k ¼ 2, 4, 6, 5, 8, and 6 is assumed for models

1–40, respectively) and T ¼ 500 is the number of data points. Values of L

have been shifted so that the value for model 2 is zero. In this box plot

the median is plotted, with boxes representing the 25 and 75 percentiles

of the distribution of values, and whiskers the extreme values. (B) Models

1–4 involve n¼ 1–4 molecular states. In these models, each molecular tran-

sition is allowed to be accompanied by a position step. In contrast, the 30

model includes three states but one transition is constrained not to produce

a step. Similarly, the 40 model is composed of four states with every alter-

nate transition not producing a step. In the diagram, w indicates a nonzero

step.
Here we use the Bayesian information criterion with the
assumption that the inclusion of a nonzero position step
represents the introduction of a single new parameter. In
Models 1–4, steps were allowed for all molecular transi-
tions, while Models 30 and 40 incorporated silent molecular
transitions (Fig. 7 B) in which no step is allowed. After
subtraction of the penalty, all of the models were consis-
tently inferior to the correct Model 2. Thus the VS-HMM
can be used to identify the best among specific models,
but it should be kept in mind that the user ultimately has
to choose which models to test.
DISCUSSION

Milescu et al. (14) first showed that hidden Markov models
can be used for the modeling and restoration of the stepping
time courses of molecular motors. We present a related algo-
rithm, called VS-HMM, which in some ways is more useful
for answering basic questions about the behavior of molec-
ular motors. The main impetus was to develop an algorithm
that models the dynamics of molecular motors from record-
ings suffering from poor signal/noise ratio, and that is insen-
sitive to initial parameter choices. The activity of a motor
protein is modeled as a Markov process, and the problem
of representing the motor’s position is solved by using
a very large number of states in the hidden Markov model.
ML estimation is used to obtain kinetic parameters for the
motor’s reaction cycle, and the Viterbi algorithm is applied
to provide an estimate of the noiseless motor position as
a function of time.

The VS-HMM method described here fills a critical gap
in the currently available techniques to analyze and restore
noisy molecular motor traces when the step sizes and
Biophysical Journal 99(11) 3684–3695
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distributions are unknown. In the past, the most robust
methods for step-size determination have quantified fluctu-
ations in velocity or position to yield an average value for
the step size (25). These methods rely on the constraints
of uniform step sizes and particular distributions of the
dwell times, but have the advantage of yielding useful
results even when the individual steps cannot be resolved.
On the other hand, when recordings have better signal/noise,
the individual steps can be determined by step-detecting
methods such as t-test, c2, and wavelet approaches (4).
Milescu et al. (14,20) have applied HMM theory to provide
ML estimates of kinetic parameters and the mean and vari-
ance of step sizes by assuming a Gaussian distribution of
step sizes. Although computationally efficient, their HMM
formulation allows convergence only when the initial
user-defined step sizes are close to the true value.

Our algorithm also provides ML estimates, but is quite
insensitive to initial parameter values (Fig. 3); this insensi-
tivity is the central improvement of our method, because
it frees the user from specifying the size or distribution of
the molecular steps. Starting from flat initial distribu-
tions, or very broad Gaussian distributions centered at
some arbitrary values, the step-size probabilities c12 and
c21 of a two-state model rapidly converge to show the
variety of step sizes in the simulated data, even when the
RMS noise is comparable to the size of the smallest steps
(Fig. 2). Indeed, our algorithm correctly identifies the size
and kinetics of 10-nm steps in the presence of noise up to
s ¼ 14 nm (see Fig. S1 in the Supporting Material). These
features make the program very powerful and essentially
automatic.

Owing to the inherent confusion in interpreting noisy
recordings by eye, conclusions from single-molecule exper-
iments are often limited by data quality. In the case of the
simulated stepping data used here, the HMM clearly distin-
guishes correct small and large step sizes in cases like
Fig. 1 D where a human observer easily misses the small
steps. Yildiz and Selvin (1) cite examples where only
74-nm steps were originally identified, while subsequent
analysis of the same data with the VS-HMM described
here showed alternating 10- and 64-nm steps (6). Although
previous HMM analyses find small steps if the hypothesis of
small steps is tested explicitly (14), the improved method
presented here can automatically uncover their presence.
In the following article (6) we describe the application of
the HMM method to such data, along with enhancements
to the hidden Markov model to better describe experimental
recordings.
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Baden-Württemberg foundation and the German National Academic Foun-

dation to F.E.M. Fig. 2 D was produced from calculations at the Yale

University Biomedical High Performance Computing Center, which is sup-

ported by National Institutes of Health grant No. RR19895.
REFERENCES

1. Yildiz, A., and P. R. Selvin. 2005. Fluorescence imaging with one
nanometer accuracy: application to molecular motors. Acc. Chem.
Res. 38:574–582.

2. Toprak, E., and P. R. Selvin. 2007. New fluorescent tools for watching
nanometer-scale conformational changes of single molecules. Annu.
Rev. Biophys. Biomol. Struct. 36:349–369.

3. Abbondanzieri, E. A., W. J. Greenleaf, ., S. M. Block. 2005. Direct
observation of base-pair stepping by RNA polymerase. Nature.
438:460–465.

4. Carter, B. C., M. Vershinin, and S. P. Gross. 2008. A comparison
of step-detection methods: how well can you do? Biophys. J. 94:
306–319.

5. Liao, J. C., J. A. Spudich,., S. L. Delp. 2007. Extending the absorbing
boundary method to fit dwell-time distributions of molecular motors
with complex kinetic pathways. Proc. Natl. Acad. Sci. USA.
104:3171–3176.
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