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SUMMARY

Multiple imputation is commonly used to impute missing data, and is typically more efficient than
complete cases analysis in regression analysis when covariates have missing values. Imputation may be
performed using a regression model for the incomplete covariates on other covariates and, importantly,
on the outcome. With a survival outcome, it is a common practice to use the event indicator D and the
log of the observed event or censoring time T in the imputation model, but the rationale is not clear.

We assume that the survival outcome follows a proportional hazards model given covariates X and Z .
We show that a suitable model for imputing binary or Normal X is a logistic or linear regression on the
event indicator D, the cumulative baseline hazard H0(T ), and the other covariates Z . This result is exact
in the case of a single binary covariate; in other cases, it is approximately valid for small covariate effects
and/or small cumulative incidence. If we do not know H0(T ), we approximate it by the Nelson–Aalen
estimator of H(T ) or estimate it by Cox regression.

We compare the methods using simulation studies. We find that using logT biases covariate-outcome
associations towards the null, while the new methods have lower bias. Overall, we recommend including
the event indicator and the Nelson–Aalen estimator of H(T ) in the imputation model. Copyright q 2009
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiple imputation (MI) [1] is commonly used to perform statistical inference in the presence of
missing data. Unlike simpler imputation methods, it can yield inferences that accurately reflect the
uncertainty due to the missing data. MI is typically more efficient than complete cases analysis
when covariates have missing values. Implementations in Stata [2, 3], SAS [4] and R [5] have led
to its widespread use.
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The main difficulty in MI lies in appropriately performing the imputations. We initially focus on
the case where only one variable is incomplete. When all variables are discrete, imputation may
be performed within cells defined by the complete variables [6]. More commonly, a regression
model is used, termed the imputation model, as opposed to the analysis model whose regression
coefficients are of substantive interest. The choice of variables in the imputation model is crucial:
in particular, any association to be assessed in the analysis model must be allowed for in the
imputation model [7, 8], for otherwise bias towards the null is likely. When the incomplete data are
covariates in the analysis model, the analysis model outcome must be used to predict the missing
covariate values. Although this practice may seem counter-intuitive, it is in fact essential [9].

In this paper, we consider analysis of a (typically censored) survival outcome in relation to
one or more incomplete covariates. Each imputation model involves regression of an incomplete
covariate on the other covariates and on survival. It is important to find the right way to include
the survival outcome in this imputation model because, otherwise, the association between the
covariate and survival is likely to be diluted. An influential paper on the practical use of MI used
the event indicator D, the observed event or censoring time T and the log of T as predictors in the
imputation model [10], while other authors have used just D and the log of T [11] or just D and
T [12]. However, it is not clear which procedure is correct: for example, is the log transformation
appropriate, and should an interaction between D and T be included in the imputation model?

The aim of this paper is to develop a more principled approach to including a survival outcome in
an imputation model. We focus on the case where the outcome is assumed to follow a proportional
hazards model, although other cases are mentioned in the discussion. The methods will be presented
for the case of a single incomplete variable, but the same issues arise with multiple incomplete
variables, whether they are handled by fitting a multivariate normal distribution to the data via
MCMC [4, 8, 13], by sequential application of regression imputation to monotonic missing data
[4], or by iterative application of regression imputation to non-monotonic missing data (multiple
imputation by chained equations, MICE) [10]. We assume throughout that the data are missing at
random or missing completely at random [14], and that censoring is non-informative.

In Section 2, we present a motivating data set in renal cancer. In Section 3, we explore the
imputation model algebraically. With a single binary covariate, we show that the correct imputation
model is a logistic regression on the event indicator D and the cumulative baseline hazard H0(T )

at the time of event/censoring. In a more general multivariable situation with a binary or Normally
distributed covariate, we show that the corresponding result is approximately valid when covariate
effects are small and/or cumulative incidence is small. We also propose two ways to approximate
the unknown H0(T ). In Section 4, we report simulation studies comparing the methods in the
univariate and bivariate cases. In Section 5, we apply the different methods in fitting a prognostic
model in renal cancer. We end with a discussion and recommendations in Section 6.

2. EXAMPLE: RENAL CANCER DATA

The MRC RE01 study was a randomized controlled trial comparing treatment with interferon-�
(IFN) with best supportive care and hormone treatment with medroxyprogesterone acetate (control)
in patients with metastatic renal carcinoma. The study recruited 350 patients between 1992 and
1997 [15].

In this illustrative analysis, we attempt to build a prognostic model using the erythrocyte
sedimentation rate (ESR), a variable that was only collected for half of the patients. ESR was
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Table I. Summary of data from the MRC RE01 study (n=347).

Variable Code Mean SD Per cent missing

Erythrocyte sedimentation rate esr 49.6 35.1 51.3
Haemoglobin haem 12.3 1.9 6.6
White cell count wcc 8.7 4.1 6.6
Days from metastasis to randomization t_mt 129 421 0.3

Value per cent
WHO performance status who 0 27 0

1 48
2 24

Treatment with IFN trt control 50 0
IFN 50

broadly missing at hospital level: that is, its measurement appears to have been largely a matter
of hospital policy, and it appears to be approximately MCAR. We exclude three patients with
no follow-up. A number of possible prognostic variables were available, from which five were
selected by analysis of the patients with observed ESR. The variables are listed in Table I. Analysis
by multivariable fractional polynomials [16] suggested that wcc and t_mt should be entered into
the analysis model as wccˆ3 and log(t_mt+1), respectively.

Because of the large number of missing values of ESR, complete cases analysis uses less than
half the data set. However, the rest of the data set carries information about the associations
between the other covariates and the outcome, so it is sensible to use MI for the analysis of these
data. We will use the data to compare different ways to incorporate the outcome in the imputation
model.

3. METHODS

3.1. Multiple imputation

We briefly describe MI for a single incomplete variable X , a vector of complete variables Z and
complete outcome Y . We assume that we have an imputation model p(X |Y, Z;�) parameterized
by �. Formally, MI involves drawing values of the missing data Xmis from the predictive distribu-
tion p(Xmis|Xobs,Y, Z)=∫

p(Xmis|Xobs,Y, Z;�)p(�|Xobs,Y, Z)d�, where p(�|Xobs,Y, Z) is the
Bayesian posterior distribution of � [1]. In practice, this may be achieved (with implicit vague
priors) by (1) fitting the model p(X |Y, Z;�) to the cases with observed X , yielding an estimate
(typically an MLE) �̂ with estimated variance–covariance matrix S�; (2) drawing a value of �, �∗,
say, from its posterior, perhaps approximated as N (�̂, S�); and (3) drawing values of Xmis from
p(X |Y, Z;�∗) [6].
Where some of the Z variables are also incomplete, the method of MI by chained equations

(MICE) [10] starts by filling in missing values arbitrarily, then applies the above univariate method
for each incomplete variable in turn, using the current imputed values of Z when drawing new
values of X , and vice versa. The procedure is iterated until convergence, which often requires fewer
than 10 cycles [2]. An alternative non-iterative procedure is available if the data are monotonically
missing [8].
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Once imputed data sets have been created, analysis is performed on each data set separately.
Let Qr be the point estimate of a (scalar or vector) parameter of interest for the r th imputed data
set (r =1, . . . ,m) with variance–covariance matrix Ur . These values are then combined by Rubin’s
rules [1]: the overall point estimate is Q̄=(1/m)

∑
r Qr with variance Ū+(1+1/m)B, where

Ū =(1/m)
∑

r Ur and B=(1/(m−1))
∑

r (Qr − Q̄)(Qr − Q̄)T. Tests and confidence intervals for
a scalar parameter are constructed using a t-distribution with degrees of freedom given by Rubin’s
formula [1] or an alternative [17].
3.2. Conditional distribution of covariates

We now focus on the case of a survival outcome T with event indicator D (1 for events, 0 for
censored observations). We assume that the outcome follows the Cox proportional hazards model
h(t |X, Z)=h0(t)exp(�X X+�Z Z) where again X is incomplete and Z is complete. We also need
an ‘exposure model’ p(X |Z;�) in order to allow for the incomplete X .

In the appendix, we prove a number of exact and approximate results about the imputation
model p(X |T,D, Z) in terms of the model parameters � = (�, �X , �Z , h0(.)). These results are used
to motivate regression models p(X |T,D, Z;�), where the parameter � is some function of �. In
practice, we do not know �, but we can estimate the parameters � directly from the complete cases.
Therefore, the models below are stated in terms of the unknown parameters �, which typically
differ across different models.

First, with binary X and no Z , we have

logit p(X =1|T,D)=�0+�1D+�2H0(T )

where H0(T ) is the cumulative baseline hazard
∫ T
0 h0(t)dt . In other words, the missing X may

be imputed by fitting a logistic regression of X on D and H0(T ) to the complete cases.
Second, with binary X and binary or categorical Z , if we take the most general exposure model

logit p(X =1|Z)=�Z , then we get

logit p(X =1|T,D, Z)=�0+�1D+�2H0(T )+�3Z +�4Z H0(T )

where terms such as �3Z represent a set of dummy variables with their coefficients.
In other cases we can only obtain approximate results. For binary X with more general (possibly

vector-valued) Z , we make a Taylor series approximation for exp(�Z Z) that is valid when �Z Z
has small variance. Using the exposure model logit p(X =1|Z)=�0+�1Z gives

logit p(X =1|T,D, Z)≈�0+�1D+�2H0(T )+�3Z

and the addition of an interaction term �4H0(T )Z improves the accuracy of the approximation.
Further, if the user believed that a particular transformation of Z was needed for predicting X ,
then this transformation should be entered in the imputation model.

For Normal X , we make a fuller Taylor series approximation for exp(�X X+�Z Z) that is valid
when �X X+�Z Z has small variance. Using the exposure model X |Z ∼N(�0+�1Z ,�2) gives

X |T,D, Z ≈N(�0+�1D+�2H0(T )+�3Z ,�2)

using a first-order approximation, and again the addition of an interaction term �4H0(T )Z improves
the accuracy of the approximation. Equations (A7) and (A8) in the appendix suggest that departures
from the above model will be most marked when both var(�X X) and H0(t) exp(�X X̄+�Z Z̄)

(roughly the overall cumulative hazard at the event time T ) are large.
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Figure 1. Smoothed mean and SD of X |T,D with �X =0.7, h0(t)=1.

3.3. A small empirical investigation

We explored the distribution of X |T,D empirically using 100 000 simulated data points and the
model described above with standard Normal X , �X =0.7, h0(t)=1 (so H0(t)= t) and censoring
times uniformly distributed on [0,2]. Figure 1 shows smoothed graphs of the conditional mean
and standard deviation, E[X |T,D] and SD(X |T,D). A linear regression on D and H0(T ) would
be shown by parallel straight lines for the mean and a constant SD. Some departures from linear
regression are seen: the mean graphs are somewhat curved and converging, and the SD declines
with T .

Taken together, these results suggest that logistic or linear regression of X on D, H0(T ) and Z
may be appropriate in many situations, and that including an interaction between Z and H0(T )

may improve the approximation, but that the approximation will not work well in situations with
strong covariate effects and large cumulative incidences.

3.4. Implementation

In practice, H0(T ) is unknown and must be estimated. We consider three possible methods.

3.4.1. Substantive knowledge. In many applications, the baseline hazard may be approximately
known: for example, in following a cohort of healthy individuals over a small number of years,
the baseline hazard could be assumed to be roughly constant. In this case it would be reasonable
to assume H0(T )∝T . This may be a useful ‘off-the-shelf’ method.

3.4.2. Nelson–Aalen method. When the covariate effects �X and �Z are small, we may approximate
H0(T )≈H(T ), which is easily estimated before imputation using the Nelson–Aalen estimator. It
seems possible that this method will perform well for moderate sized �X and �Z because small
errors in estimating H0(T ) are unlikely to have much impact on the imputations.
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3.4.3. Cox method. We also propose estimating H0(T ) iteratively: first, imputing X using the
current estimate of H0(T ), then fitting the Cox proportional hazards model to the data using the
current values of the covariates X, Z and extracting a revised estimate of the baseline hazard
function H0(T ). This fits conveniently within the MICE algorithm: in each imputation cycle,
as well as updating each incomplete variable in turn, we also update H0(T ) by fitting the Cox
model.

Because it is unlikely that H0(T ) will change much from one iteration to the next, we also
consider a less computationally intensive version in which H0(T ) is updated only on the first
k cycles. Here we will use k=2.

3.4.4. Theoretical properties. We note that the methods described in Sections 3.4.2 and 3.4.3 do
not acknowledge the uncertainty in estimating H0(T ). As a result, they are not Bayesianly proper
[1], so that standard errors may be too small and confidence intervals may be too narrow. However,
we do allow for uncertainty in the coefficient of H0(T ), so we do not expect any undercoverage
to be important.

4. SIMULATION STUDY

We now present simulation studies to compare the methods introduced in Section 3. These are
summarized in Table II. We first consider the simple case of binary or Normal X and no Z .

4.1. One covariate: design of simulation study

The covariate X was either binary with P(X =1)=�X or standard Normal, so that its standard
deviation �=√

�X (1−�X ) or 1, respectively. X was missing completely at random with prob-
ability �M . Survival times were drawn from a Weibull distribution hT (t)=�T	t	−1 exp(�X X).
Random censoring times were drawn from a Weibull distribution with the same shape parameter,
hC (t)=�C	t	−1. The parameter values used were �M =0.5; �X =0.5; �T =0.002; 	=1; �X�=
0,0.5,1; and �C =0.002 (corresponding to approximately 50 per cent censoring). When �X �=0,

Table II. Models considered for imputing missing values of incomplete X .

Abbreviation Description

NO-T Regression of X on Z
LOGT Regression of X on Z , D and log t
T Regression of X on Z , D and T (appropriate if the shape 	=1)
T2 Regression of X on Z , D and T 2 (appropriate if the shape 	=2)
NA Regression of X on Z , D and Ĥ(T ), the Nelson–Aalen estimator of H(T )

NA-INT Regression of X on Z , D, Ĥ(T ) and z× Ĥ(T )

COX Regression of X on Z , D and Ĥ0(T ), where Ĥ0(T ) is estimated iteratively
as described in Section 3.4.3

COX* Same as COX, but with only two iterations used for Ĥ0(T ) as described in
Section 3.4.3

‘Regression’ means logistic regression for binary X and linear regression for Normal X .
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the sample size n was chosen to give 90 per cent power to detect a significant association between
binary X and survival at the 5 per cent level, using Collett’s formula [18]. For Normal X , the
sample size was chosen to be the same as for binary X with the same value of �X�. When �X =0,
the sample size was chosen to be the same as that for �X�=0.5.

In sensitivity analyses, one parameter was varied at a time: ‘High censoring’, �C =0.01 (corre-
sponding to approximately 83 per cent censoring); ‘low missing’, �M =0.2; ‘shape 2’, 	=2; and
‘administrative censoring’, censoring at a fixed time computed to give the same censored fraction
as random censoring when X =0.

The imputation methods described above were used to construct m=10 imputed data sets. The
analysis model was a Cox regression on X . Results from the imputed data sets were combined using
Rubin’s rules as described in Section 3.1. For comparison, we also analysed each simulated data set
before introducing missing values (PERFECT) and using complete cases only (CC). In each case
we estimated the bias and the empirical standard error of the point estimate; the relative error in the
average model-based standard error, defined as its difference from the empirical standard error of
the point estimate minus 1; the coverage of a nominal 95 per cent Normal-theory confidence
interval; and the power of a Normal-theory 5 per cent significance test of the null hypothesis
of �=0.

4.1.1. One covariate: results for binary X. Table III shows the key results. NO-T is strongly
biased towards the null, the proportionate bias equalling the proportion of missing data. LOGT is
mildly biased (up to 10 per cent) towards the null. All other methods have no appreciable bias.
All methods except NO-T have similar empirical standard errors (results not shown). NO-T has
smaller empirical standard error as a result of its bias towards the null.

All methods except NO-T have model-based standard errors that compare well with the empirical
standard errors. NO-T has a standard error that is up to 70 per cent too large. All methods except
NO-T have coverage between 93 and 96 per cent in all cases, while coverage of NO-T varies from
73 to 100 per cent (results not shown).

Power was very low for NO-T, reduced by up to 6 per cent for LOGT and by up to 3 per cent for
T2 (only when 	=1), compared with other methods. Differences in power between other methods
appear to be consistent with chance.

Results with ‘high censoring’ were very similar to the base case; results with ‘low missing’
showed weaker patterns than the base case; and with ‘Shape 2’ and ‘Administrative censoring’,
results with �<1 showed weaker patterns than those shown with �=1.

Because of its poor properties, we do not consider NO-T in further simulation studies.

4.1.2. One covariate: results for Normal X. The results in Table IV show that some methods,
notably COX but also LOGT and T2 (when 	=1), show small bias towards the null. (Note that
when n=84 the PERFECT and CC methods show small-sample bias away from the null.) We did
not explore precision because of the presence of bias. Coverage was 93–96 per cent for LOGT, T,
T2 and NA, and 92–97 per cent for COX and COX* (results not shown). Power was greatest with
T, NA and COX* methods. T2 had noticeably less power than T when 	=1, but was not superior
when 	=2.

We conclude that LOGT is somewhat suspect because of potential bias towards the null. All
other methods considered are adequate, and T, NA and COX* may be the best. There is no gain
from the extra computational burden in COX, which if anything performs worse than COX*.
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4.2. Two covariates: design of simulation study

We next added in a complete covariate Z . We took X and Z to be standard Normal with correlation

. The analysis model was now hT (t)=�T	t	−1 exp(�X X+�Z Z). We were especially interested
in seeing what happens as �X and �Z get larger, since Section 3.2 suggested that this is where our
approximations may break down.

We induced missing data in X only, using a MCAR mechanism as before. We took �M =0.5,
�T =0.002, 	=1 and random censoring with �C =0.002 in all simulations: these choices for �M
and �C were found in the univariate study to be most sensitive to different analysis methods.
Further, we took all combinations of 
=0,0.5; �X =0,0.25,0.5; and �Z =0,0.25,0.5.

To explore how the missing data mechanism affects the results, we repeated the bivariate
simulation under the MAR mechanism logit P(MX |X, Z)= Z , where MX indicates missingness
of X : this yielded 50 per cent missing values. We did this in the case �X =�Z =1 only.

We used all the methods proposed before, with the exception of NO-T, which had performed
very poorly, and COX, which had not performed well enough to justify its computational
burden in the univariate study. In addition, we introduced a modification of the NA method
that includes the interaction of Z with H(T ) in the imputation model: we call this method
NA-INT.

4.2.1. Two covariates: results. Results for �̂X are given in Table V. We first consider the MCAR
case. Bias towards the null increases with increasing values of �X , �Z and 
. It is worst for T2,
being up to 20 per cent of the true value of �. Precision is not compared because of the presence of
bias. Model-based standard errors are up to 17 per cent too high, with the discrepancy increasing
with �X . Despite these problems, coverage was adequate (94–97 per cent) for all methods (results
not shown). Power was greatest with T, NA, NA-INT and COX* methods, and worst for LOGT
and T2. The NA-INT method performed very similarly to the NA method.

Results for the MAR case show increased bias in �̂X , increased error in the model-based standard
errors and decreased power, but the comparisons between methods are similar to the MCAR
case.

Results for �̂Z are given in Table VI. There was small bias away from the null when �X>0 and

=0.5 because the small bias in �̂X seen previously leads to residual confounding. Model-based
standard errors were all accurate to within 10 per cent. Coverages ranged from 94 to 97 per cent
(results not shown). Power was similar for all MI methods, but was substantially greater for MI than
for CC.

5. RESULTS FOR THE RENAL CANCER DATA

As stated in Section 2, the analysis model of interest for these data is a proportional hazards
model including covariates esr, haem, who, trt, (wcc)ˆ3 and log(t_mt+1). For ease of
comparison, we scale the quantitative covariates esr, haem, (wcc)ˆ3 and log(t_mt+1) by
their CC standard deviations.

Before imputing the missing values, the skewed variables wcc and t_mt were transformed to an
approximate Normal distribution using the lnskew0 program in Stata, which replaces a variable
X with log(±X−k) where k and the sign are chosen so that log(±X−k) has zero skewness.
Although esr was non-Normally distributed, it was not transformed because exploratory linear
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Table VII. Renal cancer data: results of proportional hazards models by complete cases and eight different
imputation methods. Tabulated values are �̂ (standard error).

CC Imputation methods (n=347)

Variable (n=169) NO-T LOGT T T2 NA COX COX*

esr/35.1 0.30 0.10 0.24 0.21 0.11 0.26 0.25 0.25
(0.11) (0.10) (0.12) (0.12) (0.12) (0.12) (0.12) (0.11)

who2 −0.95 −0.84 −0.87 −0.86 −0.84 −0.87 −0.87 −0.87
(0.24) (0.17) (0.17) (0.17) (0.17) (0.18) (0.17) (0.17)

who3 −0.62 −0.62 −0.62 −0.61 −0.61 −0.61 −0.61 −0.61
(0.22) (0.14) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)

haem/2.00 −0.44 −0.33 −0.27 −0.28 −0.33 −0.26 −0.26 −0.26
(0.12) (0.09) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10)

wccˆ3/13.5 0.41 0.33 0.34 0.34 0.33 0.34 0.34 0.34
(0.13) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

log(t_mt+1)/1.42 −0.24 −0.23 −0.24 −0.24 −0.23 −0.24 −0.24 −0.24
(0.09) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

trt −0.44 −0.37 −0.37 −0.37 −0.37 −0.37 −0.37 −0.37
(0.16) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12)

Bold cells indicate estimates that differ from the NA estimate by more than 20 per cent of the NA standard
error, or standard errors that differ from the NA standard error by more than 20 per cent of the NA standard
error. Monte Carlo error in parameter estimates is no more than 0.003 in all cases.

regression on the other covariates suggested that its conditional distribution was approximately
Normal.

Imputation was performed on the transformed variables using the ice routine in Stata [2, 3]
and including the outcome variables appropriate to each method. Transformed values of wcc
and t_mt were converted back to the original scale and then formed into the terms wccˆ3 and
log(t_mt+1) for the analysis model. The COX and COX* methods were implemented by
additional programming within ice. We used m=1000 imputations so that Monte Carlo error did
not disguise any differences between methods.

We first look at differences between the CC method and all imputation methods (Table VII).
One would expect standard errors for the coefficient of a variable X to be smaller by MI than
by CC when there are a substantial number of observations with observed X , but missing data in
other variables. In the present data, this would suggest that, compared with CC standard errors,
MI standard errors would be similar for esr and smaller for all other variables. The expected
pattern is observed for the other variables. However, the standard errors for esr are somewhat
increased. This may reflect other features of the current data or may be a chance finding. There
are substantial differences in point estimates.

Turning to comparisons between imputation methods, the main differences are seen for esr,
with T2 and NO-T giving point estimates less than half those for other methods. Smaller differences
are seen for other methods. The only other variable whose coefficients show substantial differences
between imputation methods is haem. This is the variable with the strongest correlation (−0.61)
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with esr, and the differences between the methods reflect residual confounding as a consequence
of the attenuated estimates of the coefficient of esr.

6. DISCUSSION

We have developed an approximate theoretical rationale for imputing missing covariates in a Cox
model using new methods based on the cumulative baseline or marginal hazard (NA, NA-INT,
COX and COX*). These methods have the appealing property that they are invariant to monotonic
transformation of the time axis, like the Cox proportional hazards model itself, but unlike more
commonly used methods (LOGT and T).

Our simulation study allows us to choose between these methods. The NA method performed
at least as well as the more complex NA-INT, COX and COX* methods, appearing to have the
lowest bias and highest power in most simulations. We therefore consider this to be the best
method in general. The NA method is simple to implement in standard software. For example,
using ice in Stata [2, 3], after the data have been stset, the Nelson–Aalen estimator is produced
by sts gen HT=na and then the MICE algorithm is implemented by ice HT _d X* with
appropriate options.

However, all methods were somewhat biased towards the null when covariates were strongly
predictive of outcome. This is because the imputation models were not entirely correct. The MI
procedure might be improved by using predictive mean matching [19], which aims to draw from
the empirical distribution rather than the fitted conditional distribution. Our explorations of this
approach in the context of our simulation studies suggest that it can perform very poorly: in
particular, when there is no true association between covariate and outcome, predictive mean
matching gives implausible distributions of imputed values and very variable estimated coefficients.
This appears to be a consequence of small imputation models; strengths and limitations of predictive
mean matching are a topic for further research.

This paper did not aim to compare MI with complete cases analysis. The standard view is that
MI is more efficient than complete cases for estimating the coefficient of a variable whenever
some of the other model covariates are incomplete [11]. Our results support this view, since MI
procedures had greater power than complete cases in Table VI but not in Tables III, IV and V.
Indeed, MI had worse power in Tables III, IV and V because we used too few imputations: had
our aim been a fair comparison of MI with complete cases, we would probably have needed to
use m=50 or more imputations.

We assumed a proportional hazards survival model. Other non-parametric survival models, such
as the accelerated life model and the proportional odds model, do not yield simple imputation
models for the covariates. For the proportional odds model, it can be shown that a Taylor series
approximation with �X ≈0 suggests a logistic model for X on S0(T ), D and their interaction.
Thus in principle, different methods are required for these models. We suggest that the NA method
might be a reasonable first choice, but that more flexible imputation models should be carefully
considered.

We have explored and compared methods in the setting of a single incomplete covariate, but our
finding that D and H0(T ) should be included in imputation models for incomplete covariates is
equally relevant for any form of MI that is based on regression models for incomplete covariates.
These include imputing from a multivariate normal distribution [13], imputing using monotone
missing methods and imputing via chained equations [5]. We therefore recommend that, instead
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of the logarithm of survival time, imputation should be based on the Nelson–Aalen estimate of
the cumulative hazard to the survival time.

APPENDIX A

Under the PH model h(t |X, Z)=h0(t)exp(�X X+�Z Z), the log-likelihood for the outcomes, given
complete data, is

log p(T,D|X, Z) = D logh(T |X, Z)−H(T |X, Z)

= D(logh0(T )+�X X+�Z Z)−H0(T ) exp(�X X+�Z Z)

so by Bayes’ theorem, the conditional distribution of X given the observed covariates is

log p(X |T,D, Z)= log p(X |Z)+D(�X X+�Z Z)−H0(T ) exp(�X X+�Z Z)+const (A1)

where the constant may depend on D, T and Z but not on X .

A.1. Binary X

Writing logit p(X =1|Z)=�Z , we have

logit p(X =1|T,D, Z) = log p(X =1|T,D, Z)− log p(X =0|T,D, Z)

= �Z +D�X −H0(T )(e�X −1) exp(�Z Z) (A2)

In general, this is not a standard logistic regression because of the exp(�Z Z) term on the right-hand
side. However, if there is no Z , then we have the exact result that

logit p(X =1|T,D) = �+D�X −H0(T )(e�X −1)

= �+�X D+�′
X H0(T ) (A3)

so the correct model for imputing missing X is a logistic regression on D and H0(T ). If in
addition �X is small, the model further simplifies to logit p(X =1|T,D)=�+�X (D−H0(T )), but
this simplification is unlikely to be useful in practice, and we do not pursue it further.

More generally, in the presence of a single categorical Z , model (A2) is exactly a logistic
regression on D, Z , H0(T ) and the interaction between Z and H0(T ).

In other cases, we have no exact results. However, if we assume an exposure model logit p(X =
1|Z)=�0+�1Z and approximate exp(�Z Z)≈exp(�Z Z̄) (where Z̄ is the sample mean of Z ) in
(A2) for small var(�Z Z), we get

logit p(X =1|T,D, Z)≈�0+�1Z+D�X −H0(T )(e�X −1) exp(�Z Z̄)

suggesting imputing missing X via logistic regression on D, H0(T ) and Z . A more accurate
approximation is exp(�Z Z)≈exp(�Z Z̄){1+�Z (Z− Z̄)}, giving

logit p(X =1|T,D, Z) ≈ �0+�1Z+D�X

−H0(T )exp(�Z Z̄)(e�X −1){1+�Z (Z− Z̄)}
suggesting imputing missing X via logistic regression on D, H0(T ), Z and the interaction
H0(T )×Z .
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A.2. Normal X

We assume an exposure model X |Z ∼N(�0+�1Z ,�2), so that equation (A1) gives

log p(X |T,D, Z)=−(X−�0−�1Z)2/2�2+D�X X−H0(T ) exp(�X X+�Z Z)+const (A4)

This is not a Normal (or any other common) distribution because of the exp(�X X) term, so
we make approximations for small var(�X X+�Z Z). We first consider a linear approximation
e�X X+�Z Z ≈e�X X̄+�Z Z̄ {1+�X (X− X̄)+�Z (Z− Z̄}, so that (A4) gives

log p(X |T,D, Z)≈−(X−�0−�1Z)2/2�2+X�X (D−H0(T )e�X X̄+�Z Z̄ )+const

hence approximately

X |T,D, Z ∼N(�0+�1Z+�X�2(D−H0(T )e�X X̄+�Z Z̄ ),�2) (A5)

implying again a linear regression on D, H0(T ) and Z . A quadratic approximation for e�X X+�Z Z

gives

log p(X |T,D, Z) ≈ −(X−�0−�1Z)2/2�2+X�X (D−H0(T )e�X X̄+�Z Z̄ )

− 1
2�

2
X H0(T )e�X X̄+�Z Z̄ (X− X̄)2−�X�Z H0(T )e�X X̄+�Z Z̄ (X− X̄)(Z− Z̄)

+ f (Z) (A6)

hence X |T,D, Z is approximately Normally distributed with mean

�0+�1Z+�X�2(D−H0(T )e�X X̄+�Z Z̄ (1−�X X̄))−�X�Z�2H0(T )e�X X̄+�Z Z̄ (Z− Z̄)

1+�2X�2H0(T )e�X X̄+�Z Z̄
(A7)

and variance

�2

1+�2X�2H0(T )e�X X̄+�Z Z̄
(A8)

This is not linear in the parameters. However, ignoring terms in �2X gives a linear regression on D,
H0(T ), Z and H0(T )×Z . This approximation is valid for small �2X�2H0(T )—that is, for small
var(�X X) and/or for small H0(T )—but has too large a slope for large H0(T ).
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