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Purpose: The molecular chaperone αB-crystallin is found in high concentrations in the lens and is present in all major
body tissues. Its structure and the mechanism by which it protects its target protein from aggregating and precipitating
are not known.
Methods: Dynamic light scattering and X-ray solution scattering techniques were used to investigate structural features
of the αB-crystallin oligomer when complexed with target proteins under mild stress conditions, i.e., reduction of α-
lactalbumin at 37 °C and malate dehydrogenase when heated at 42 °C. In this investigation, the size, shape and particle
distribution of the complexes were determined in real-time following the induction of stress.
Results: Overall, it is observed that the mass distribution, hydrodynamic radius, and spherical shape of the αB-crystallin
oligomer do not alter significantly when it complexes with its target protein.
Conclusions: The data are consistent with the target protein being located in the outer protein shell of the αB-crystallin
oligomer where it is readily accessible for possible refolding via the action of other molecular chaperones.

Small heat shock proteins (sHsps) are a diverse family of
intracellular molecular chaperones that are found in all
organisms [1,2]. In humans, they are present in many tissues
at varying levels depending on the stage of development and
the level of physiologic stress. The role of sHsps in cells is
multi-faceted with their common theme of action being to
interact with and stabilize partially folded states of other
(target) proteins to prevent their aggregation and possible
precipitation, for example under conditions of environmental
stress such as elevated temperature, low pH and oxidation
[2-5]. In vitro, sHsps prevent stress-induced aggregation of a
variety of unrelated target proteins that undergo either
disordered (amorphous) or ordered (amyloid fibril) forms of
aggregation [2,6,7].

The principal eye lens protein, α-crystallin, is a sHsp that
comprises two closely related subunits, αA- and αB-crystallin,
each of which is ~20 kDa in mass. In the human lens, the two
isoforms are co-expressed in a ratio of 3:1 αA-:αB-crystallin
[8]. The two isoforms form a heterogeneous oligomeric
species of average mass of approximately 800 kDa and 150 Å
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in diameter [8]. The lens contains a very high concentration
of protein (up to 450 mg/ml in the nucleus or center of the
lens) encased in very long fiber cells. α-Crystallin is the
primary protein component of the lens and can approach 50%
of the total dry weight of the lens [9]. α-Crystallin has two
important functions in the lens. First, in a structural role, it
assists in the maintenance of short-range order in the lens
cytoplasm, ensuring proper refraction of light and
maintenance of lens transparency [10]. Second, it acts as a
molecular chaperone to maintain the solubility of the other
classes of crystallin proteins, β- and γ-crystallin. It is also
known to protect other non-crystallin lens proteins such as
sorbital dehydrogenase from both thermal aggregation and
enzyme inactivation [11]. There is no protein turnover in the
center of the lens, meaning that the crystallin proteins have to
be very long lived; α-crystallin is involved in minimising lens
protein precipitation over decades, and thereby the prevention
of lens opacification and cataract formation [12].

Outside the lens, αB-crystallin is also expressed at
significant levels [13] where it has a key role as a molecular
chaperone. For example, in addition to its role in the
prevention of cataract, αB-crystallin is of interest
extralenticularly because its expression is associated with
many other protein misfolding disorders. Thus, αB-crystallin
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is found in significant levels in the brains of patients with
Alzheimer's disease [14,15], Parkinson disease [16,17], in
multiple sclerosis [18,19], and in the ischemic heart [20]. In
vitro, αB-crystallin protects target proteins against reduction-
induced precipitation [21,22], heat-induced aggregation [6,
23], enzyme inactivation [24-26], and amyloid fibril
formation [7].

The polydispersity of α-crystallin means that its
assemblages can vary considerably in their number of
subunits. Cryo-electron microscopic (cryoEM) studies of the
αB-crystallin oligomer [27] show that it contains a spherical
protein shell of 80 to 180 Å in diameter surrounding a central
cavity measuring 30 to 100 Å in diameter, as well as a region
on the protein surface that is highly dynamic which arises from
the flexible COOH-terminal extensions [28,29]. The
heterogeneous and dynamic nature of the α-crystallin
oligomer has precluded crystal formation and thereby precise
atomic structural resolution of the protein and specific details
about its mechanism of chaperone action.

Previously, we used low-angle X-ray scattering from
solutions of extracted bovine α-crystallin on its own and in the
presence of β-crystallin to study structural changes in α-
crystallin during chaperone action as a function of
temperature [30,31]. The α-crystallin oligomer underwent
extensive structural changes and became much larger at higher
temperature, with a major transition at around 50 °C. We used
the term ‘super aggregation’ to describe the enlargement of
the α-crystallin oligomer with increasing temperature. Our
results were consistent with earlier transmission electron
microscopy, circular dichroism and non-denaturing gel
electrophoresis studies of α-crystallin [32]. Interestingly, we
also found that below 50 °C, a weak interaction occurred
between α-crystallin and β-crystallin implying that the β-
crystallin subunits may be transiently localized in the exterior
fenestrations and/or the central cavity of the α-crystallin
oligomer that have been described from electron microscopic
studies of αB-crystallin. At higher temperatures (i.e., under
conditions of partial unfolding of β-crystallin), the β-crystallin
subunits were most likely bound to the surface of the α-
crystallin oligomer [31]. Our recent neutron scattering studies
on the interaction of the target protein γE-crystallin with α-
crystallin at 65 °C have provided further insight into the
location of the target protein when interacting with α-
crystallin under chaperone conditions. Under these relatively
harsh stress conditions, the data are consistent with γE-
crystallin binding in the central cavity of the α-crystallin
oligomer [33].

Our previous X-ray solution scattering experiments used
extracted bovine α- and β-crystallins, both of which are
comprised of several isoforms. While such experiments are
relevant to the in vivo situation in the eye lens, they do not
reflect of the situation in other tissues where only αB-
crystallin is found. Furthermore, ascribing the observed

experimental structural changes to particular species in such
multi-component mixtures is difficult. Thus, the purpose of
this study was to examine the interaction of recombinant αB-
crystallin with the well characterized target proteins, α-
lactalbumin (α-LA) and malate dehydrogenase (MDH). α-LA
is a small monomeric milk protein (mass approximately
14 kDa) that has four disulphide bonds in its native state.
When these bonds are reduced, α-LA forms an intermediately
folded (molten globule) state that aggregates and precipitates
out of solution [34-36]. The precipitation of α-LA can be
prevented by a sufficient quantity of αB-crystallin [34-36].
α-LA is an attractive target protein to study as its folding
pathway, and its various intermediate states, have been well
characterized. There have also been a variety of biophysical
studies undertaken on the interaction of reduced α-LA with
αB-crystallin including our detailed real-time spectroscopic
and biophysical investigations in which we showed that αB-
crystallin interacts with reduced, partially folded, monomeric
α-LA to prevent its aggregation and precipitation [34-36]
During this interaction, αB-crystallin acts on the destabilized
molten globule form of α-LA, which consequently retains
some secondary structure within the complex formed with the
chaperone protein [34-36]. Malate dehydrogenase (MDH) is
an enzyme involved in the citric acid cycle that catalyzes the
conversion of malate to oxaloacetate and exists as a dimeric
or tetrameric enzyme comprised of identical subunits each of
mass between 30 and 35 kDa [37]. Under mild thermal stress,
MDH partially unfolds, aggregates and precipitates and
therefore has been used as a target protein to investigate the
chaperone activity of both α-crystallin and αB-crystallin
[26,38].

Here we describe, for the first time, the use of X-ray
solution scattering to investigate the complex formed between
αB-crystallin and its target proteins α-LA and MDH. In
addition, we have used dynamic light scattering (DLS) to
characterize the size of the complex formed between αB-
crystallin and α-LA. The X-ray scattering and DLS
experiments enabled real-time measurements to be made of
the structural alterations that occur when αB-crystallin
interacts with reduced α-LA to prevent its aggregation and
precipitation. Overall, the α-LA data presented herein are
consistent with our previous studies [36] and the cryoEM
studies of Stewart and coworkers [3,27,38]. We find that the
size of the αB-crystallin oligomer is very similar to that
determined from cryoEM measurements and that, in the
complex formed between αB-crystallin and α-LA, the data are
consistent with α-LA being located in the outer protein shell
of the αB-crystallin oligomer. Similarly, from the light and X-
ray scattering experiments of the interaction of thermally
stressed MDH with αB-crystallin, we were able to monitor
structural changes in real time of the proteins during
chaperone interaction and conclude that a similar mode of
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interaction occurs as between reduced α-LA and αB-
crystallin.

METHODS
The vector pET24d(+) (Novagen, Madison, WI) containing
the gene for expression of human αB-crystallin was a gift from
Professor W. Boelens (University of Nijmegen, Netherlands).
Human recombinant αB-crystallin was expressed and purified
as described previously [39]. Calcium-depleted bovine α-LA
and MDH (mitochondrial from porcine heart) were purchased
from Sigma (Gillingham, UK). All other chemicals were of
the highest grade.

Light scattering and dynamic light scattering monitoring
of the chaperone action of αB-crystallin against reduced α-
LA: Aggregation assays of αB-crystallin and α-LA were
undertaken using methods outlined previously [22,35,36].
Briefly, α-LA (2 mg/ml) was dissolved in 50 mM phosphate
buffer, 100 mM NaCl, 2.5 mM EDTA at pH 7.2, and incubated
at 37 °C. Dithiothreitol (DTT, 20 mM) was added to the
solution to induce reduction, unfolding and aggregation of the
protein. Light scattering at 340 nm was monitored over time
using a Cary 5000 UV/Vis/NIR spectrophotometer (Varian,
Melbourne, Australia). The DLS measurements were
recorded using a Zetasizer Nano ZS (Malvern Instruments,
Worcestershire, UK). Accumulation times for each sample
were determined automatically, and the temperature was
controlled at 37.0 °C±0.1. The inbuilt software used the
correlation function to calculate the z-average (intensity
mean) hydrodynamic diameter (DH) and the translational
diffusional coefficient (DT). The distributions of
hydrodynamic diameters were calculated according to the
Stokes-Einstein equation:

DH = kT / 3πηDT Equation 1

where k is the Boltzmann constant, T is the absolute
temperature, and η is the solvent viscosity. The diameter
measurements were converted to measurements of the
hydrodynamic radius (RH) for ease of comparison with the
radius of gyration (Rg) measurements determined from the X-
ray solution scattering data.

Light scattering monitoring of the chaperone action of
αB-crystallin against heat-stressed MDH: Solutions
containing 50 mM phosphate buffer, 100 mM NaCl, 2.5 mM
EDTA at pH 7.5 were used. Two solutions were studied; the
first contained 0.25 mg/ml MDH only, and the second
contained 0.25 mg/ml MDH and 0.1 mg/ml αB-crystallin, i.e.,
a 2.5:1.0 w:w ratio of MDH: αB-crystallin. These
concentrations are consistent with previous MDH and α-
crystallin chaperone studies [26,38]. The solutions were
placed in 1 ml quartz cuvettes pre-heated to 42 °C in a Digilab
Hitachi U-2800 spectrophotometer for 112 min and light
scattering was measured at a wavelength of 360 nm The
solutions were left for 5 min to equilibrate at 42 °C, as

measured by a thermocouple (Cormark electronics Ltd.,
Littlehampton, UK).

X-ray solution scattering measurements: Low-angle X-
ray solution scattering experiments were conducted at two
synchrotrons. Initially, beamline X33 at the European
Molecular Biology Laboratory (EMBL) of the Deutsches
Elektronen Synchrotron (DESY), Hamburg, Germany, was
used. The wavelength was λ=1.5 Å, with a sample to detector
distance of 2.4 m. covering a scattering range of 0.09 nm−1

<q<4.98 nm−1 (q=4π sinθ/λ). The detector was calibrated
using the in-house EMBL software. Experiments were also
undertaken at Station 2.1 of the Daresbury Synchrotron
Radiation Source, Warrington, UK. The camera length was
5.25 m,  with a  corresponding  scattering  range  of  0.00056

−1<q<9.72 nm−1.   The  wavelength  was   λ=1.5  Å  and  the
detector was calibrated using hydrated rat tail tendon.

As with the light scattering assays, all experiments were
performed in 50 mM phosphate buffer, 100 mM NaCl,
2.5 mM EDTA at pH 7.2. After an initial X-ray exposure, DTT
was added (to a final concentration of 20 mM) to the solutions
containing α-LA alone (2 mg/ml) and α-LA combined with
αB-crystallin, and the samples were monitored with time.
Samples containing mixtures of αB-crystallin and α-LA were
prepared at 1:0, 1:1, and 1:10 w:w ratios, giving protein
concentrations of 2 mg/ml αB-crystallin:0 mg/ml α-LA, 2 mg/
ml αB-crystallin:2 mg/ml α-LA, and 2 mg/ml αB-crystallin:
0.2 mg/ml α-LA, respectively. From our previous X-ray
solution scattering studies [30,31], we found that the optimum
signal to noise ratio of α-crystallin and target protein is
achieved with concentrations between 2 and 4 mg/ml. An
initial X-ray exposure was acquired before the addition of
DTT, then every 8 min for a total time of 136 min. The
temperature was maintained at 37 °C.

For the MDH studies, X-ray exposures were taken every
8 min for a total of 112 min for solutions containing 2 mg/ml
of MDH in the absence and presence of 2 mg/ml αB-crystallin
in the same buffer as per the light scattering experiments. The
temperature was maintained at 42 °C.

For both sets of experiments, the exposure times were 60
s each, and the temperature was kept constant with a
thermostated circulating bath pumping fluid through the
sample holder.

The X-ray data were recorded and analyzed using the
PRIMUS software package [40]. In all cases, sector
integrations were performed with the origin at the position of
the direct beam masked by the backstop. This method
improves the signal-to-noise ratio at higher scattering angles,
which is of particular significance for weakly scattering
samples such as proteins in solution. All intensity profiles
were corrected for background scattering. In all experiments,
Guinier analysis was used to determine the average radius of
gyration (Rg) of the protein aggregates as a function of
temperature following our earlier work [30,31]. The Rg value

Molecular Vision 2010; 16:2446-2456 <http://www.molvis.org/molvis/v16/a262> © 2010 Molecular Vision

2448

 nm

http://www.molvis.org/molvis/v16/a262


is derived from the Guinier region of the solution scattering
X-ray intensity profiles. Such regions were used to fit the
Guinier approximation Equation [41].

I  =  I0 exp( − 4p2 S 2 Rg 2 / 3)  Equation 2

Where, I is the scattered intensity and I0 the forward scattering
intensity and S is inverse space. The Rg value is the root mean
square distance of the electrons of the molecules in solution
from the centers of their electronic masses and, therefore, is a
measure of the overall size of the molecules. All Rg values
were found using PRIMUS software and satisfied the Guinier
condition of Rg q≤1.3. The ratio of Rg and RH, the
hydrodynamic radius, leads to the dimensionless parameter
ρ, i.e.

ρ =  Rg  /  RH        Equation 3

which is strongly dependent on the shape of the molecule
[42].

RESULTS
αB-crystallin and α-LA:

Light scattering experiments—When reduced with
DTT, α-LA (2 mg/ml) at 37 °C underwent amorphous
aggregation and precipitation as monitored by light scattering
at 340 nm (Figure 1). There was a lag phase of ~30 min
followed by an exponential increase in light scattering over
the remaining 200 min. The addition of αB-crystallin at a 1:1
w:w ratio of α-LA: αB-crystallin completely suppressed this
increase in light scattering indicating that the chaperone
prevents the precipitation of α-LA. Under these conditions,
very similar behavior was observed in previous studies of the
interaction between these two protein [22,43]. αB-Crystallin
interacts in a chaperone manner with partially unfolded,
reduced and monomeric α-lactalbumin forming a complex
with it and thereby preventing its large-scale aggregation and
precipitation. Our previous work has shown that complexation
between the two proteins is established very quickly following
the addition of DTT [34-36].

As monitored by DLS, the Z-average hydrodynamic
radius of all α-LA particles in solution, when incubated in the
absence of αB-crystallin increased immediately following the
addition of DTT (i.e., there was no discernable lag phase;
Figure 1). The lack of a lag phase in the DLS measurements
compared to monitoring α-LA aggregation by light scattering
at 340 nm (Figure 1) is reflective of the ability of DLS to detect
very small changes in particle size that do not result in
detectable levels of light scattering. As shown in Figure 2, the
DLS measurements also allow for the determination of the
RH value of individual peaks that contribute to the Z-average
hydrodynamic radius, as well as the heterogeneity of each
peak (as determined from the width of each peak at its base).
The Z-average hydrodynamic radius of α-LA particles present

in solution increased over the time-course of the assay, from
~40 Å (after 3 min, the first reading after DTT was added) to
860 Å by the end of the assay (150 min; Figure 1). When the
individual components that contribute to this Z-average radius
were examined, this increase was observed to be due to the
formation of increasingly large and polydisperse mixtures of
α-LA aggregates with RH values>1000 Å (Figure 2B).

The Z-average hydrodynamic radius of αB-crystallin
alone in solution was 85±18 Å. The αB-crystallin oligomers
were found to range in size from a RH value of ~50 Å to 190
Å (based on the width of the peak at its base, see Figure 2A).
When αB-crystallin was added to DTT-treated α-LA at a 1:1
w:w ratio, i.e., conditions under which large scale aggregation
of α-LA is prevented (Figure 1), there was a small increase in
the Z-average radius of the solution from 82 Å to 100 Å over
the first 60 min which then remained constant for the
remaining 90 min of the assay (Figure 1). Figure 2C, which
shows the size of the particles in solution, indicates that at 50
min there were two predominant species present in the 1:1
mixture of α-LA: αB-crystallin, i.e., a smaller sized aggregate
(RH ~100 Å with a peak width from 40 Å to 300 Å) and a
minor, larger-sized aggregate (RH>750 Å). In their studies of
the interaction of α-LA and α-crystallin under reduction
conditions, Bettleheim et al. [44], also observed these two
different populations and demonstrated, using size exclusion
HPLC and SDS–PAGE, that the peak at ~100 Å represents
the complex formed between αB-crystallin and α-LA and that
the larger peak (RH>750 Å) is attributable to aggregated α-LA
alone. Interestingly, the investigations here show that when
αB-crystallin was present, the larger-sized aggregate of α-LA

Figure 1. Monitoring the DTT-induced amorphous aggregation of
α-LA by light scattering at 340 nm (solid symbols) and dynamic light
scattering (open symbols). In both experiments α-LA (2 mg/ml) was
incubated at 37 °C in 50 mM phosphate buffer, 100 mM NaCl, 2.5
mM EDTA at pH 7.2 with 20 mM DTT, in the absence (squares) or
presence (triangles) of αB-crystallin (1:1 w:w ratio of α-LA: αB-
crystallin). The change in light scattering at 340 nm is shown on the
left y-axis and the Z-average hydrodynamic radius of particles (Z-
average radius, Å) measured by DLS over time is shown on the right
y-axis.
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remained of similar size for the remainder of the assay.

Figure 2. Dynamic light scattering measurements of the changes in
the distribution of particle sizes (hydrodynamic radii, RH) during the
DTT-induced aggregation of α-LA at 37 °C in the absence and
presence of αB-crystallin over time. The plots show the relative light
scattering intensities (%) of particles of increasing RH (Å) for A αB-
crystallin + DTT alone, B DTT-reduced α-LA alone, and C DTT-
reduced α-LA in the presence of αB-crystallin (1:1 w:w ratio of α-
LA: αB-crystallin). Particle distributions are shown for 0 min (black),
50 min (dark gray), 100 min (light gray) and 150 min (white)
following addition of DTT. The RH values used in deriving ρ (see
Discussion) are based on the weighted mean of the major peaks in
A and C.

Moreover, the amount of this α-LA aggregate, as a proportion
of the total number of particles in solution, remained small
(i.e., ~14%; Figure 2C) unlike when the chaperone was not
present (Figure 2B), where the large aggregates (RH>1000 Å)
represented most (i.e., >95%) of the particles in solution.

X-ray scattering experiments—X-ray scattering
experiments of αB-crystallin and α-LA solutions on their own
and initially without the addition of DTT, each at 2 mg/ml,
gave Rg values of 58.2 (±0.1) Å and 22.4 (±0.2) Å
respectively. The large difference in Rg values between the
two proteins is consistent with the much greater size of the
αB-crystallin oligomer (~650 kDa in mass) compared to the
α-LA monomer (~14 kDa). Figure 3 shows the X-ray intensity
scattering profiles of reduced α-LA, 32 and 72 min after the
addition of DTT. To highlight the scattering features at higher
angles, the intensity is plotted on a logarithmic scale. The
increase in the X-ray intensity at low angles with time is an
indication of aggregation [30,31]. From Figure 3, it is apparent
that in the region beyond q=2, the X-ray data become noisy
and imprecise. In monodisperse systems, this is the region
where information is obtained from the particle shape and
Fourier transform and a shape reconstruction may be
performed. One obvious result of the large amount of noise in
the data in this region of Figure 3 is that Fourier transforms
from different-sized aggregating particles are overlaid and
smear out the data meaning that shape reconstruction is not
feasible, as is also the case in the polydisperse αB-crystallin
and α-LA mixtures under reducing conditions (data not
shown).

The initial Rg value of reduced α-LA (from data acquired
as soon as possible after addition of DTT) is 26.9 (±0.2) Å
which exhibits a steady increase with time (particularly after
50 min associated with the formation of large light scattering
aggregates, Figure 1) to a value of 108.0 (±0.2) Å at 104 min
and 185.0 (±0.6) Å after 136 min (Figure 4). In contrast, the

Figure 3. The X-ray intensity profiles plotted against the inverse
space (q) of α-LA at 37 °C, 32 min (black) and 72 min (gray) after
the addition of DTT.
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solution containing αB-crystallin and reduced α-LA at a 1:1
w:w ratio showed only a slight increase in the Rg value from
55.1 (±0.1) Å initially to 60.4 (±0.1) Å 104 min after addition
of DTT (Figure 4), through to a value of 78.2 (±1.1) Å at 136
min after addition of DTT, i.e., significantly lower than that
measured for α-LA in the absence of αB-crystallin. From our
previous work [34,36], it is well established that under these
conditions and time frame, αB-crystallin is an efficient
chaperone for reduced α-LA (see Figure 1) whereby it
interacts and complexes with α-LA to prevent it from
aggregating. Thus, these Rg values correspond to the complex
formed between the two proteins and are not simply due to
averaging of the Rg values of the two components present.
Evidence for this is that if the Rg values simply reflected an
averaging of the two components, they would increase greatly
over time due to the unfolding and aggregation of the reduced
α-LA.

The initial Rg value of the solution containing a 1:10 w:w
ratio of the αB-crystallin and α-LA mixture was 37.4 (±0.2)
Å, which, because of the excess of α-LA, was much lower
than the initial Rg value (55.1 [±0.1] Å) of the 1:1 w:w ratio
(Figure 4). The Rg values for the 1:10 mixture then increased
significantly with time following addition of DTT, reaching a
value of 133.0 (±1.4) Å after 136 min, which is consistent with
the inability of αB-crystallin to function efficiently as a
chaperone for reduced α-LA at this sub-stoichiometric ratio
[36]. As a result, significant aggregation and precipitation of
reduced α-LA occurs, as we have previously demonstrated
[34,36].

Figure 4. The variation in the radius of gyration (Rg) with time after
the addition of 20 mM DTT to α-LA (squares), and in the presence
of αB-crystallin at a 1:1 (triangles) and 1:10 (diamonds) w:w ratios
to α-LA. The standard deviations associated with these data, which
represent the standard deviation from the line of best fit in the Guinier
region, are too small to be distinguished in this plot. The Rg values
used in deriving ρ (see Discussion) are taken from the final Rg values
in this plot.

Figure 5 shows Kratky plots at the start and end of the X-
ray solution scattering experiments for αB-crystallin alone
(Figure 5A), α-LA plus DTT (Figure 5B,C), αB-crystallin plus
α-LA at the 1:1 w:w ratio (Figure 5D,E) and αB-crystallin plus
α-LA at the 1:10 w:w ratio (Figure 5F,G). For these Krakty
plots, the X-ray intensity scattering profiles (Figure 3) are
plotted as Ixq2 against q, where I is the scattered intensity and
q=4π sinθ/λ. As can be seen in Figure 5A, αB-crystallin alone
shows a peak centered around q=0.3. The presence of such a
peak indicates that the majority of particles in solution are
globular [45] and therefore approximately spherical in shape.
From Figure 5B,C, it is apparent that α-LA loses its globular
structure upon unfolding, aggregation and precipitation
associated with the reduction of its four disulfide bonds and
the adoption of a molten globule conformation [34,36]. As a
result, the peak centered at q=0.7 at 0 min in its Kratky plot is
lost by 136 min after addition of DTT. By contrast, the
presence of a peak at q=0.3 in the plots at 136 min for the
αB-crystallin plus α-LA mixtures at both the 1:1 and 1:10 w:w
ratios (Figure 5E,G) clearly indicates that, under both
conditions, the αB-crystallin/α-LA complex has a spherical
shape.
αB-crystallin and ΜDΗ:

Light scattering experiments—The chaperone activity
of αB-crystallin in solution under mild heating conditions at
42 °C was investigated with MDH as the target protein. Figure
6 shows that the light scattering of MDH with time at 42 °C
is exponential following a lag period of 15 min. By contrast,
the light scattering of a 2.5:1.0 w:w solution of MDH:αB-
crystallin shows only a very minimal increase over the same
time period, demonstrating that αB-crystallin acts as a
molecular chaperone to prevent the temperature-induced,
partial unfolding and aggregation of MDH.

X-ray scattering experiments—Figure 6 also shows the
Rg value for MDH alone and for a 1:1 w:w mixture with αB-
crystallin during incubation at 42 °C. The initial Rg value of
ΜDΗ is 47.7 (±0.3) Å which exhibits a steady increase with
time to a value of 59.9 (±0.4) Å at 48 min. The Rg value then
increases rapidly to 71.1 (±0.5) Å at 56 min, After this, the
Rg value increases further to 83.9 (±0.8) Å at 104 min. The
initial Rg value of a 1:1 w:w mixture of MDH and αB-
crystallin is 53.8 (±0.1) Å. As with the mixture of α-LA and
αB-crystallin, this value is lower than that for αB-crystallin
alone (58.2 [±0.1] Å), which is explained by the smaller MDH
molecules causing a reduction in the average Rg value for both
proteins in solution. At the initial time point, it is unlikely that
the two proteins strongly interact as the MDH molecules will
not have unfolded to any significant degree. After a sufficient
period of time under thermal stress, MDH and αB-crystallin
form a complex [38]. During the first 48 min at 42 °C, the
Rg value of the mixture increases to 60.1 (±0. 3) Å and then
more slowly to a value of 65.6 (±0.4) Å after 112 min.
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DISCUSSION
αB-Crystallin is a member of the sHsp family that shares a
conserved approximately 90 amino acid ‘α-crystallin’ domain
and acts as a molecular chaperone protein by preventing the
stress-induced aggregation and precipitation of target
proteins. Crystallographic structures of two non-metazoan
sHsps are available [1,46] along with the structure of a sHsp
from a flatworm, Tsp36 [47]. Recently, the crystal structure
of the mammalian ‘α-crystallin’ domain has been solved
[48]. Several structural similarities exist between these sHsps,
most notably for the two non-metaozoan sHsps, which are
both approximately spherical aggregates with a large central
cavity. The αB-crystallin oligomer also has a cavity at its
center, as determined by EM studies [27,49,50], and as was
predicted by simple consideration of mass distribution in the
aggregate [51]. The conclusions from the cryoEM studies
agree very well with those derived from the solution-based

Figure 5. X-ray intensity profiles plotted against I*q2. Kraty plots are
shown for A αB-crystallin alone, α-LA + DTT at B 0 min, and C 136
min, αB-crystallin plus α-LA at a 1:1 w:w ratio at D 0 min and E 136
min, and αB-crystallin plus α-LA at a 1:10 w:w ratio at F 0 min and
G 136 min.

DLS and X-ray scattering data presented herein for the αB-
crystallin oligomer. The mass of the αB-crystallin monomer
is ~20 kDa and the cryoEM data were acquired on samples
which contained αB-crystallin oligomers of mass around
650 kDa, i.e., comprising approximately 32 subunits [49]. The
cryoEM data indicate that the diameter of the αB-crystallin
oligomer is 147 (±28) Å, i.e., a radius of 74 (±14) Å [49]. In
agreement with these values, from our DLS studies (Figure
2), we found that αB-crystallin has a Z-average hydrodynamic
radius (RH) of 85±18 Å, which is also very similar to that
previously reported for the α-crystallin oligomer (comprising
both the αA- and αB-crystallin subunits) as measured by DLS
[44]. Thus, these experimental techniques all gave very
similar results with respect to the size of αB-crystallin
oligomer.

The DLS and X-ray solution scattering data for reduced
α-LA and its 1:1 w:w mixture with αB-crystallin imply that
αB-crystallin interacts with destabilized, partially unfolded
α-LA molecules early on in the latter’s aggregation (off-
folding) pathway, i.e., well before large scale aggregation
occurs for reduced α-LA. These findings support our previous
conclusions determined from NMR studies of the interaction
of these two proteins [34-36]. Our present data confirm that
the interaction between the two proteins is established very
quickly following addition of DTT since there is no significant
change in the Rg and RH values with time from those obtained

Figure 6. Monitoring the thermally-induced amorphous aggregation
of MDH by light scattering at 360 nm (solid symbols) and SAXS
(open symbols). In both experiments a 2 mg/ml solution of MDH
was incubated at 42 °C in 50 mM phosphate buffer, 100 mM NaCl,
2.5 mM EDTA at pH 7.5 in the absence (squares) or presence
(triangles) of αB-crystallin (2.5:1.0 w:w ratio of MDH and αB-
crystallin for the light scattering experiments and a 1.0:1.0 w:w ratio
of MDH and αB-crystallin for the SAXS experiments). The change
in light scattering at 360 nm is shown on the left y-axis and the radius
of gyration of the samples over time is shown on the right y-axis. The
standard deviations associated with the SAXS data, which represent
the standard deviation from the line of best fit in the Guinier region,
are too small to be distinguished in this plot.
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immediately after the addition of the reducing agent. For
example, the DLS measurements indicate that reduced α-LA
and αB-crystallin form a stable complex (of RH ~100 Å) within
the dead time of the experiment (~5 min), and this prevents
the increase in α-LA aggregate size that leads to precipitation
when the chaperone is absent. Bettleheim et al. [44] reported
similar results for the interaction of α-crystallin with reduced
α-LA. In addition, in the presence of αB-crystallin, the larger
α-LA aggregate (RH>750 Å) does not continue to grow in size,
as occurred when the chaperone was absent (compare Figure
2B and Figure 2C), and it constitutes only a small percentage
of the total number of particles in solution. These large
particles are most likely too few in number to be detected by
light scattering at 340 nm (due to its decreased sensitivity
compared to DLS) and therefore a change in light scattering
is not observed when α-LA is incubated in the presence of
αB-crystallin. Higher concentrations of α-crystallin
completely suppress the formation of this aggregated form of
α-LA [44,52].

Other spectroscopic and biophysical studies on this
system have also come to the conclusion that αB-crystallin
acts early on to prevent the aggregation of destabilized α-LA
molecules [34-36]. The X-ray solution scattering data for a
1:10 w:w ratio mixture of αB-crystallin:α-LA show that time-
dependent aggregation of this mixture (as monitored by the
change in Rg values) is only slightly inhibited compared to
the situation with α-LA on its own where large-scale
aggregation occurred. By contrast, time-dependent
aggregation was almost completely absent at a 1:1 w:w ratio
of the two proteins (Figure 1,Figure 2, and Figure 4). The
rationale for these observations is that at a sub-stiochiometric
1:10 w:w ratio, αB-crystallin is not capable of completely
suppressing reduced α-LA aggregation whereas it does so
very effectively at a 1:1 w:w ratio [36].

Interestingly, our DLS studies showed that the size of the
αB-crystallin-α-LA complex (i.e., a RH value of 100±22.5 Å)
was similar to that of the αB-crystallin oligomer alone (a RH

value of 85±18 Å) although the target protein-chaperone
complex was more heterogeneous (compare Figure 2A and
Figure 2C). In support of our DLS measurements, cryoEM
images of the αB-crystallin-α−LA complex also show that it
is comparable in size to the αB-crystallin oligomer (see Figure
7 in Haley et al. [53] and Figure 2 in Horwitz [3]), i.e., the
radius of the αB-crystallin-α-LA complex was found to have
a range of 65 to 100 Å (P. Stewart, Vanderbilt University,
Nashville, TN personal communication) compared to that of
the αB-crystallin oligomer itself of 40 to 90 Å [27,53].
Horwitz et al. [39], also found no significant difference in the
size of the αB-crystallin-α−LA complex (compared to the
αB-crystallin oligomer alone) by gel filtration
chromatography. By contrast, at the end of the X-ray
scattering experiment we found that the 1:1 w:w mixture of
reduced α-LA and αB-crystallin had a Rg value of 78.2 (±1.1)
Å (compared to αB-crystallin alone (58.2 [±0.1] Å). In

agreement with the latter value, Skouri-Panet et al. [54] used
SAXS to examine the temperature and pressure-dependent
changes in the structure of sHsps and found that a 3.7 mg/ml
solution of αB-crystallin had a Rg value of 61 Å at 23 °C, in
a solution containing a phosphate buffer at pH 6.8. On the
other hand Spinozzi et al. [55] found the Rg value to be 52 Å
in a solution containing a TRIS buffer. The slight variation in
Rg values between this study and ours most likely arises from
the different buffer conditions used since the size of the αB-
crystallin oligomer is dependent on solvent conditions [56].

Intuitively, one would expect that an association between
the two proteins during sHsp chaperone action would lead to
the formation of a complex with an increased size, yet these
data indicate that, while being more polydisperse, there is no
significant increase in the size of the αB-crystallin-α-LA
complex compared to the αB-crystallin oligomer alone, but
there is an increase in the Rg value of the complex. To
rationalise the DLS, cryoEM and X-ray solution scattering
data, one must consider the parameter ρ, which relates the
radius of gyration (Rg) with the hydrodynamic radius (RH; see
Equation 3) and describes the distribution of mass and shape
of the molecule. The calculated standard deviation of ρ is 22%
due to the polydispersity of the αB-crystallin oligomer and the
αB-crystallin-α−LA complex and therefore the range in RH

values of these particles in solution. Based on the DLS and X-
ray solution scattering data at 150 min, the ρ value for αB-
crystallin alone is 0.68±0.14 (i.e., Rg=58.2±0.1 Å and
RH=85±18 Å) and for the αB-crystallin-α−LA complex, ρ is
0.78±0.18 (i.e., Rg=78.2±1.1 Å and RH=100±22.5 Å). Thus,
due to the heterogeneity of the two systems, the parameter ρ
is the same and corresponds to a value approximating that of
a solid sphere (i.e., ρsolid sphere ≈0.76, ρhollow sphere ≈1.0) [42,57].

In other words, the distribution, size and shape of the
αB-crystallin oligomer are very similar whether it is has bound
target protein or not, since the hydrodynamic radius (RH,
Figure 1 and Figure 2) and spherical shape (ρ value and Kratky
plots, Figure 5) are not significantly altered upon complex
formation between αB-crystallin and α-LA. Our finding that
the globular (spherical) shape of αB-crystallin oligomer is
retained following formation of a complex with α-LA (see
Figure 5) is consistent with previous cryo-EM studies [53].
During chaperone action, this most likely arises from
positioning the reduced α-LA molecules on the surface of the
αB-crystallin aggregate [3,39,53] i.e., within the oligomer’s
protein shell. The partially folded α-LA molecules could be
located in the fenestrations that are on the surface of the αB-
crystallin oligomer [31] and the non-mammalian sHsp
oligomers [1,46,57]. As a result, the target protein would be
readily accessible for refolding via the action of other
molecular chaperones (e.g., Hsp70), in a process that requires
ATP hydrolysis, when cellular conditions allow [58]. The
dynamic, flexible and malleable nature of the αB-crystallin
oligomer, particularly on its surface where the flexible
COOH-terminal extensions are located [28,29,51] would
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facilitate the incorporation of the target protein (in this case
α-LA) within its outer protein shell [5,59]. Indeed, our NMR
studies show that the flexibility of the COOH-terminal
extension is altered significantly upon binding of α-LA [60]
implying that the extensions and bound α-LA molecules are
localized nearby to each other. Stengel et al. [61] have recently
used sophisticated mass spectrometry methods to investigate
the oligomeric states of a non-mammalian sHsp, pea Hsp18.1,
when interacting with a target protein, luciferase, under mild
temperature stress. Unlike αB-crystallin, Hsp18.1 adopts a
well defined oligomer (a 12-mer) in the absence of target
protein at room temperature. Upon chaperone interaction with
luciferase, however, Hsp18.1 forms a highly heterogeneous
range of complexes containing different stoichiometries of
luciferase and Hsp18.1. It is proposed that this temperature-
induced heterogeneity of Hsp18.1 facilitates its interaction
with a range of target proteins and also enables the target
proteins to be readily accessible for refolding upon
complexation. For αB-crystallin, the polydispersity is already
present at physiologic temperatures which enables it to readily
interact with target proteins in the absence of temperature
stress. As a result, αB-crystallin is ‘primed’ for interaction
with a diversity of target proteins. Indeed, X-ray
crystallography has recently revealed that the polydispersity
of αB-crystallin is facilitated by the presence of a nine amino
acid palindromic sequence centered around P160 of the
COOH-terminal region that participates in inter-subunit
interactions via alignment in both directions of its sequence
in both directions [62].

Similar results were observed in comparing the X-ray
scattering results (Rg values versus time) for the two target
proteins (α-LA and MDH) in the presence of αB-crystallin
(Figure 4 and Figure 6, respectively). Thus, the interaction
between the target proteins and αB-crystallin under different
mild stress conditions (reduction at 37 °C and heating at 42 °C)
leads to a stable complex that has a Rg value that varies little
with time and is not significantly different to that of the αB-
crystallin oligomer on its own. It is concluded that the
arguments presented above for the interaction of α-LA with
αB-crystallin also apply for the interaction of MDH with αB-
crystallin.

Using small-angle neutron scattering (SANS)
experiments in conjunction with isotopic substitution and
contrast matching techniques, we recently investigated the
interaction of a lens target protein, γE-crystallin, with bovine
α-crystallin, under harsh thermal stress, i.e., 65 °C [33]. Under
these conditions, we concluded that at γE-crystallin is located
within the central cavity of the α-crystallin oligomer. As
discussed above, 65 °C is well above the temperature at which
α-crystallin undergoes a major rearrangement of its
secondary, tertiary and quaternary structures which, coupled
with the protein’s inherent dynamism and its porous nature
due to the ‘fenestrations’ on its surface [27,30,49,50], would
facilitate ready access of target proteins to the central cavity

of the α-crystallin oligomer. Thus, α-crystallin may have
different protective chaperone mechanisms depending on the
stress conditions, i.e., the target protein can either bind within
the central cavity or to the surface of the outer shell depending
on external environmental factors, including the size of the
target protein and whether the target protein is aggregating
amorphously or to form amyloid fibrils, the pH, the type of
stress (e.g., reduction or elevated temperature), the rate of
target protein aggregation and the temperature. Indeed, our
studies have shown the importance of these factors in
determining the efficiency of chaperone action of αB-
crystallin against target proteins [23,59,63,64].
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