
Contributions of Studies on Alcohol Use Disorders to
Understanding Cerebellar Function

Natalie M. Zahr1,2, Anne-Lise Pitel1, Sandra Chanraud1,2, and Edith V. Sullivan1
1Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, 401
Quarry Road, Stanford, CA 94305
2SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025

Abstract
Neuropathological, neuropsychological, and neuroimaging studies of human alcoholism provide
evidence for degradation of frontal, pontine, thalamic, and cerebellar brain sites and disturbed
associated functions. Current studies using neuroimaging combined with examination of executive
functions, traditionally considered the sole purview of the frontal lobes, have identified a role for
the cerebellum serving as a compensatory processing adjunct to enable normal performance on
challenging tasks tapping executive functions. This overview proposes that disruption of an
executive frontocerebellar network is a major contributor to characteristic behaviors of alcoholism
that, on the one hand, enable alcohol use disorders, and on the other hand, lead to compensation
for so-called frontally-based dysfunctions in alcoholism.

A salient behavioral characteristic defining alcohol use disorders is the continued use of
alcohol despite physiological or psychological problems
(http://rethinkingdrinking.niaaa.nih.gov/). Other clinically observed features describing
alcoholic behavior include impaired judgment, blunted affect, poor insight, social
withdrawal, reduced motivation, distractibility, cognitive rigidity, inattention, and
perseveration (Oscar-Berman, 2000; Sullivan et al., 2000a). This constellation of higher-
order, “executive” dysfunction has classically been ascribed to degradation of frontal lobe
integrity (Cummings, 1993; Fuster, 1999). Application of specialized and detailed
neuropsychological tests, however, has demonstrated that individuals with lesions limited to
the cerebellum can be impaired in functions previously considered the exclusive purview of
the frontal lobes (Schmahmann, 1997, 2000).

Brain structural damage in response to chronic alcohol exposure, although widespread
(Pfefferbaum et al., 1992; Sullivan et al., 1998), also targets specific brain systems leaving
others relatively intact (for review, Chanraud et al., 2010a). The cerebellum (Victor et al.,
1959) and prefrontal cortex (Courville, 1955; Harper et al., 2003), although spatially
disparate, are particularly compromised in the brains of alcoholics. The cerebellum is
strongly interconnected to the cerebral cortex via feedforward/afferent loops through the
pons and feedback/efferent loops through the thalamus. Convergent findings from primate
viral tracing studies (Schmahmann and Pandya, 2008; Strick et al., 2009), human case
studies of patients with cerebellar lesions (Fitzpatrick et al., 2008; Schmahmann and Pandya,
2008; Leggio et al., 2009), and human functional imaging studies (Habas et al., 2009;
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Krienen and Buckner, 2009) have revealed the presence of multiple cerebellar-based cortical
systems.

Dissociable functions of these loops are related to the sites of termination in the cerebral
cortex of specific projections from the cerebellum (Kelly and Strick, 2003a). Examples of
these divergent but parallel loops include the motor and executive loops (Figure 1): 1) the
motor network, involving motor lobules of the cerebellar vermis (e.g., IV, V, VI) and motor
cerebral cortices (Biswal et al., 1995) affecting functions of gait and balance (Sullivan et al.,
2006a; Sullivan et al., 2010a); and 2) the executive network, involving the cerebellar
neocortex (e.g., lobule VII, lobule VIII, Crus I, and Crus II) and prefrontal cortical sites
(e.g., BA9 and 46) contributing to cognitive functions, such as verbal (Desmond et al., 1997;
Desmond et al., 2003) and spatial (Pfefferbaum et al., 2001) working memory and set
shifting (Seeley et al., 2007; see in this issue Marvel and Desmond, 2010)(Figure 2). Such
cerebellar-based systems have recently been examined using structure (magnetic resonance
imaging (MRI)) / function (working memory tasks) paradigms in alcoholics and controls
(Chanraud et al., 2010b). In controls, the best predictors of performance on the spatial
working memory task with spatial tracking interference were volumes of the right middle
frontal gyrus and right cerebellar Crus I. By contrast, in alcoholics, the best predictors of
performance on the spatial working memory task with arithmetic problem solving
interference were volumes of the left thalamus and left cerebellar Crus I. These brain
structure-function correlations suggest that although the specific regions recruited by the
alcoholics and controls were different, performance on the cognitive task by both groups
relied on the integrity of cerebellar-based systems.

Here, we propose that disruption of the executive frontocerebellar network is a major
contributor to characteristic behaviors of alcoholism that, on the one hand, enable alcohol
use disorders, and on the other hand, lead to compensation for so-called frontally based
dysfunctions in alcoholism. Specifically considered is the possibility that in alcoholism,
compromise of the executive loop contributes to dysfunction affecting impulse control
(Nixon et al., 2002; Fein et al., 2010), conflict processing (De Rosa et al., 2004), and
disinhibition (Hada et al., 2000; Fein and Di Sclafani, 2004) that enable maintenance of
addictive behavior. On the compensatory side, evidence indicates that recruitment of intact
cerebellar loops can compensate for the alcoholic's otherwise impaired performance on tasks
requiring, for example, visuospatial or working memory skills (cf., Sullivan and
Pfefferbaum, 2005).

Brain Structures and Systems Affected in Individuals with Alcohol Use
Disorders

The following sections review the literature regarding brains of alcoholics from a
neuropathological perspective and from the standpoint of results from MRI modalities
including structural MRI, diffusion tensor imaging, MR spectroscopy, and functional MRI.
The findings presented are not comprehensive but have been selected to indicate
compromise of frontocerebellar circuitry and its nodes in alcoholism. For comprehensive
reviews of the brain regions targeted by chronic alcoholism and associated neurological
deficits, see (cf., Oscar-Berman et al., 1997; Mann et al., 2001; Chanraud et al., 2010a;
Sullivan et al., 2010b).

Neuropathology
Classical postmortem neuropathology studies identified damage to nodes of the
frontocerebellar circuit in cases of chronic alcoholism. On the gross pathology level, the
frontal cortex sustains notable shrinkage, due in part to cell loss, in contrast to the relatively
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spared motor cortex (Kril and Harper, 1989; Harper, 1998). Atrophy of the cerebellar vermis
has been reported in alcoholics and even more frequently in alcoholics with exceptionally
high levels of alcohol consumption (Karhunen et al., 1994) or thiamine deficiency (35–50%
Victor et al., 1959). On the cellular level, Purkinje cells (Pentney, 1993) and cells in the
granular and molecular layers of the cerebellar cortex (Phillips et al., 1987) are particularly
affected, especially in alcoholics with a history of thiamine deficiency (Baker et al., 1999).
Whether caused by neurotoxic effects of alcohol per se or to secondary events such as
dietary deficiencies, excessive alcohol consumption adversely affects the pons (Adams et
al., 1959) and thalamus (Kril and Butterworth, 1997; Harding et al., 2000). The pons
sustains reduction of numbers of serotonergic (Halliday et al., 1993) and noradrenergic
neurons (Arango et al., 1994). Although not always forthcoming with in vivo MRI (Shear et
al., 1994), neuropathologically, the thalamus has been seen to be abnormally small in
alcoholics (Kril and Butterworth, 1997) in terms of the size of thalamic nuclei and the
number and size of neurons in the thalamic nuclei (Belzunegui et al., 1995; Harding et al.,
2000).

In addition to volume shrinkage of the major gray matter nodes of the frontocerebellar
circuit, neuropathological studies have consistently reported compromised white matter
integrity indicating that chronic alcoholism may disrupt the white matter fiber bundles
linking the nodes (Harper et al., 1985; De la Monte, 1988; Badsberg-Jensen and Pakkenberg,
1993). Postmortem analysis has revealed that white matter in the chronic alcoholic brain is
subject to volume shrinkage (Harper and Kril, 1985; De la Monte, 1988), especially in the
frontal cortex of alcoholics with Wernicke-Korsakoff syndrome (WKS, Kril and
Butterworth, 1997). Indeed, in alcoholics with WKS, white matter impairment is negatively
correlated with maximum daily alcohol consumption (Kril and Butterworth, 1997). The
volume of cerebellar white matter is also reduced in alcoholics (Phillips et al., 1987), and
loss of vermal white matter is reported in alcoholics with ataxia (Baker et al., 1999).
However, there are no obvious microscopic white matter lesions in the cerebral hemispheres
of uncomplicated alcoholics, and studies of lipid profiles have revealed only minor
alterations (Harper and Kril, 1991; Olsson et al., 1996). An increase in the water content of
frontal lobe white matter (Harper, 1998) suggests that the white matter shrinkage in this
brain region may reflect demyelination. Consistent with this interpretation, expression of
three genes encoding myelin proteins that are required for the highly ordered and compact
structure of myelin and are specifically involved in stabilization and compaction of the
myelin sheath was lower in the superior frontal cortex of human alcoholic subjects than
controls (Lewohl et al., 2005). According to Harper (2009), neural loss may also result in
axonal (Wallerian) degeneration and a permanent reduction in white matter volume (Harper
et al., 1988). Thus, the pathophysiology of white matter disruption in alcoholics may involve
changes in both myelination and axonal integrity (Harper et al., 2005).

Structural Neuroimaging
Comporting with postmortem findings, computed tomography (CT) and MRI studies reveal
brain volume deficits specific to the prefrontal cortex and cerebellum (for reviews Oscar-
Berman and Marinkovic, 2007; Chanraud et al., 2010a) even in chronic alcohol dependent
subjects without obvious complications from nutritional deficiencies (e.g., thiamine
deficiency) or hepatic disorders (Hayakawa and Kumagai, 1992; Wang et al., 1993; Shear et
al., 1994; Chanraud et al., 2007). MR volumetric studies have also revealed thalamic (but
see, Shear et al., 1992; Sullivan, 2003; Benegal et al., 2007; Cardenas et al., 2007; Chanraud
et al., 2007) and pontine (Sullivan et al., 2010a) volume deficits in alcoholics. The pons is
composed of a complex arrangement of nuclei (Schmahmann and Pandya, 1989) and
extensive white matter fiber systems. The pons can be affected by central pontine
myelinolysis (CPM), a complication associated with alcoholism (Victor, 1987). CPM, a
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relatively rare and serious condition that can result in quadriplegia and curtailed longevity
(Adams et al., 1959), is neuroradiologically defined on T2- weighted images as a
hyperintense, triangular-shaped lesion in the middle of the pons (Kleinschmidt-DeMasters et
al., 1997). Even in uncomplicated and asymptomatic alcoholics, prolonged T2 relaxation
times indicative of excessive local interstitial fluid can be observed in the pons of older
alcoholics, although more regularly in alcoholics with WKS (Sullivan and Pfefferbaum,
2001). Also consistent with the neuropathological literature is the MRI observation of white
matter volume shrinkage in the cerebellum and pons of alcoholics (Sullivan et al., 1998;
Sullivan, 2000; Sullivan and Pfefferbaum, 2001; Sullivan, 2003; Sullivan et al., 2003;
Chanraud et al., 2007).

The existence of a structural scaffolding for the frontocerebellar circuitry in alcoholism has
been supported by correlational analysis. In alcoholics, volume deficits quantified with MRI
in the pons co-occur with volume deficits in the white matter of the anterior superior
cerebellar vermis and white and gray matter of the cerebellar hemispheres. By contrast,
volume deficits in the thalamus co-occur with volume deficits in the gray matter of the
posterior inferior vermis, cerebellar hemispheres, and parietal cortex (Sullivan, 2003). A
lack of correlation between pontine and thalamic volumes suggests their independence in the
afferent and efferent loops of the frontocerebellar network.

Diffusion Tensor Imaging (DTI)
Whereas structural MRI provides measurement of regional tissue expressed as a volume
over multiple image slices and voxels, MR diffusion tensor imaging (DTI) provides a
qualitative assessment of the microstructure of tissue, typically white matter, within voxels
(Basser and Pierpaoli, 1996). DTI image acquisition and data analysis are complex, and
details of these methods are available in numerous reviews (e.g., Le Bihan, 2003; Jones,
2010). In short, white matter fiber integrity is commonly measured in terms of fractional
anisotropy (FA), which is usually higher in fibers with a homogeneous or linear structure,
such as healthy white matter, and bulk mean diffusivity (MD), for which higher values,
commonly due to larger presence of mobile water molecules in a tissue sample (Pierpaoli et
al., 2001; Pfefferbaum et al., 2003; Pfefferbaum and Sullivan, 2003), reflect diminished
fiber integrity. MD can be decomposed into two components: axial (longitudinal) diffusivity
(λL), which can be altered with disruption of axonal integrity and axonal deletion; and radial
(transverse) diffusivity (λT), which increases selectively with decline in myelin integrity
(Song et al., 2002; Song et al., 2005; Sun et al., 2006b; Sun et al., 2006a). DTI has been
further extended to provide visual depictions of white matter fiber systems (Stieltjes et al.,
2001; Xu et al., 2002; Lehericy et al., 2004) and quantification of the integrity of specific
fiber tracks (Gerig et al., 2005; Sullivan et al., 2006b).

Studies using DTI have detected untoward effects of alcoholism on the microstructure of
white matter. In some cases, DTI has been shown to be more sensitive than conventional
volumetric MRI in identifying disordered tissue (Pfefferbaum et al., 2000; Pfefferbaum and
Sullivan, 2002). One pattern of spared and affected tissue that has emerged over a series of
studies using quantitative fiber tracking is that frontal and superior fiber bundles show
greater abnormalities than posterior and inferior fiber bundles in alcoholics relative to
controls (Pfefferbaum et al., 2009; Pfefferbaum et al., 2010). Using Tract-Based Spatial
Statistics (Smith et al., 2006) for DTI analysis, Meyerhoff and colleagues reported lower FA
and higher diffusivity, indicative of tissue degradation, in dorsomedial and dorsolateral
prefrontal cortical and cerebellar regions (Yeh et al., 2009). Another quantitative fiber
tracking study revealed fewer white matter fibers per unit volume running between the
midbrain and the pons in alcoholics than controls (Chanraud et al., 2009). Together, these
DTI studies indicate a frontal selectivity to white matter damage in the context of
widespread microstructural degradation of white matter systems (Pfefferbaum et al., 2006)
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and initial evidence that white matter tracts of the corticopontine pathway are also
compromised. A caveat is the observation from one study showing relative preservation of
corticocerebellar fiber systems in alcoholics (Pfefferbaum et al., 2009). Such preservation
may be an avenue to enable invoking cerebellar systems in compensatory efforts, as
observed in functional imaging studies (cf., Sullivan and Pfefferbaum, 2005).

Magnetic Resonance Spectroscopy (MRS)
Magnetic resonance spectroscopy (MRS) is a powerful noninvasive approach for the
identification, visualization, and quantification of specific brain biochemicals (metabolites
and neurotransmitters), thus enabling the direct assessment of the neurochemical status of
discrete brain structures. Whereas MRI detects the spatial distribution and tissue density of
hydrogen nuclei (1H) in water and fat, MRS measures 1H of typically carbon-containing
compounds that are in sufficiently high concentrations to be detected (van der Graaf, 2010).
A predominant MRS signal in the healthy human brain is N-acetylaspartate (NAA), found
almost exclusively in neurons (Urenjak et al., 1993; Petroff et al., 1995) and thus considered
a marker of neuronal integrity. Choline-containing (Cho) compounds, including free Cho,
phosphocholine, and glycerophosphocholine, are associated with cell membrane synthesis,
turnover, and metabolism (Stoll et al., 1995). The signal from total creatine (tCr), often used
as a referent for other metabolites, is influenced by the state of high-energy phosphate
metabolism (Tedeschi et al., 1995).

Studies of recently detoxified alcoholics (1 – 6 weeks) show abnormally low levels of NAA,
inferred from ratios to tCr or amount of underlying tissue, in frontal white matter
(Schweinsburg et al., 2001; Schweinsburg et al., 2003; Meyerhoff et al., 2004; Bartsch et al.,
2007), frontal gray matter (Jagannathan et al., 1996; Bendszus et al., 2001; Durazzo et al.,
2004), thalamus (Jagannathan et al., 1996; Murata et al., 2001), and cerebellum
(Jagannathan et al., 1996; Bendszus et al., 2001; Murata et al., 2001; Parks et al., 2002).
Likewise, Cho, whether expressed as a ratio to tCr or tissue water, is lower in recently
detoxified alcoholics than controls in thalamus (Murata et al., 2001; Durazzo et al., 2004)
and cerebellum (Martin et al., 1995; Jagannathan et al., 1996; Bendszus et al., 2001; Murata
et al., 2001; Ende et al., 2005; Bartsch et al., 2007). Such changes in the biochemical status
of discrete brain regions are reinforced by findings of correlations with performance on
various behavioral tasks. For example, low NAA in the cerebellar vermis was related to poor
performance on tasks of visuospatial learning and memory (Durazzo et al., 2004). In another
study, an increase in NAA/tCr with continued abstinence for approximately one month was
related to improved performance on the auditory-verbal-learning test (Bendszus et al.,
2001). These selective relations demonstrate the functional impact of metabolites changes in
these nodes of the frontocerebellar circuitry.

When metabolites were evaluated as a function of the likelihood of relapse, only patients
that relapsed within 3 weeks of detoxification revealed reduced cerebellar NAA
concentrations (Parks et al., 2002). Similarly, in individuals that relapsed relative to those
that remained abstinent, baseline compared to one-year follow-up levels of NAA and tCr
were lower in the dorsolateral prefrontal cortex and cerebellar vermis (Durazzo et al.). These
longitudinal MRS studies thus also provide evidence for the role of a dysfunctional
frontocerebellar circuit in the maintenance of addiction to alcohol.

Functional neuroimaging
Functional magnetic resonance imaging (fMRI) provides assessment of the utilization of
blood oxygen (i.e., the blood oxygen-level dependent [BOLD] effect) measureable during
performance of specific cognitive, sensory, or motor tasks. Several fMRI studies reveal that
alcoholics activate either a different neural network (Pfefferbaum et al., 2001; Tapert et al.,
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2001; Tapert et al., 2004) or activate appropriate regions but more widely (Desmond et al.,
2003; Parks et al., 2003) to perform behaviorally (e.g., in terms of accuracy or reaction time)
on par with controls. For example, self-paced finger-tapping activated frontocerebellar
networks in controls (e.g., anterior cingulate, anterior lobe and vermis of the cerebellum) but
only the parietal precuneus in alcoholics (Parks et al., 2010). This finding suggests
compensatory alterations of frontocerebellar circuits whereby alcoholics must recruit higher
ordering planning regions such as the parietal lobe in order to perform equivalently to
controls.

A study employing the Sternberg verbal working memory task reported similar levels of
performance with respect to reaction time and accuracy in alcoholic and nonalcoholic
subjects. In these same subjects, however, activations were greater in alcoholics than in
controls in the left prefrontal cortex and the right superior cerebellum (Desmond et al.,
2003). Another study revealed that the processing of redundant targets relative to a single
target was associated with a significant BOLD response in bilateral extrastriate cortices in
controls. By contrast, although alcoholics activated only the left extrastriate cortex, they also
showed significant BOLD responses in the thalamus, pallidum, and left cerebellum (Schulte
et al., 2010). These fMRI studies provide evidence for the role of the cerebellum in
augmenting performance and compensating for the functional deficits attributable to frontal
cortical disruption in alcoholics.

Brain Structure/Function Relationships in Alcohol Use Disorders
Quantitative studies of brain structure and motor function have revealed the traditionally
accepted relationship between postural instability and small volume of the anterior superior
cerebellar vermis in alcoholics (Sullivan et al., 2000b), infratentorial tissue volumes
(Sullivan et al., 2010a), and postural sway (Sullivan et al., 2006a). Components of sway may
be the consequence of damage to other nodes in the frontocerebellar circuit. For example,
using posturography and balance platform testing, truncal tremor was observed at two
frequencies in alcoholic men (Sullivan et al., 2006a): the tremor at 5-7 Hz could indicate
direct damage to the thalamus (Guehl et al., 2003).

In addition to these motor-based relations with the condition of the cerebellum and pons,
other analyses have reported correlations between frontally-based cognitive impairment that
can be related to compromised cerebellar or pontine structures and even of the white matter
connecting the various nodes of the circuitry. Indeed, the volumes of selective regions of the
cerebellum have been shown to be better predictors than frontal lobe volumes of executive
and visuospatial deficits in alcoholics (Sullivan, 2003). Also in alcoholics, the volume of the
pons and a white matter region in the midbrain common to both afferent corticocerebellar
and efferent cerebellocortical fibers correlated with performance on neuropsychological tests
including fluency, letter-number sequencing, trail-making B, Stroop interference, and the
Wisconsin Card Sorting test (Chanraud et al., 2007). The number of fibers per volume
coursing between the midbrain and pons correlated with performance on Part B of the Trail
Making Test, which assesses visual search, working memory, and cognitive flexibility
(Chanraud et al., 2009). Alcoholics clinically asymptomatic for pontine signs of CPM reveal
significant correlations between poorer verbal and nonverbal fluency production (tests long
considered sensitive to lesions of lateral frontal cortex, Lezak, 1995; Kolb and Whishaw,
1996) and longer pontine relaxation times (Sullivan and Pfefferbaum, 2001). Regarding
anatomical connectivity, it is possible that the relationships between fluency output and
pontine relaxivity arise from compromise of frontal connections to central pontine sites
(Schmahmann and Pandya, 1997).
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Conclusion
This overview proposes the guiding hypothesis that disruption of frontocerebellar circuitry is
one of the principal neural mechanisms underlying behavioral deficits in both uncomplicated
alcoholism and alcoholics with neurological complications such as WKS (cf., Wijnia and
Goossensen, 2010). Compromise of the gray matter nodes of this circuit or disruption of the
white matter tracts connecting the nodes may adversely influence remote regions within that
circuit, resulting in characteristic alcoholism-related cognitive and motor deficits. This
network, even when compromised, may be invoked by alcoholics for compensation in the
performance of challenging cognitive procedures. The cerebellum, therefore, exerts
substantial primary and modulatory influence on behavior with its long-reaching loops to
frontal sites. Even modest alterations within this frontocerebellar circuitry in alcoholics have
the potential to contribute to vulnerability for relapse by virtue of executive function
impairment. Involvement of frontocerebellar circuitry in compensatory activity may also be
a source of maintenance of addictive behavior, given the roles of the cerebellum (Grafman et
al., 1992; Doyon et al., 1997; Hubert et al., 2009) and basal ganglia (Heindel et al., 1989;
Pascual-Leone et al., 1993; Witt et al., 2002) in implicit and procedural learning (see this
issue Bostan and Strick, 2010). By its nature, implicit learning is accomplished with little to
no conscious awareness and therefore can skirt the purview of therapy and contribute to
denial (cf., Le Berre et al., 2010), the first “step” alcoholics must overcome to reduce
harmful drinking levels (Wilson, 2001).
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Figure 1.
The corticocerebellar circuit: two dissociable but associated loops, the motor loop
connecting motor cortex, thalamus, and anterior cerebellum and the executive loop
connecting prefrontal-pontine-posterior cerebellar sites (see Kelly and Strick, 2003b).
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Figure 2.
Parcellated regions (left) of the SRI24 brain (Rohlfing et al., 2010) (right). Principal lobules
of the cerebellum are parcellated and numbered; several have been identified to subserve
dissociable cognitive and motor functions. The cerebrum is also parcellated into regions
defined by gyral markings and roughly corresponding to regional structures, many with
known functions. Note the distance traversed by frontothalamopontocerebellar circuitry.
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