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Abstract: Understanding the secondary structure of peptides is important in protein folding,
enzyme function, and peptide-based drug design. Previous studies of synthetic Ala-based peptides

(>12 a.a.) have demonstrated the role for charged side chain interactions involving Glu/Lys or

Glu/Arg spaced three (i, i 1 3) or four (i, i 1 4) residues apart. The secondary structure of short
peptides (<9 a.a.), however, has not been investigated. In this study, the effect of repetitive Glu/Lys

or Glu/Arg side chain interactions, giving rise to E-R/K helices, on the helicity of short peptides

was examined using circular dichroism. Short E-R/K–based peptides show significant helix
content. Peptides containing one or more E-R interactions display greater helicity than those with

similar E-K interactions. Significant helicity is achieved in Arg-based E-R/K peptides eight, six, and

five amino acids long. In these short peptides, each additional i 1 3 and i 1 4 salt bridge has
substantial contribution to fractional helix content. The E-R/K peptides exhibit a strongly linear

melt curve indicative of noncooperative folding. The significant helicity of these short peptides with

predictable dependence on number, position, and type of side chain interactions makes them an
important consideration in peptide design.
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Introduction

Understanding and modifying secondary structure in

peptides is necessary in understanding protein fold-

ing,1 in engineering proteins,2 and in designing enzy-

matic targets.3 Since the discovery of significant helic-

ity in the 13 amino acid C-peptide from ribonuclease

A,4,5 there has been a considerable amount of research

on helicity of de novo peptides. Peptides ranging from

12 to 30 residues have been studied to understand the

interplay between side chain interactions, the helix

dipole, and the intrinsic helix-forming ability of each

amino acid.6 This research has revealed that Ala-

based peptides show substantial helix formation, as

Ala has a high helix propensity.7

Ala-based peptides have been used to look at

side chain interactions, such as Glu with Lys (E/K)

salt bridges which form stabilizing i ! i þ 3 and

i ! i þ 4 interactions.8 In Ala-based peptides con-

taining i ! i þ 4 E/K salt bridges (EAAAK)n, replac-

ing Lys with Arg was found to enhance the helical

content of the peptides.9 Studies were also done to

examine peptides (�16 amino acids) that have repet-

itive Glu-Lys and/or Glu-Arg interactions (which we

refer to as the E-R/K motif). For example, Lyu

et al.10 examine one 18-residue peptide consisting of

a repeating motif of four negatively charged Glu res-

idues followed by four positively charged Lys resi-

dues. This motif of four Glu residues followed by a
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combination of four Lys and/or Arg residues has

been found in a variety of proteins, including caldes-

mon,11 myosin X, and myosin VI.12,13 It has been

shown to form long (up to 30 nm), single, stable, and

relatively rigid helices (persistence length ¼ 15 nm)

in various proteins.14–16

Experimental measurement of helicity using cir-

cular dichroism of peptides has been used in con-

junction with statistical mechanics models of helix–

coil transition17,18 to develop prediction programs for

the helicity of peptides. The original Zimm and

Bragg19 and Lifson and Roig20 models described the

helix–coil transition as a two-step process with helix

nucleation followed by helix propagation or elonga-

tion. These theories were modified in subsequent

studies to include side chain–side chain interac-

tions10 and peptide-capping effects.21 Currently, one

of the models, AGADIR, has been benchmarked

against the largest selection of peptide sequences.22

AGADIR is an algorithm that is based on helix–coil

theory but modified to incorporate experimentally

derived parameters.18 The algorithm attempts to

obtain an energetic description of the system by

splitting the conformational energy of the peptide

into a sum of energies: intrinsic helical tendencies of

each residue, main chain–main chain hydrogen

bonding, side chain–side chain interactions, helical

dipole effects, and effects of nonhelical residues.22

While AGADIR predicts the helicity for peptides

greater than one helical turn or four residues, there

is a lack of experimental data for the helicity of

short peptides (<9 amino acids). Ala-based peptides

demonstrate only marginal helicity when 10 resi-

dues in length.9 As a result of the focus of all helix

prediction algorithms on Ala-based peptides, short

peptides have largely been overlooked both in exper-

imental and theoretical treatments.

This study shows that peptides shorter than 10

residues can in fact have significant helicity, even

without helix-inducing solvents like trifluoroethanol.

Short E-R/K–based peptides were studied using circu-

lar dichroism. These short peptides exhibited high hel-

icity, and E-R–based E-R/K peptides showed signifi-

cantly greater helicity than their E-K counterparts.

Results and Discussion

Short peptides demonstrate significant helicity

Peptides with four Glu residues followed by four Lys

residues [the (E4K4)n motif] were studied, where

n ¼ 1, 2, or 3 [Fig. 1(a)]. All peptides in this study

were designed with an N-terminal acetyl group and

C-terminal amide cap. A Tyr was placed at the

N-terminus separated by a Ser from the rest of the

peptide to facilitate concentration measurements.23

Although the peptide bonds contributed by the Tyr

and Ser residues are included in all calculations, we

will refer to a peptide’s length by the number of

helix-promoting residues (i.e., excluding Tyr and Ser).

Not only were the 16-residue (E4K4)2 and 24-residue

(E4K4)3 peptides helical as previously reported10 but

also the 8-residue E4K4 peptide demonstrated signifi-

cant helix content (59%). For the reference helix con-

tent of short peptides in the absence of salt bridges,

Ala-based peptides were designed with either Arg or

Lys for solubility purposes (A1–A3, Table I).

All three peptides have minima at 208 and 222

nm characteristic of a-helices. The isodichroic point

at 202 nm is also consistent with a system that occu-

pies two different states, the structured helical state

and the unstructured state.8,24 As the helix content of

the peptide increases, the 208 nm minimum, which

contains contributions from both the helical and the

unstructured state, decreases. The helix content is

most easily monitored by examining the mean residue

ellipticity (MRE) at the 222 nm minimum. To compare

our results with AGADIR predictions, the helix con-

tent was calculated in accordance with the Chen equa-

tion25 used by AGADIR.22 The 1974 Chen equation for

calculating percent helix values was later tested with

Ala-based peptides of varying chain lengths and was

refined slightly.26 In the case of the E4K4 peptide, the

helix content is high at 59%, close to the value pre-

dicted by the AGADIR algorithm (Table I).

E-R peptides have higher helix content

than E-K peptides
To examine the effect of Arg versus Lys in these

E-R/K peptides, the E4K4 peptide was initially com-

pared with the E4R4 peptide [Fig. 1(b)]. Not only is

the 222 nm minimum at a lower MRE but also the

208 nm minimum has less contribution from the

unstructured conformation. From the 222 nm val-

ues, the helix content of the E4R4 peptide was calcu-

lated to be �71% versus 59% for the E4K4 peptide,

again fitting well the prediction from the AGADIR

algorithm (Table I). The thermal melts of these

eight-residue long peptides were noncooperative and

melting occurred over a wide temperature range

(80�C), as is a characteristic of E-R/K peptides [Fig.

1(e)]. The melts were reversible (data not shown).

As high helicity was observed in eight-residue

peptides, we examined even shorter peptides for he-

lix content. Peptides six and five residues in length

were examined [Fig. 1(c,d), respectively]. It must be

noted that for peptides the unstructured state is a

mixture of different backbone conformations, with

contributions from polyproline II.24 The polyproline

II spectrum is positive between 220 and 230 nm,

which is consistent with positive CD values at 222

nm for a few of our peptides, such as A2 and A3.

The helix content for these six and five-residue

peptides, listed in Table I, provide two important

insights. First, peptides with this E-R/K motif ex-

hibit surprisingly high helix content with only six or

even five residues (�48% for E3R3 and �19% for
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E3R2). Each additional i ! i þ 4 and i ! i þ 3 salt

bridge increases the helix content of short peptides.

In the case of E4R2 and E3R3, the E3R3 peptide,

with an additional i ! i þ 3 salt bridge, has a helix

content nearly twice that of E4R2 (Table I). It is

worth noting that this increase in helix content likely

results some from losing a potentially destabilizing

i ! i þ 4 electrostatic repulsion between the first

and fourth E. According to AGADIR, losing this

destabilizing interaction, although, only accounts for

part (�60%) of the increase in helix content.

Second, in all cases, the E-R/K peptides that

contain Arg have significantly higher helix contents

than the corresponding peptides with Lys. For exam-

ple, E3R3 has �48% helix versus �15% for E3K3.

This trend has been previously reported in the con-

text of Ala-based peptides.9 Knight et al.12 have

hypothesized that E-R/K peptides would exhibit

greater stability with E-R interactions relative to

E-K interactions. The presence of the guanidinium

group may enable Arg to interact simultaneously

with the negative Glu residues in both directions.13

Conclusions
Secondary structure of short peptides has largely

been overlooked because of the general assumption

Figure 1. Arg versus Lys in E-R/K peptides. Circular dichroism spectra of (a) EK peptides 8, 16, and 24 residues long, and

short E-R/K peptides (b) 8, (c) 6, and (d) 5 residues in length. The isodichroic point at 202 nm and the minima at 208 and

222 nm are characteristic of a-helices. (e) Helix content as a function of temperature (�C) at 222 nm from circular dichroism.
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that they are unstructured in solution. This study

reports appreciable secondary structure of short pep-

tides that are based on the E-R/K motif. These short

peptides are stabilized by i ! i þ 4 and i ! i þ 3

salt bridges, with greater helix content in E-R–based

peptides relative to E-K peptides. Further studies

are needed to understand why E-R–based peptides

have higher helix content. The existing prediction

program AGADIR, however, did capture this differ-

ence between Arg and Lys and compared reasonably

with experimental measurements. Overall, this

study highlights the importance of the E-R/K motif

in determining the secondary structure of short heli-

cal peptides and in de novo design of peptides. In

the context of longer protein-derived E-R/K single

a-helices,14–16 this study suggests that E-R–enriched

helices could be more stable than their E-K counter-

parts. The structural and functional consequences of

the relative abundance of R versus K residues in

E-R/K helices remain to be determined.

Materials and Methods

Circular dichroism spectroscopy

Peptides were purchased from GenScript and puri-

fied to �98%, as determined by mass spectrometry

and HPLC (GenScript Corp, Piscataway, NJ). Pep-

tide concentrations were calculated using the e280 ¼
1490 M�1 cm�1.27 CD spectra were acquired using

an Aviv 62DS instrument (Aviv Biomedical, Lake-

wood NJ) with a 1-mm path-length cell. Measure-

ments were taken every 1 nm at 0�C with a 10 s

averaging time and with concentrations ranging

from 60 to 110 lM in 10 mM sodium phosphate

buffer, pH 7.0. MRE was estimated from the follow-

ing equation, [y]222 � MRW/[peptide], where MRW is

the average molecular weight per residue, [y]222 is

corrected for background, and the peptide concentra-

tion is in milligram per milliliter. Melt data were

collected every 5�C with a 30 s averaging time and a

2 min equilibration. % Helix was calculated using

the equation described in Table I. For all peptides,

the reverse melt demonstrated reversibility.
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