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Abstract
Magnetic resonance (MR) imaging has been increasing-
ly used in the evaluation of prostate cancer. As studies 
have suggested that the majority of cancers arise from 
the peripheral zone (PZ), MR imaging has focused on 
the PZ of the prostate gland thus far. However, a con-
siderable number of cancers (up to 30%) originate in 
the transition zone (TZ), substantially contributing to 
morbidity and mortality. Therefore, research is needed 
on the TZ of the prostate gland. Recently, MR imag-
ing and advanced MR techniques have been gaining 
acceptance in evaluation of the TZ. In this article, the 
MR imaging features of TZ prostate cancers, the role 
of MR imaging in TZ cancer detection and staging, and 
recent advanced MR techniques will be discussed in 
light of the literature.

© 2010 Baishideng. All rights reserved.

Key words: Multi-parametric magnetic resonance imag-
ing; Prostate cancer; Transition zone

Peer reviewers: James Chow, PhD, Radiation Physicist, Ra­
diation Medicine Program, Princess Margaret Hospital, 610 
University Avenue, Toronto, ON, M5G 2M9, Canada; Chan 
Kyo Kim, MD, Assistant Professor, Department of Radiology, 

Samsung Medical Center, Sungkyunkwan University School of 
Medicine, 50 Ilwon-dong, Kangnam-gu, Seoul 135-710, 
South Korea

Kayhan A, Fan X, Oommen J, Oto A. Multi-parametric MR 
imaging of transition zone prostate cancer: Imaging features, 
detection and staging. World J Radiol 2010; 2(5): 180-187  
Available from: URL: http://www.wjgnet.com/1949-8470/full/
v2/i5/180.htm  DOI: http://dx.doi.org/10.4329/wjr.v2.i5.180

INTRODUCTION
It is important to localize prostate gland tumors to evalu-
ate the transcapsular spread and staging in order to plan 
treatment protocols and avoid positive anterior surgical 
margins during radical prostatectomy. Prostate cancer 
arises from the peripheral zone (PZ) in 75%-85% of  
patients[1]. Cancers arising from the transition zone (TZ) 
represent 40% of  autopsy series and 25%-30% of  radical 
prostatectomy series[1]. The utility of  magnetic resonance 
(MR) imaging in prostate cancer is currently under investi-
gation, and it has been shown to be an excellent technique 
for evaluating prostate cancers, particularly PZ cancers[2,3]. 
As TZ cancers are less frequent than PZ cancers, MR im-
aging in TZ cancers has not been widely used. However, 
recent studies attempting to identify MR characteristics of  
the TZ, by means of  emerging techniques, have shown 
that MR can be used to delineate TZ cancers accurate-
ly[4-7]. Herein, the MR imaging features of  TZ tumors, the 
role of  MR imaging in detection and staging, and recent 
advanced MR techniques in the evaluation of  TZ cancers 
will be discussed including a review of  literature.

ANATOMY AND MR IMAGING OF THE 
PROSTATE GLAND 
According to zonal anatomy, the prostate is composed 
of  anterior fibromuscular stroma, periurethral glandular 
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tissue, the TZ, central zone (CZ) and PZ. The TZ is the 
inner prostate and forms 5% of  the gland. It surrounds 
the anterior and lateral parts of  the proximal urethra. 
In younger men this zone is small, however, with aging 
it enlarges and compresses the CZ due to hyperplastic 
changes. The CZ is the outer prostate forming approxi-
mately 25% of  the gland in young men[8]. It is less clearly 
distinguished histologically from the PZ. The PZ is the 
outer prostate and forms 70% of  the gland[8]. Radiologi-
cally, the prostate has been divided into two parts: the 
PZ and the central gland which is composed of  the PZ, 
TZ and CZ[9]. In young men, the gland is mainly com-
posed of  the CZ. With aging, the TZ is enlarged due to 
benign prostatic hyperplasia (BPH) which commonly 
arises from the TZ[10]. 

MR imaging enables differentiation between the PZ, 
CZ and TZ. In young adults, normal prostate is homog-
enous, whereas with aging the differentiation between 
the PZ and the central gland is more clearly depicted. T1-
weighted (T1W) images distinguish between the prostatic 
parenchyma and the surrounding periprostatic fat and 
vascular plexus. On T1W images, the homogenous gland 
has an intermediate-to-low signal intensity, and zonal dif-
ferentiation can not be identified[11]. Post-biopsy hemor-
rhage has high signal-intensity on T1W images. On T2-
weighted (T2W) images, better tissue differentiation is 
achieved and zonal anatomy is better depicted[12]. As the 
glandular components are more prominent in the PZ, 
it has a homogeneously high signal intensity and is sur-
rounded by a capsule which is seen as a thin, hypointense 
rim on T2W images. Both the CZ and TZ are hypoin-
tense compared to the PZ because of  their stroma which 
consists of  compact muscle fiber bundles. MR also en-
ables multiplanar imaging of  the prostate (Figure 1). 

MR imaging has been increasingly used in the evalua-
tion of  prostate cancer[13-18]. It enables multiplanar imaging 
and is superior to ultrasound and computed tomography 
in anatomic and volumetric evaluation of  the gland[19]. It 
is more accurate than digital rectal examination and tran-
srectal ultrasound (TRUS)-guided biopsy for cancer detec-
tion and localization. In a recent study, the detectability of  

prostate cancer using MR imaging prior to TRUS-guided 
biopsy was determined by calculating the sensitivity and 
positive predictive value of  TRUS, T2W imaging, diffu-
sion weighted imaging (DWI), apparent diffusion coeffi-
cient (ADC) map and biopsy[20]. The relationship between 
the detectability on each sequence and cancer location, 
Gleason score, and the short and long axis diameter of  
the tumor were also evaluated. The sensitivities were 
26.9%, 41.2%, 56.7%, 57.7% and 75.1%, respectively. 
The sensitivity of  each sequence increased as the Glea-
son score and the short- and long-axis diameters of  the 
tumors increased. It was stated that MR imaging prior to 
biopsy has a high detectability for prostate cancer. MR im-
aging is used to guide targeted biopsy when prostate can-
cer is clinically suspected and previous ultrasound-guided 
biopsy results are negative. MR imaging also enables the 
localization and staging of  prostate cancer. The high soft 
tissue resolution of  MR imaging helps to show extracap-
sular extension and seminal vesicle invasion. It may be 
used in planning a roadmap for therapeutic approaches 
and for residual or locally recurrent cancer after treatment. 
MR imaging has mainly been used as a diagnostic tool for 
the detection of  PZ cancers[18-21]. It is considered insuf-
ficient for evaluating the TZ, as BPH, which causes a het-
erogenous signal intensity, especially in elderly men, also 
originates from the TZ leading to conspicuous findings 
on T2W images[2,22,23]. Recent studies using MR imaging 
of  TZ cancers have shown that it can be used in the de-
tection of  TZ tumors that are not sampled during TRUS-
guided biopsy and also for localization and staging[4]. 

MR IMAGING OF TZ CANCERS
Prostate cancer begins as a small focus of  carcinoma 
within the gland which grows very slowly[24]. Approxi-
mately 75%-85% of  cancers arise from the PZ, 25% 
arise from the TZ and 10% arise from the CZ[1,25,26]. As 
there is no clear demarcation between the CZ and the 
PZ, most pathologists do not routinely recognize tumors 
as originating from the CZ. For that reason, compari-
son is generally focused on the distinctions between PZ 
and TZ cancers. TZ tumors are located anteriorly, far 
from the rectum and they are more difficult to detect 
compared to PZ tumors. These tumors can be of  a large 
volume and are associated with high serum prostate 
specific antigen (PSA) levels but they are confined to the 
gland[27]. They are mostly low grade and relatively non-
aggressive. Most TZ tumors are found incidentally in 
resection specimens. It is important to accurately distin-
guish TZ cancers to guide biopsy and to avoid positive 
anterior surgical margins at radical prostatectomy. 

Currently, the PZ is the primary target in most bi-
opsies[28]. However, in patients with elevated PSA levels 
with negative biopsy results, it should be kept in mind 
that the tumor focus may be in the central gland. There-
fore, it has been suggested that TZ-targeted biopsy 
should be performed in patients with multiple negative 
biopsy results. As a result, although tumor zonal origin is 
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Figure 1  Magnetic resonance (MR) images demonstrating zonal anatomy 
of prostate gland. A: Axial T2-weighted (T2W) MR image depicts the central 
gland and peripheral zone (PZ). Central gland is hypointense compared to 
hyperintense PZ; B. Coronal T2W MR image shows hyperintense PZ and 
hypointense central gland.
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not an independent determinant of  biochemical failure, 
it is helpful in predicting the route of  cancer spread. If  
the zonal origin can be determined preoperatively, the 
cure rate may be increased by modification of  the surgi-
cal approach. 

The central gland has a heterogeneously variable signal 
intensity appearance in older men due to the presence of  
BPH or other coexisting benign diseases. BPH nodules 
occur almost exclusively in the TZ. As hypertrophied TZ 
tissue might also show metabolic heterogeneity similar 
to BPH nodules, it may be difficult to differentiate them 
from carcinoma. Discrimination between BPH and cen-
tral gland tumors is important for staging. BPH is an en-
largement of  the TZ (central gland) which gives a hetero-
geneous appearance on MR imaging[29,30]. BPH nodules 
may be seen as hypointense, isointense or hyperintense 
on T2W images, depending on the ratio of  glandular 
to stromal tissue[31]. It has been shown that, high signal 
intensity is due to hyperplastic glandular elements which 
are filled with secretion and the presence of  cystic ectasia 
(Figure 2A). Low signal intensity is due to the presence 
of  prominent sclerotic, fibrous or muscular elements[22,29] 
(Figure 2B).

TZ cancers tend to have uniform low intensity on T2W 
imaging, but their diagnosis is not certain in the presence 
of  coexisting benign disease[31,32] (Figure 2C and D). It 
has been shown that, unless cancers in the TZ are of  a 
large dimension, their detection on MR imaging is very 
difficult[33]. Akin et al[4] determined the accuracy of  MR 
imaging in detection and local staging in 148 patients. 
Features indicative of  TZ cancers were defined as: ho-
mogenous low T2 signal intensity, ill defined margins, 
lack of  capsule, lenticular shape, and invasion of  anterior 
fibromuscular stroma. For identification of  patients with 

TZ cancer, the sensitivity of  MR imaging was 75%-80% 
and the specificity was 78%-87%. The area under the 
receiver operating characteristic curve was 0.75 for detec-
tion and localization of  tumor. For detection of  extra-
prostatic extension, the sensitivity and specificity of  MR 
imaging were 28%-56% and 93%-94%, respectively. Li 
et al[5] determined the conventional MR findings of  TZ 
lesions in 86 patients, of  which 53 were cancers and 33 
were benign, by comparing T2W and contrast-enhanced 
T1W images. Lesions were classified as uniform, low sig-
nal intensity on T2W images, lesions with homogeneous 
contrast enhancement and lesions with irregular margins 
on both gadolinium enhanced T1 and T2W images. 
Sensitivity, specificity and accuracy for cancer were 50%, 
51% and 51%, respectively, for the uniform low T2 signal 
intensity criterion; 68%, 75% and 71% for homogeneous 
gadolinium enhancement; 60%, 72% and 65% for ir-
regular margins on both T2W and gadolinium enhanced 
images. 

ADVANCED MR TECHNIQUES 
TZ cancers are difficult to diagnose particularly in the 
presence of  BPH. Even in the PZ, some cancers such as 
those with a more permeative pattern can not be detected. 
Moreover, focal prostatic atrophy or prostatitis may also 
mimic cancer and may cause false-positive results. To 
increase the accuracy of  MR imaging and to improve the 
detection of  prostate cancer at an earlier stage, special 
techniques such as DWI, dynamic contrast-enhanced 
MR imaging (DCE-MRI), MR spectroscopy (MRS) and 
high-field-strength (3.0-T) MR imaging have been in-
creasingly used. It has also been shown that these tech-
niques may play a role in the detection of  prostate tumor 
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Figure 2  Axial T2W MR image. A: Multiple, well defined 
hyperintense glandular benign prostatic hyperplasia (BPH) 
nodules in central gland (arrows); B: Well defined, amorphous, 
hypointense TZ tumor (arrows); C: Hypointense stromal BPH 
nodule in the right transition zone (TZ) (arrow); D: Hypointense 
TZ tumor with extracapsular extension (arrows).
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foci in patients with persistently elevated PSA levels and 
prior to negative random TRUS-guided biopsy[34].

DWI
DWI is a technique sensitive to molecular translation of  
water in biologic tissues due to the random thermal mo-
tion of  molecules. The rapid changes in the movement of  
water in tissues and the measurement of  the flow of  wa-
ter molecules can be identified by calculating the ADC[35]. 
When the flow of  water or diffusion is restricted, ADC 
is decreased. If  ADC values are increased, there is no 
restriction in water flow. The ADC has been determined 
for tumor growth. It has been shown that, in proliferating 
cells, cellular density increases and extra- as well as intra-
cellular space decreases leading to decreased ADC[36]. In 
recent years, an increased number of  studies have evalu-
ated the utility of  DWI in prostate cancer diagnosis[37-44]. 
It has been shown that cancer tissues show higher signal 
intensity on DWI and thus a lower ADC compared with 
BPH nodules and normal tissue due to replacement of  
normal tissue (composed of  water rich acinar structures) 
with densely packed malignant epithelial cells. TZ tumors 
have also been shown to have lower ADC values than the 
surrounding tissue[37] (Figure 3). Namiki et al[45] stated that 
different b factors may effect the detection of  tumors. 
Noworolski et al[41] showed that glandular-ductal tissues 
(glandular BPH) had lower peak enhancement and higher 
ADC values than the stromal-low ductal tissues (stromal 
BPH and central gland). Oto et al[46] showed significant 
ADC differences between tumor, stromal BPH and glan-
dular BPH (lowest in tumor, highest in glandular BPH). 
These authors stated that there were differences between 
the perfusion parameters of  tumor, stromal and glandular 
BPH, with the exception of  the k-trans values between 
tumor and glandular BPH. Tamada et al[47] compared the 
ADC values in peripheral and transitional zones between 
normal and malignant prostatic tissues. Mean ADC values 
were significantly lower in both the PZ and TZ than in 
the corresponding normal regions. Ren et al[48] investigated 
the diagnostic value of  DWI and ADC values in normal 
and pathologic prostate tissues. They showed that BPH 
nodules had a lower and non-homogenous signal intensity 
than the PZ. Prostate cancer showed high signal intensity 

while prostate cyst showed low intensity. ADC values of  
BPH nodules were larger than prostate cancer foci and 
normal central gland. They stated that DWI and ADC 
values for normal central gland, PZ, prostate cyst, BPH 
nodules and cancer foci showed significant differences 
and could be used in the differential diagnosis of  diseases 
of  the prostate gland. Yoshizako et al[6] determined the 
clinical value of  DWI and DCE-MRI in combination 
with T2W images, for the diagnosis of  TZ tumors. They 
found that adding DWI to T2W images improved the 
sensitivity, specificity, accuracy and positive predictive 
value of  diagnosing TZ tumors. In a recent study, the 
need for biexponential signal decay modeling for pros-
tate cancer diffusion signal decays with b-factor over an 
extended b-factor range was evaluated. The researchers 
found that the fast and slow ADC values of  cancer were 
significantly lower than those of  the TZ and PZ, and 
the apparent fraction of  the fast diffusion component 
was significantly smaller in cancer than in the PZ. It was 
stated that biexponential diffusion decay functions were 
required for prostate cancer diffusion signal decay curves 
when sampled over an extended b-factor range, enabling 
specific tissue characterization of  prostate cancers[49].

DCE-MRI
DCE-MRI was introduced to effectively visualize the 
pharmacokinetics of  gadolinium uptake in the prostate 
gland. It depicts the physiological function of  the tumor 
microcirculation. There is a relationship between contrast 
material uptake and microvascular structures in tumors, 
in which tumor angiogenesis is correlated with the pa-
rameters of  signal intensity-time curves. As the reliability 
of  T2W MR imaging in distinguishing prostate cancer 
of  the PZ and TZ is limited, several studies have been 
performed to delineate the enhancement characteristics 
of  prostate cancer to achieve more accurate informa-
tion[2,50-53]. In a recent study, the accuracy of  T2W and 
DCE-MRI for cancer detection in 18 prostate cancer 
patients were compared prior to prostatectomy[54]. The 
accuracy of  DCE-MRI for cancer detection was calcu-
lated by a pixel-by-pixel correlation of  quantitative DCE-
MRI parameter maps and pathology. It was shown that 
DCE-MRI was more sensitive than T2W images for 

183 May 28, 2010|Volume 2|Issue 5|WJR|www.wjgnet.com

BA C

Figure 3  Tumor in the left mid prostate gland demonstrated by MR. A: Axial T2W image shows ill defined, amorphous, hypointense tumor (arrows); B: Diffusion 
weighted imaging (DWI) reveals focal area of bright signal consistent with tumor(arrow); C: Apparent diffusion coefficient (ADC) map reveals clear focal mass with 
dark signal consistent with decreased ADC (arrow).
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tumor localization (50% vs 21%) and more specific (85% 
vs 81%). The researchers stated that due to its higher sen-
sitivity and specificity, DCE-MRI could be used to guide 
radiotherapy boosts in prostate cancer patients. Due to 
increased microvessel density (MVD) in carcinomatous 
tissue, the enhancement curve of  prostate tumors was 
shown to be different when compared to the PZ and 
BPH. Engelbrecht et al[55] found that in both the PZ and 
TZ, the relative peak enhancement was the optimal pa-
rameter when compared to other parameters such as on-
set time, time to peak, peak enhancement and wash-out. 
Yoshizako et al[6] stated that the addition of  DCE-MRI 
to T2W images and DWI improved the specificity and 
positive predictive value of  diagnosing TZ cancer (93.8% 
and 94.7%, respectively). Turnbull et al[2] found significant 
differences in amplitude of  the initial enhancement and 
wash-out patterns between carcinoma and BPH. In both 
the PZ and the central gland, relative peak enhancement 
was the optimal parameter. The combination of  relative 
peak enhancement with other dynamic parameters (onset 
time, time to peak, peak enhancement, and washout) did 
not yield a significant gain in discriminatory performance. 
Ogura et al[56] demonstrated a sensitivity, specificity and 
accuracy rate of  37%, 97% and 63%, respectively, for the 
detection of  TZ cancer. In another study, it was shown 
that the glandular-ductal tissues had lower peak enhance-
ment than the stromal-low ductal tissues suggesting that 
gadolinium-DTPA does not enter healthy prostatic tis-
sues[2]. Ren et al[57] examined DCE-MRI parameters in 21 
patients with prostate cancer and 29 patients with BPH 
by means of  signal intensity-time curves and angiogen-
esis. Prostate cancer showed stronger enhancement with 
an earlier peak time, higher enhancement and enhance-
ment rate. The vascular endothelial growth factor (VEGF) 
and MVD expression levels in cancer were higher than 
in BPH. They found a negative correlation between peak 
time and the expression levels of  VEGF and MVD, how-
ever, the degree of  enhancement and enhancement rate 
showed positive correlations. 

In cancerous tissues, there is uncontrolled angiogenesis 
and the permeability of  vascular structures is markedly 

increased resulting in significantly different pharmacoki-
netics compared to surrounding normal tissue. Pharma-
cokinetic parameter mapping clearly identifies pathologic 
areas in heterogeneously enhanced prostate. K-trans maps 
enable the identification of  tumor within heterogeneously 
enhanced PZ and can reveal the extent of  extra-glandular 
involvement. These maps may also be useful in providing 
a biopsy target and in revealing intra-tumoral heterogene-
ity (Figure 4). 

MRS
MRS imaging is an emerging technique used in combina-
tion with MRI in the evaluation of  prostate cancer[58-63]. 
This technique allows the metabolites within tissues to 
be identified and provides information on the biochemi-
cal and metabolic environment of  tissues. As prostate is 
composed of  different types of  glands and tissues, it is 
difficult to study the gland using MRS. However; there 
are sophisticated chemical shift filtering techniques and 
three dimensional chemical shift imaging which allow 
examination of  the entire prostate at one time and the 
selection of  particular chemicals for diagnosis[59,64]. It 
has been shown that stromal and glandular tissue have 
the same resonances with different relative peak height 
intensities[65]. In addition, it has been stated that citrate is 
produced by glandular epithelial cells and the amount of  
glandular elements can affect tissue citrate levels. Glandu-
lar BPH has higher levels of  citrate than stromal BPH[66]. 
It has also been stated that citrate levels show the degree 
of  tissue differentiation, in that poorly differentiated 
tumors have lower citrate levels than well differentiated 
tumors[67]. Healthy PZ is known to have high citrate con-
tent, whereas in cancer tissues, the resonance signal from 
citrate is reduced or even absent. Adenocarcinomatous 
tissue in the prostate gland also shows a similar spectrum 
to adenocarcinoma in other organs (except for citrate)[68], 
which show elevated choline relative to creatine due to 
the increased cell proliferation associated with malignant 
tumors[69]. In their series performed in 40 patients, Zakian 
et al[7] studied the mean values of  choline + creatine/ci-
trate, choline/creatine and choline/citrate in TZ cancer 
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Figure 4  Left TZ tumor of prostate gland demonstrated by MR. A: Axial T2W image depicts ill defined, round, homogenous hypointense tumor (arrows); B: DWI 
depicts focal area of bright signal on left mid gland (arrow); C: K-trans map in dynamic contrast-enhanced MR imaging (DCE-MRI) clearly localizes the  tumor and 
reveals some internal heterogeneity.
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and normal tissue, in which a significant difference was 
found. It was shown that 56% of  patients had tumor 
voxels with at least one detectable choline peak, while 
control voxels showed only choline peaks.

3.0-T MR imaging
High-field-strength MR imaging has recently been investi-
gated in prostate imaging. The introduction of  3.0-T MR 
scanners has resulted in an increase in the in-plane resoluti-
on of  anatomic T2W imaging due to higher signal to noise 
ratio. Higher magnetic field strengths have been shown to 
enable structural imaging of  the prostate with improved 
spatial resolution leading to improved detection and stag-
ing of  PZ tumors[70-72]. Moreover, functional imaging 
such as DWI, DCE-MRI or MRS at high field strength is 
thought to improve the detection of  CZ and TZ cancers, 
prevent false-positive diagnoses and help less experienced 
readers to improve their local staging performance[73,74].

CONCLUSION 
TZ cancers demonstrate similar imaging features to BPH 
and are therefore more difficult to diagnose on MR imag-
ing. However, certain imaging features (alone or in com-
bination) on multi-parametric MR imaging can help in 
the differentiation between cancerous and benign TZ tis-
sue. MR imaging can also provide reliable local staging of  
TZ cancers. By the addition of  emerging MR techniques, 
such as DWI, DCE-MRI, MRS and high-field-strength 
(3.0-T) MR imaging to standard T2W images, MR imag-
ing has now become a promising technique in the evalua-
tion of  TZ tumors. 
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