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Cancer is the consequence of an unwanted evolutionary process.
Cells receive mutations that alter their phenotype. Especially dan-
gerous are those mutations that increase the net reproductive rate
of cells, thereby leading to neoplasia and later to cancer. The
standard models of evolutionary dynamics consider well mixed
populations of individuals in symmetric positions. Here we intro-
duce a spatially explicit, asymmetric stochastic process that cap-
tures the essential architecture of evolutionary dynamics operating
within tissues of multicellular organisms. The ‘‘linear process’’ has
the property of canceling out selective differences among cells yet
retaining the protective function of apoptosis. This design can slow
down the rate of somatic evolution dramatically and therefore
delay the onset of cancer.

Mutations in oncogenes and tumor suppressor genes can
increase the net reproductive rate of cells (1–5) and

therefore provide a selective advantage for mutated cells. Mu-
tations in genes that maintain the integrity of the genome can
trigger genetic instability (6–10), which may come at a selective
cost but increases the chance of acquiring further mutations that
are advantageous for the cell (11–13). Hence, both advantageous
and deleterious mutations can represent steps toward cancer
(14). Most human cancers arise in epithelial tissues, which are
organized into small compartments of cells (15–21). In this
article, we study how the architecture of cells within a com-
partment determines the evolutionary process of cancer ini-
tiation (14).

Consider a compartment of N cells within a tissue of a
multicellular organism. Suppose a mutation in a particular gene
alters the reproductive rate of a cell. Wild-type and mutant cells
have reproductive rates r1 and r2, respectively. The relative fitness
of mutant compared with wild type is s � r2�r1; it can be greater
than, equal to, or less than one. The probability that the gene is
mutated during cell division is given by u. To calculate the rate
at which mutated cells accumulate, we have to define a specific
stochastic process. Fig. 1a illustrates the Moran process (22). Any
single time step consists of two elementary events: (i) a random
cell is chosen for division proportional to its reproductive rate,
and (ii) a random cell is chosen for elimination. Hence, the total
number of cells is always constant. Division of a wild-type cell
gives rise to a mutant cell with probability u. We ignore back
mutation.

Mutant cells are produced at rate Nu. The probability of
fixation (taking over the whole population) of a single mutant
cell with relative fitness s is given by � � (1 � 1/s)�(1 � 1/sN).
The probability that a compartment of N cells has been taken
over by mutant cells at time t is given by P(t) � 1 � exp(�Nu�t).
Time is measured in units of cellular generations. If t ��
1�(Nu�), then the approximation P(t) � Nu�t holds. This means
that we are interested in time scales for which most cells of an
organism are not yet mutated with respect to a particular gene.

If the mutation confers a strong selective advantage, s �� 1,
then � � 1 and P(t) � Nut. If the mutation is neutral, s � 1, then
� � 1�N and P(t) � ut. This is Kimura’s well known result, that
the rate of fixation of neutral mutants is independent of the
population size (23). If the mutant has a strong selective
disadvantage, s �� 1, then the probability of fixation is much
smaller than 1�N. Hence, cellular dynamics that follow the

Moran process allow rapid accumulation of advantageous mu-
tations and slow accumulation of deleterious mutations.

The Moran process describes evolutionary dynamics in a well
mixed population of cells. All cells are in equivalent positions
and are in direct reproductive competition with each other.
There are no spatial effects. There is no cellular differentiation.
Tissues of multicellular organisms, however, are not organized in
this way. Instead, geometric arrangements and cellular differ-
entiation induce asymmetries. Stem cells produce differentiated
cells, thereby generating a flow that can ‘‘wash out’’ harmful
mutations (24). Epithelial compartments such as the colonic
crypt, for example, are replenished by a small number of
tissue-specific stem cells. The adult colon contains �107 crypts.
Each crypt consists of 1,000–4,000 cells. A small number of
intestinal stem cells reside at the base of each crypt. They divide
to maintain their own number and to generate differentiated
daughter cells. These daughter cells migrate up the crypt,
continuing to divide until they reach its midportion. Then they
stop dividing and differentiate to mature cells. When the cells
reach the top of the crypt, they undergo apoptosis and are
engulfed by stromal cells or shed into the gut lumen.

Let us define the most elementary stochastic process that
captures such an architecture of cell division. Suppose cells are
organized into a linear array, labeled i � 1, . . . , N (Fig. 1b). At
each time step, a cell is chosen for reproduction. Wild-type and
mutant cells are chosen proportional to their reproductive rates,
r1 and r2. The chosen cell divides into two daughter cells. One
daughter cell takes the position of the parent cell, and the other
daughter cell takes the position to the right of it. All cells to the
right of the two new cells are shifted by one position. The cell in
position i � N is eliminated. If a wild-type cell divides, then each
daughter cell is mutated with probability u�2. Hence, the
probability that the gene is mutated during cell division is given
by u, as before. We call this stochastic process the ‘‘linear array
process,’’ or ‘‘linear process’’ for short.

Surprisingly, the fixation rate of the linear process is given by
P(t) � ut�2, independent of the relative fitness, s � r2�r1, of the
mutant cells and independent of the population size, N. All
mutations behave like neutral mutations. For a mutation to be
fixed in the linear process, it must occur in the cell at position i �
1. The rate at which this cell becomes mutated is u�2. Once this
cell is mutated, the mutation will become fixed with a probability
of 1 irrespective of differences in reproductive rates.

Table 1 provides numerical examples for the rate of evolution
in the Moran and linear processes. The rate of evolution of any
mutant in the linear process is half as fast as the rate of neutral
evolution in the Moran process. The factor 1�2 comes from the
fact that the left daughter cell generated by a division of the cell
in position i � 1 needs to be mutated for fixation to occur.
Consider the possibility that the cell in position i � 1 is a stem
cell and divides asymmetrically into a stem cell that stays in
position i � 1 and a differentiated cell that goes into position i �
2. There is evidence that stem cell division has asymmetric
mutation rates (25) with a lower probability of mutating the
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DNA that remains in the stem cell. This effect can further reduce
the rate of evolution in the linear process. Note that these
asymmetric mutation rates have no consequence for the rate of
evolution in the Moran process.

There is also evidence that stem cells divide at a slower rate
than differentiated cells (18). In this case, the fixation rate is
reduced to P(t) � �ut�(2�0), where �0 is the average duration of
a stem cell generation. Therefore, the architecture of the linear
process facilitates further mechanisms to reduce the rate of
somatic evolution.

Thus far we have assumed that wild-type and mutant cells are
equivalent with respect to cell death. In the Moran process cell
death is random, whereas in the linear process only the cell in

position N dies. Let us now introduce different rates of apoptosis
for wild-type and mutant cells. In the linear process, the cell in
position N dies with probability p. With probability 1 � p, a
random cell is chosen proportional to its rate of undergoing
apoptosis. A natural choice is p � 1�(1 � a1N1 � a2N2), where
a1 and a2 denote the rates of premature apoptosis of wild-type
and mutant cells, respectively, whereas N1 and N2 denote their
respective numbers. Similarly, in the Moran process a random
cell is eliminated with probability p, whereas a cell is chosen
proportional to its apoptosis rate with probability 1 � p.

For the Moran process the same calculation holds as before,
but the relative fitness of the mutant is now given by s � [r2/(1
� a2N)]�[r1/(1 � a1N)]. Thus, the Moran process is symmetric
with respect to selection affecting cell birth or death.

For the linear process, we obtain analytic solutions in two
limiting cases. First, suppose that premature apoptosis of wild-
type cells is negligible, a1 � 0. In this case, the probability that
a single mutant cell starting in position one takes over the whole
compartment is given by

� � 1��1 � �
k�1

N�1 1
sk �

i�1

k �1 �
i
N�	 . [1]

Here s � r2�(r1a2N). The probability that a compartment is
mutated by time t is given by P(t) � �ut�2. Numerical simulations
show that this solution is also an excellent approximation for
small rates of apoptosis of wild-type cells, a1 � 0. For s �� 1, Eq.
1 can be approximated by � � (1 � 1/s)�(1 � 1/sN), the same
expression as for the Moran process but with different values of s.
For s �� 1, Eq. 1 can be approximated by � � (sN)N�1e�sN�
(N � 1)!, which is the formula for the standard � distribution.

Second, the opposite extreme is the assumption that the rates
of apoptosis of both wild-type and mutant cells are high.

Fig. 1. Two stochastic processes of evolutionary dynamics. (a) In the Moran process, cells are in identical positions. For reproduction, a cell is chosen proportional
to its reproductive rate. The offspring of this cell replaces a randomly chosen cell. The total number of cells is always constant. (b) In the linear process, cells are
arranged in a row and labeled i � 1, . . . , N. For reproduction, cells are again chosen proportional to their reproductive rate. The reproducing cell is replaced
by two daughter cells. All cells to the right are shifted by one position. The rightmost cell undergoes apoptosis (falls off the edge of the one-dimensional table).
The linear process captures fundamental properties of the architecture of cell division in multicellular organisms. We propose that this architecture evolved to
delay the onset of cancer. In the linear process, mutations in oncogenes or tumor suppressor genes that increase the reproductive rate of cells accumulate as slowly
as neutral mutations.

Table 1. Numerical examples for the rate of evolution in the
Moran and linear processes

r

Moran
� � 1

Linear,
independent of N

N � 10 N � 20 �0 � 1 �0 � 10

2 5.0 10.0 0.5 0.05
1.2 1.99 3.42 0.5 0.05
1 1 1 0.5 0.05
0.8 0.30 0.06 0.5 0.05
0.5 0.01 10 0.5 0.05

In the Moran process with random cell death, the probability that mutant
cells have become fixed is P(t) � N �ut��. In the linear process, we have P(t) �
ut�(2�0). We list the factor that multiplies ut. In the Moran process, advanta-
geous mutants, r � 1, accumulate faster than neutral mutants, r � 1, which
accumulate faster than deleterious mutants, r � 1. In the linear process,
mutants accumulate independent of their selective value at a rate that is
��(2�0) times the rate of neutral evolution in the Moran process.
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Therefore, the probability that cell N is discarded is negligible,
p � 0. In this limit, the linear and Moran processes are
equivalent. The relative fitness of mutant cells is given by s �
[r2/(a2N)]�[r1/(a1N)], the fixation probability is � � (1 � 1/s)�
(1 � 1/sN), and the accumulation of mutated compartments is
described by P(t) � N�ut. Thus, high rates of apoptosis destroy
the flow within the linear process and allow the rapid fixation of
advantageous mutants. Therefore, chemicals and radiation that
induce premature apoptosis are carcinogenic not only by in-
creasing mutation rates but also by inhibiting the cellular flow
that otherwise would weed out mutated cells.

Table 2 provides numerical examples. Premature apoptosis of
mutated cells reduces the rate of evolution in the linear process.
Some mutants that are advantageous in the Moran process are
slower than neutral in the linear process. Although premature
apoptosis helps to slow down deleterious mutants in the linear
process, the best architecture for containing deleterious mutants
is given by a Moran process with large compartment sizes.

For the linear process, we have assumed that if a cell in
position i dies, its function can be taken over by the cell in
position i � 1. This is not the case for irreversible differentiation.
Suppose the cell in i � 1 is a tissue-specific stem cell, whereas the
other cells are irreversibly differentiated. If the cell in position
i � 1 undergoes apoptosis, then the whole compartment might
die (Fig. 2). If apoptosis is unlikely for wild-type cells but occurs
for mutant cells at rate a2, then mutated compartments have an
average lifetime of 1�a2. The expected number of mutated

compartments rises initially as a linear function of time and then
saturates at a steady-state level. If mutated compartments
require another mutation for further neoplastic growth, then
apoptosis of mutated stem cells and subsequent loss of the
compartment is an effective prevention of cancer initiation.

We also can calculate the rate of eliminating tumor suppressor
genes (Appendix and Table 3). The number of mutated com-
partments at a given time is many orders of magnitude lower for
the linear process. Thus, the architecture of the linear process is
also protective against accumulation of cells with inactivated
tumor suppressor genes.

In summary, we defined a simple stochastic process that
captures fundamental properties of evolutionary dynamics
within tissues of multicellular organisms. In the basic linear
process, mutations in oncogenes or tumor suppressor genes that
increase the reproductive rates of cells have the same fixation
probability as neutral mutations. In the extended linear process
with premature apoptosis, mutations that have an increased net
reproductive rate in the Moran process can be fixed more slowly
than neutral mutations. Irreversible differentiation, slower cy-
cling time of stem cells, and asymmetric mutation rates in stem
cell divisions are additional mechanisms that reduce the rate of
evolution in the linear process (Fig. 2). We propose that patterns
of cell division in tissues of multicellular organisms have evolved
to delay the onset of cancer. The linear process provides a
quantitative understanding for how various mechanisms slow
down the unwanted somatic evolution that leads to cancer.

Table 2. The effect of selective apoptosis

a2N

Moran Linear

N � 10 N � 20 N � 10 N � 20

0 5.00 10.0 0.50 0.50
0.2 4.02 8.00 0.46 0.45
1.0 1.00 1.00 0.29 0.27
2 0.088 0.003 0.14 0.094

Selective apoptosis, a2, of mutant cells slows down the rate of evolution in
the linear and Moran processes. Again the factor that multiplies ut is shown.
For the Moran process, it is N �(s)�� with s � r2�[r1(1 � a2N)]. For the linear
process, it is N��(2�0) with � given by Eq. 1. We choose r1 � 1, r2 � 2 and � �
�0 � 1.

Fig. 2. The architecture of the linear process facilitates a number of mechanisms that slow down the unwanted somatic evolution leading to cancer. The cell
in position i � 1 functions like a stem cell for this compartment. (a) Mutations that do not occur in stem cells are washed out. (b) If mutated stem cells undergo
apoptosis, then mutated compartments can become entirely wild-type, given that cells in position i � 2 take over the stem cell function, or the whole
compartment might die. Both processes prevent the accumulation of mutated cells. (c) If stem cells divide only once every 10 days, whereas all other cells divide
once per day, then the rate of evolution in the linear process is reduced by a factor of 10.

Table 3. Tumor suppressor genes

N Moran, � � 1

Linear

�0 � 1 �0 � 10

100 11127 82 1
1000 23539 82 1
10000 180790 82 1

Tumor suppressor genes require inactivation of both alleles for the cell to
have an increased net growth rate. Here we show the expected number of
mutated compartments at t � 70 years of age in an organ that contains 107

compartments. Parameters are u1 � 10�7, u2 � 10�6, and � � 1�2. The linear
process leads to a much smaller number of mutated compartments, thereby
efficiently delaying cancer initiation.

14968 � www.pnas.org�cgi�doi�10.1073�pnas.2535419100 Nowak et al.



Appendix
Fixation Probability in the Linear Process. Consider the linear
process with premature apoptosis of mutant cells but not of
wild-type cells. We calculate the probability that a single mutant
cell starting in position one will reach fixation. The only con-
figurations that can occur have mutant cells in the leftmost
positions; a wild-type cell can never be to the left of a mutant cell.
The state of the stochastic process is given by the number, i, of
mutant cells. We have a birth–death process in the states i � 0,
. . . , N. There are two absorbing states: 0 and N. The reproduc-
tive rates of wild-type and mutant cells are given by r1 and r2,
respectively. The probability that a mutant cell is chosen for
reproduction is bi � r2i�[r1(N � i) � r2i]. The probability that a
wild-type cell is chosen for reproduction is 1 � bi. The probability
that the cell in position N undergoes apoptosis is given by pi �
1�(1 � a2i). The probability that a mutant cell undergoes
premature apoptosis is given by 1 � pi. The transition matrix for
the birth–death process is given by

Pi,i�1 � �1 � bi��1 � pi� Pi,i � 1 � Pi,i�1 � Pi,i�1

Pi,i�1 � bi pi.
[2]

Denote by xi the probability that the system will be absorbed into
state N starting from state i. Solving the recursion xi � Pi,i�1xi�1

� Pi, i xi � Pi,i�1xi�1 leads to Eq. 1 for the probability x1. This
expression is the inverse of a generalized hypergeometric func-
tion, � � 1�F([1,1 � N], [], � 1/sN).

Tumor Suppressor Genes. Denote by u1 and u2 the mutation rates
for inactivating the first and second allele of a tumor suppressor
gene, respectively. Consider a compartment of N cells. Let N �
1�u1 and u1 � u2. The second mutation can be much faster
because of various mechanisms that lead to loss of heterozygos-
ity. In a Moran process, the probability that a cell with two
inactivated alleles has reached fixation by time t is given by

P�t� � 1 �
Nu2�e�u1t�� � u1e�Nu2�t��

Nu2� � u1
if N � 1�
u2

P�t� � 1 � e�Nu1
u2�t�� if N 	 1�
u2.
[3]

Here � denotes the probability that a single cell with two
inactivated alleles reaches fixation, and � is the cellular gener-
ation time. In a linear process with N cells, neglecting premature
apoptosis, the corresponding fixation probability is given by

P�t� � 1 �
u2e�u1t��2�0� � u1e�u2t��2�0�

u2 � u1
. [4]

The generation time of the stem cell (in position one) is given by
�0. The factor 1�2 in the exponent arises from the fact that, in the
linear process, the left daughter cell has to receive the mutational
hit: If the cell in position one divides, then the left daughter cell
goes to position one, and the right daughter cell goes to position
two. A mutation in position two will be washed out.

In a tissue with M compartments, the expected number of
mutated compartments at time t is given by MP(t).
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