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Abstract
Recent data implicate oxidative stress as a mediator 
of pulmonary hypertension (PH) and of the associated 
pathological changes to the pulmonary vasculature and 
right ventricle (RV). Increases in reactive oxygen spe-
cies (ROS), altered redox state, and elevated oxidant 
stress have been demonstrated in the lungs and RV of 
several animal models of PH, including chronic hypoxia, 
monocrotaline toxicity, caveolin-1 knock-out mouse, 
and the transgenic Ren2 rat which overexpresses the 
mouse renin gene. Generation of ROS in these models 
is derived mostly from the activities of the nicotinamide 
adenine dinucleotide phosphate oxidases, xanthine oxi-

dase, and uncoupled endothelial nitric oxide synthase. 
As disease progresses circulating monocytes and bone 
marrow-derived monocytic progenitor cells are attracted 
to and accumulate in the pulmonary vasculature. Once 
established, these inflammatory cells generate ROS and 
secrete mitogenic and fibrogenic cytokines that induce 
cell proliferation and fibrosis in the vascular wall result-
ing in progressive vascular remodeling. Deficiencies 
in antioxidant enzymes also contribute to pulmonary 
hypertensive states. Current therapies were developed 
to improve endothelial function, reduce pulmonary 
artery pressure, and slow the progression of vascular 
remodeling in the pulmonary vasculature by target-
ing deficiencies in either NO (PDE-type 5 inhibition) or 
PGI2 (prostacyclin analogs), or excessive synthesis of 
ET-1 (ET receptor blockers) with the intent to improve 
patient clinical status and survival. New therapies may 
slow disease progression to some extent, but long term 
management has not been achieved and mortality is 
still high. Although little is known concerning the effects 
of current pulmonary arterial hypertension treatments 
on RV structure and function, interest in this area is 
increasing. Development of therapeutic strategies that 
simultaneously target pathology in the pulmonary vas-
culature and RV may be beneficial in reducing mortality 
associated with RV failure.
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INTRODUCTION
Pulmonary arterial hypertension (PAH), defined as mean 
pulmonary artery pressure (PAP) in excess of  25 mmHg 
at rest, is a rare and devastating disease that targets the 
endothelium of  small pulmonary arteries resulting in 
vasoconstriction and profound vascular remodeling. Va-
soconstriction results partly from endothelial dysfunction 
caused by an imbalance in bioavailability of  dilators, such 
as nitric oxide (NO) and prostacyclin (PGI2) vs excess in 
constrictors, such as, endothelin-1 (ET-1), thromboxane, 
serotonin, and angiotensin Ⅱ (Ang Ⅱ). The local imbal-
ance in vasoactive mediators promotes proliferation, hy-
pertrophy, and fibrosis within pulmonary arterioles. Early 
stages of  vascular remodeling include medial hypertrophy 
and hyperplasia, whereas the arterioles of  patients with 
advanced PAH are characterized by complex plexiform 
lesions resulting from intimal hyperplasia[1]. These changes 
eventually lead to luminal occlusion and arteriolar prun-
ing. The progressive increase in PAH increases afterload 
on the right ventricle (RV) which promotes right ven-
tricular hypertrophy (RVH). During an initial period of  
compensation the RV may exhibit enhanced contractility 
in response to the increased afterload. With progres-
sive increases in afterload the RV decompensates which 
results in RV failure. RV failure is marked by diminished 
myocardial perfusion and ischemia, increased end diastolic 
volume, RV dilation, reduced stroke volume, and reduced 
cardiac output. The factors contributing to the hemody-
namic and structural abnormalities of  the decompensat-
ing RV are likely due to neurohormonal signaling (Ang Ⅱ, 
aldosterone, ET-1), natriuretic peptides, and adrenergic 
stimulation), oxidative stress (reactive oxygen and nitro-
gen species), inflammation (inflammatory cytokines), and 
myocardial cell death. One common cause of  death in 
patients with PAH is right sided heart failure[2]. 

Current therapies were developed to improve endo-
thelial function, reduce PAP, and slow the progression 
of  vascular remodeling in the pulmonary vasculature by 
targeting deficiencies in either NO (PDE-type 5 inhibi-
tion) or PGI2 (prostacyclin analogs), or excessive syn-
thesis of  ET-1 (ET receptor blockers) with the intent to 
improve patient clinical status and survival[3]. Although 
little is known concerning the effects of  current PAH 
treatments on RV structure and function interest in this 
area is increasing[4]. Important clinically relevant questions 
are raised in this regard because the simultaneous goals 
of  reducing pulmonary vascular resistance and improving 
RV function may be challenging. Current therapies may 
reduce proliferation and increase apoptosis in cells in the 
pulmonary vascular wall and these same effects may be 
detrimental to cardiomyocytes in a decompensating RV. 
ET-1 receptor blockade may reduce PAP and slow pul-

monary vascular remodeling, yet the negative inotropic 
effects could be beneficial in some patients with compen-
sated RVH and detrimental in patients with a decompen-
sated RV. Therapeutic strategies that could be potentially 
beneficial to both the pulmonary vasculature and the RV 
would be those that reduce reactive oxygen species (ROS), 
reactive nitrogen species (RNS), inflammation, and fibro-
sis[4]. 

The underlying causes of  PAH are still largely un-
known but, like many diseases, are likely to involve an 
interaction between genetic and environmental factors. 
Diagnosis usually occurs in patients with established 
disease because symptoms at presentation, such as diz-
ziness, dyspnea, and syncope, are generally nonspecific. 
Despite modest therapeutic advancements in the last  
15 years, PAH still results in high morbidity and mortal-
ity[5]. Clearly, there is a critical need for further research to 
identify novel targets for treatment of  PAH. Herein, we 
will review the contribution of  oxidant stress to PAH and 
RV failure derived from several animal models of  PH and 
the potential role of  alternative strategies such as HMG 
co-A reductase class of  drugs, referred to as statins, as ad-
junctive therapy.

OXIDATIVE STRESS IN THE VASCULAR 
WALL
Physiologically active levels of  ROS, which can be gener-
ated in healthy endothelial, smooth muscle, and adven-
titial cells in the pulmonary and systemic vasculatures, 
are involved in the routine regulation of  physiologic and 
cellular processes[6-8]. ROS refer collectively to both un-
stable free radicals, such as superoxide anion (O2●–), nitric 
oxide (NO), hydroxyl moiety (●OH), hypochlorite (ClO−),  
and peroxynitrite (ONOO−), and stable oxidants such as 
hydrogen peroxide (H2O2). Free radicals are short lived 
because they are highly reactive and are scavenged by a 
series of  anti-oxidant moieties and enzymes. Oxidative 
stress occurs when there are repeated external insults that 
provoke excess ROS formation which overwhelms anti-
oxidant systems, thus creating an imbalance in the redox 
state of  the cell favoring oxidation. Excess synthesis of  
ROS can result in cell and tissue damage due to oxidation 
of  a number of  cell constituents such as proteins, lipids, 
carbohydrates, and DNA. Oxidative stress can contribute 
significantly to the pathogenesis of  atherosclerosis[9], heart 
failure[10], ventricular hypertrophy[11], respiratory distress[12], 
ischemia-reperfusion injury[13], and pulmonary and sys-
temic hypertension[14]. Oxidative stress via peroxynitrite-
induced tyrosine nitration can damage endothelial nitric 
oxide synthase (eNOS) and prostacyclin synthase (PGIS) 
which impairs vasodilation by diminishing the capacity of  
vessels to synthesize the vasodilators, NO and PGI2

[15]. 
Moreover peroxynitrite damage to eNOS redirects the 
synthase activity from NO to superoxide generation and 
superoxide synthesized in this manner has been implicated 
in eNOS-dependent tyrosine nitration of  prostacyclin 
synthase[16]. 
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There are multiple enzymatic and metabolic sources 
known to generate superoxide within cells in the vascular 
wall[17,18]. They include the nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidases[19], the mitochondrial 
electron transport chain complexes, xanthine oxidase 
(XO)[20,21], cytochrome P450, cyclooxygenase[22], and un-
coupled nitric oxide synthase[23,24]. In mitochondria ROS 
are normally produced as byproducts of  aerobic metabo-
lism by the electron transport complexes, with 1%-2% of  
oxygen (O2) being converted to O2●– at any given time. 
Normally, the activities of  most oxidases are below a level 
that could influence signaling pathways, but the NADPH 
oxidases and mitochondria generate sufficient superox-
ide under basal conditions to activate signaling related to 
control of  soluble guanylate cyclase and ion channels[17]. 
In disease states such as hypertension the NADPH oxi-
dases[25], XO[26], and nitric oxide synthases become major 
sources of  ROS, especially in the vasculature and are acti-
vated by hormones, growth factors, cytokines, and shear 
stress[27]. With disease mitochondria electron transport 
complexes can be disrupted and become a source of  ROS 
that promote cellular senescence, necrosis, or apopto-
sis[17]. Despite these varied sources of  ROS, the consensus 
is that the NADPH oxidases are not only the principle 
generator of  O2●– in the vasculature during disease[9,28-30], 
but their activities regulate the activities of  other ROS-
generating oxidases such as, XO[26] and eNOS, and are 
important in recruitment of  ROS-generating phagocytic 
cells.

EVIDENCE OF OXIDATIVE STRESS IN 
THE PULMONARY HYPERTENSIVE LUNG
Most of  the available animal models of  pulmonary hy-
pertension (PH) exhibit the two principal pathological 
features in the pulmonary vasculature common to most 
forms of  PH, which include excessive vasoconstriction 
and remodeling of  the pulmonary arteriolar wall, pri-
marily by a mechanism of  smooth muscle proliferation 
within the medial layer[14,31,32]. Because ROS may promote 
vasoconstriction, smooth muscle cell proliferation, and 
vascular remodeling, they are likely to play a critical role in 
many forms of  PH.

Ren2 model of PAH
We recently reported a new model of  PAH and pul-
monary vascular remodeling in the male TG(mRen2)27 
rat[14,33]. The Ren2 is a derivative of  the Sprague-Dawley 
(SD) rat that expresses the mouse renin gene in renal and 
extrarenal sites resulting in increased tissue synthesis of  
Ang Ⅱ via the local RAS, Ang Ⅱ-dependent hyperten-
sion, and end organ damage. Thus, we investigated the 
possibility that an activated intrapulmonary RAS would re-
sult in PAH in the Ren2 due in part to oxidative stress. We 
based this notion on the well documented fact that Ang 
Ⅱ stimulates NADPH oxidase-generated ROS in the vas-
culature (Ang Ⅱ)[27,34,35]. Ang Ⅱ causes rapid induction of  
NADPH oxidase-dependent superoxide synthesis via pro-

tein kinase C (PKC)[36] and more prolonged stimulation via 
transactivation of  growth factors[37,38]. Ang Ⅱ also causes 
redox-sensitive XO activation and eNOS uncoupling lead-
ing to increases in superoxide levels in vascular tissue[18,22]. 
In 8-9 wk old male Ren2 rats, we reported that the lung 
expresses mouse renin and other RAS components. We 
also showed increases in intrapulmonary NADPH oxi-
dase activity, superoxide, right ventricular systolic pres-
sure, and medial layer thickening of  pulmonary resistance 
arterioles[14]. Additionally, we found that the superoxide 
dismutase/catalase mimetic, tempol, reverses PAH and 
pulmonary vascular remodeling. Lastly, we showed that 
PAH developed prior to the onset of  LV dysfunction and 
was not due to hypoxemia[33]. Data from these studies in 
the Ren2 rat support the concept that PAH can occur as 
a consequence of  NADPH oxidase-induced oxidative 
stress induced by activation of  the local renin-angiotensin 
system (RAS) within the pulmonary vasculature and lung 
parenchyma. In support of  this concept, other laborato-
ries recently demonstrated the potential efficacy of  gene 
therapy targeting the RAS for treatment of  PAH[39,40]. It 
is likely that therapies specifically targeting the RAS will 
reduce Ang Ⅱ-induced activation of  NADPH oxidases 
thereby limiting oxidative stress in the pulmonary vascula-
ture, as well as in the RV. 

Chronic hypoxia-induced PH 
The rodent model of  chronic hypoxia-induced PH (CH-
PH) is one of  the most frequently used animal models to 
study PH. Although clinical classification schemes catego-
rize CH-PH separately from forms of  PAH, both CH-PH 
and PAH share many pathophysiological features in com-
mon, including elevated PAP, medial thickening of  pul-
monary arterioles, and RVH. To induce CH-PH typically 
mice or rats are exposed 10% oxygen under normobaric 
or hypobaric conditions. CH-PH is reversible if  animals 
are returned to normoxia. Hypoxia induces an immediate 
increase in PAP, initiates an inflammatory response within 
the first few hours of  exposure[41], and sustains the inflam-
matory response over time[42]. There is a paradoxical in-
crease in ROS during hypoxia which is likely due in part to 
the increase in numbers of  inflammatory cells within the 
lung vasculature and parenchyma. Alveolar epithelial cells 
exposed to hypoxic gas signal vascular endothelial cells to 
release cytokines and chemokines that attract circulating 
macrophages. Hypoxia also induces the release of  bone 
marrow-derived monocytic progenitor cells that are then 
attracted to and accumulate in the pulmonary vasculature. 
Once established, monocytes secrete mitogenic and fibro-
genic cytokines that induce cell proliferation and fibrosis 
in the vascular wall resulting in progressive vascular re-
modeling.

As indicated above there is an increase in ROS in CH-
PH. For instance, in a mouse model of  CH-PH, intrapul-
monary artery O2●– levels are elevated[43-45]. Moreover, the 
pathological changes associated with exposure to chronic 
hypoxia, i.e. increased intrapulmonary artery superoxide, 
increased PAP, RVH, and pulmonary vascular remodeling, 
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are abolished by administration of  the antioxidant, N-ace-
tylcysteine or the XO inhibitor, allopurinol. Xanthine 
oxidase levels and enzyme activities of  pulmonary artery 
endothelial cells can be dramatically increased by exposure 
to hypoxia resulting in significant O2●– generation[20]. This 
implicates ROS, including ROS generated by the activ-
ity of  XO, as important mediators of  pathophysiological 
changes that occur in this model. Nox2 knockout mice fail 
to develop CH-PH which suggests a critical role for O2●–  
generated by Nox2 containing NADPH oxidases[44]. It is 
possible that an activated intrapulmonary RAS induces 
NADPH oxidase and XO induced oxidative stress in CH-
PH rodents. Angiotensin converting enzyme (ACE) levels 
are selectively increased in the wall of  newly muscularized 
arterioles, but not in whole lung homogenates of  CH-PH 
rats[46]. Treatment of  CH-PH rats with ACE inhibitors or 
AT1R blockers prevent development of  disease. Like the 
affected areas of  the pulmonary vasculature, ACE expres-
sion is selectively elevated in affected areas of  the RV, es-
pecially areas with pronounced fibrosis and treatment with 
ACE inhibitors or AT1R blockers reduce development of  
RVH and fibrosis[47]. This suggests that hypoxia induces 
local ACE activity which generates Ang Ⅱ and that the 
remodeling in the pulmonary resistance arterioles and RV 
is mediated by local AT1R signaling which induces several 
oxidant generating pathways.

Monocrotaline-induced PAH
Perhaps the most frequently used rodent model of  PH 
is the rat monocrotaline model of  PAH (MCT-PAH). 
MCT-PAH is often used to model the progression of  
RV failure[10,48,49]. MCT is a pyrrolizidine alkaloid that is 
administered by one time IP injection, usually at a dose of  
60 mg/kg. Although the precise mechanism of  action of  
MCT is unknown there are several published longitudinal 
studies describing the details of  the progression of  PAH 
and RVH[50-53]. Like CH-PH, rats injected with MCT ex-
perience a rapid intrapulmonary inflammatory response[51] 
with notable increases in inflammatory monocytes in the 
adventitia of  pulmonary resistance arterioles within 8-16 h  
after injection. Muscularization of  nonmuscularized and 
muscularized arterioles leading to increased medial layer 
thickness is detectable as early as 3 and 7 d post injection, 
respectively and reaches significance by 10 and 14 d, re-
spectively[50]. A decrease in the normalized ratio of  num-
ber of  small arterioles to alveoli number is apparent by 
21 d indicating arterial pruning. RVH is apparent by 21 d 
and becomes progressively more severe. A radiotelemetric 
monitoring study in conscious male Wistar rats showed 
that systolic PAP, which is normally around 35 mmHg, 
begins to increase by 12 d post MCT injection and rises 
progressively to 60-65 mmHg by 28 d[52]. Consistent with 
earlier studies, RVH begins to become apparent by 21 d. 
If  rats are left untreated mortality begins to occur due to 
RV failure beginning around 4 wk post injection and few 
rats survive beyond the 5th wk following MCT injection. 

The MCT-PAH model is also characterized by elevated 
intrapulmonary and RV superoxide levels[48,49,54-56] while 

there is a notable absence of  oxidative stress in the LV[11]. 
Moreover, antioxidant therapy can attenuate development 
of  MCT-PAH and RVH. For instance, intratracheal deliv-
ery of  adenovirus containing the gene for human extracel-
lular SOD acts as an antioxidant and ameliorates develop-
ment of  MCT-PAH[54]. Intraperitoneal administration of  
EUK-134, an SOD/catalase mimetic, also reduces oxida-
tive stress, interstitial fibrosis, and proapoptotic signaling 
in the RV and improves RV function[11]. More recently it 
was reported that the antioxidant, resveratrol, decreased 
leukocyte infiltration into the pulmonary vasculature, pul-
monary artery smooth muscle cell proliferation, NADPH 
oxidase-induced oxidative stress, and prevented the devel-
opment of  MCT-PAH and RVH[56]. Thus, it appears that 
multiple antioxidant therapies are effective at reducing 
progression of  MCT-PAH. 

Caveolin-1 Knock Out (cav-1 ko) Mouse Model of PH
eNOS is abundant in caveoli and forms a heteromeric 
complex with cav-1. Cav-1 bound to eNOS is a nega-
tive regulator of  eNOS activity in endothelial cells while 
binding of  Ca2+-calmodulin to eNOS disrupts the eNOS-
cav-1 complex resulting in eNOS activation and NO 
synthesis[57]. Disruption of  cav-1 gene expression in cav-1 
knockout mice (cav-1 ko) leads to global loss of  caveoli 
resulting in hyperactive eNOS and excessive synthesis of  
NO[58]. In the lung, endothelial cells and type I pneumo-
cytes are rich in caveoli and several studies demonstrate 
that the loss of  appropriate eNOS regulation by cav-1 
ko causes multiple complications in the pulmonary vas-
culature and alveolar space. Cav-1 ko mice exhibit PH, 
endothelial cell proliferation, endothelial dysfunction, lung 
fibrosis, and biventricular hypertrophy[58-60]. eNOS hyper-
activation in pulmonary arterioles is marked by increased 
activation of  Akt and eNOS leading to elevated cGMP 
and enhanced relaxation, as well as hyperactivation of  the 
p42/p44ERK-MAPK pathways leading to cell prolifera-
tion and fibrosis. These fibrotic and proliferative respons-
es are pronounced in alveolar septa and result in impaired 
gas exchange, arterial hypoxemia, and PH with RVH. Pul-
monary defects can be reversed with either NOS blockade 
or targeted reexpression of  cav-1 in endothelial cells[61,62]. 
This animal model demonstrates the critical nature of  the 
cav-1/eNOS interaction for normal lung and myocardial 
function, as well as the deleterious consequences to the 
lung of  disruption of  NOS function that leads to exces-
sive synthesis of  the free radical, NO.

Neonatal models of PAH
In two lamb models of  persistent PH of  the newborn 
caused by either prenatal placement of  an aortopulmo-
nary shunt[24] or ductal ligation[63], superoxide levels be-
come elevated in pulmonary arterioles. Superoxide is the 
primary oxidant responsible for oxidative stress in these 
models and is derived mainly from NADPH oxidase and 
secondarily from uncoupled eNOS. Thus, it is increasingly 
apparent that activation of  intrapulmonary superoxide 
generating systems, especially the NADPH oxidases, plays 
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a key role in development of  diverse animal models of  
PH.

It should be noted that most animal models of  PH do 
not faithfully reproduce the pathophysiology observed in 
human PH especially in the advanced stages. Thus, extrap-
olating the contribution of  oxidative stress in the etiology 
of  PH in humans from animal models may be premature. 
Recently, a novel rodent model of  PAH was developed 
that exhibits similar lesions in the pulmonary vasculature 
as occur in advanced human PAH. Upon autopsy, the 
pulmonary arterioles of  rats given a one-time injection 
of  a VEGF receptor blocker, exposed to hypoxia for  
3 wk and returned to normoxia for 10-11 wk, exhibit con-
centric neointimal and plexiform lesions, similar to those 
observed in humans. This novel rodent model may rep-
resent the most human-like model of  PAH developed to 
date and offer new opportunities to examine mechanisms 
leading to development of  plexiform and other complex 
lesions in PAH. 

Oxidative stress in humans with PH
There is evidence of  oxidative stress in the lungs of  pa-
tients with PH. Recently, it was shown that patients with 
idiopathic PAH have elevated XO activity compared to 
control patients and that XO activity can be reversed with 
treatment[64]. 

Immunohistochemical studies of  lung biopsy samples 
of  patients with severe PH demonstrate ubiquitous and 
profound elevation of  3-Nitrotyrosine. 3-Nitrotryosine is a 
widely used biomarker of  oxidative damage caused by re-
action of  peroxynitrite with tyrosine residues on proteins. 
3-Nitrotyrosine is also considered evidence for scavenging 
of  NO by superoxide. Indeed, these patients have lower 
levels of  exhaled NO than normal patients and this may 
be due, in part, to loss of  NO that reacts with superoxide. 
8-Hydroxyguanosine staining is present within the endo-
thelial cells within plexiform and concentric lesions from 
patients with PAH and is absent in the pulmonary vascular 
endothelium of  control patients[65]. 8-Hydroxyguanosine 
is a biomarker of  oxidative damage caused by reaction of  
superoxide with guanine. In the lungs of  the same PH pa-
tients the amount and activity of  Mn-SOD was lower, in-
dicating decreased capacity to scavenge superoxide. These 
data suggest that the lungs of  patients with severe PH are 
under chronic oxidative stress[65].

Pleiotropic effects of statins could be beneficial for 
treatment of PAH and RVH
Since antioxidant therapy appears to be beneficial for 
treatment of  PAH and cor pulmonale in animal models it 
seems reasonable to incorporate strategies that reduce the 
excessive activity of  oxidant generating systems as adjunc-
tive therapy. Of  interest in this regard are the 3-hydroxy-
3-methylglutaryl coenzyme A reductase (HMG-CoA) 
inhibitors (statins), originally developed for their cho-
lesterol lowering/antiatherogenic effects. Statins exhibit 
diverse beneficial effects in the vascular wall independent 
of  effects on cholesterol synthesis[66,67]. Statins improve 

cardiovascular outcomes/risk by restoring endothelial 
and smooth muscle cell function, inhibiting smooth 
muscle cell proliferation, reducing oxidative stress and 
inflammation in the vascular wall, and decreasing platelet 
thrombogenic activity. Many of  the therapeutic benefits 
of  statins in the vasculature are the likely consequence 
of  reduced synthesis of  O2●– which could result in more 
positive regulation of  cell proliferation, apoptosis, growth, 
migration, inflammation, extracellular matrix synthesis 
and degradation, differentiation and contraction[68]. Statins 
are associated with decreased expression of  some of  the 
NADPH oxidase subunit mRNAs and proteins, as well 
as increased expression of  antioxidants, such as catalase[69] 
or heme-oxygenase-1[70]. Indeed, most statins increase 
lung heme-oxygenase activity in adult mice[70]. One way in 
which statins act to inhibit NADPH oxidase activity is by 
blocking Rac1 geranylation which reduces the ability of  
Rac1 to translocate to the membrane and interact with the 
NADPH oxidase complex and signal properly[71-73]. It has 
not been determined whether statins reduce oxidant stress 
in the pulmonary circulation or RV by blocking Rac1 ge-
ranylation.

Although statins display only minimal reductions in 
blood pressure in the hypertensive systemic circulation[74,75], 
recent evidence suggests that these agents may be effica-
cious in treating PAH. For instance, in rat models of  PAH 
statins attenuate the development of  PH, pulmonary 
vascular remodeling, and RVH[76-78] and in some reports re-
verse established PAH[79]. In rodents, statins may improve 
endothelial function by reversing lung eNOS dysfunction 
during hypoxia-induced PH[77,80] or increasing lung eNOS 
expression during monocrotaline-induced PAH[78,81]. We 
showed that rosuvastatin reverses PAH in the Ren2 rat by 
reducing NADPH oxidase-mediated oxidative stress in the 
lungs[33]. We also observed that the pulmonary arterioles of  
Ren2 rats have a thickened medial layer due to an increase 
in number, but not density, of  smooth muscle cells. This 
raises the question whether rosuvastatin directly inhibits 
SMC proliferation in the pulmonary vasculature. Statins 
inhibit SMC proliferation through inhibiting RhoA activity 
by inhibiting isoprenylation of  this protein which prevents 
translocation to the plasma membrane[82]. Rho kinase in-
hibitors ameliorate PAH[83]. Indeed, simvastatin reduces 
proliferation and increases apoptosis of  neointimal and 
medial SMC in pulmonary arteries or rats with PAH[79]. An 
observational study of  adjunctive simvastatin therapy in 
patients with severe PH suggests functional improvements 
in symptoms[84]. 

Statins are well known to improve cardiac function 
in animal models of  heart disease[85,86], as well as in pa-
tients[87]. Although mechanistic studies suggest improved 
cardiac function following statin treatment is associated 
with improving NO signaling and reducing inflamma-
tory mediators more recent interest focuses on a potential 
role for statins in promoting myocyte regeneration and 
myocardial repair. Statins are known to induce mobiliza-
tion of  endothelial progenitor cells (EPCs) which may, 
in part, explain their beneficial cardiovascular effects[88-90]. 
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One recent study demonstrates that pravastatin dose-
dependently increases circulating bone marrow derived 
progenitor cells which help to facilitate regenerating 
myocardium in diseased heart[90]. This is of  importance 
because circulating bone marrow-derived EPCs are able 
to incorporate into the vascular wall where they may assist 
in repair of  endothelial injury[91]. EPCs can also migrate 
into the myocardium where they are able to differentiate 
into functional cardiomyocytes[92]. Intravenous adminis-
tration of  syngeneic bone marrowed derived-EPCs can 
prevent the development of  MCT-PAH in rats[93]. Delayed 
delivery of  EPCs to rats with established MCT-PAH 
prevented further disease progression while disease was 
reversed in rats with established MCT-PAH that received 
EPCs transduced with eNOS. EPCs incorporated into 
the endothelial lining of  distal pulmonary arterioles and 
restored microvascular structure and function. The ef-
ficacy of  EPC delivery to the RV in MCT-PAH rats has 
not been examined. It seems reasonable to speculate that 
statin therapy may exhibit multiple beneficial effects in 
the RV that improve RV function and structure by reduc-
ing oxidative stress and promoting repair of  the RV by 
mobilization of  endothelial progenitor cells to the injured 
RV myocardium. Therefore, statins may be an attractive 
option for treatment of  PAH and cor pulmonale because 
they may simultaneously prevent further tissue damage by 
decreasing oxidative stress and enhance repair to injured 
sites in both the pulmonary vasculature and RV.

A recent double-blind, randomized, placebo-controlled 
clinical trial of  adjunctive simvastatin therapy in patients 
with PAH receiving conventional therapy demonstrated 
modest benefit in the form of  a small and early reduc-
tion in RV mass and N-terminal pro-B-type natriuretic 
peptide levels, a marker of  PAH; however, benefits were 
not sustained over a 12 mo period[94]. Whether the reduc-
tion in RV mass was secondary to a reduction in PVR is 
unknown as PVR was not measured in this study. The 
authors also noted the potential for drug interactions as 
conventional therapies such as sildenafil and bosentan, like 
statins, are substrates of  CYP3A4. This raises the possibil-
ity that combination therapies could enhance or reduce 
the exposure to one or both drugs.

CONCLUSION
In summary, PAH is associated with a generalized state 
of  enhanced oxidative stress. Current clinical approaches 
which targeted the endothelial dysfunction and vasocon-
striction have not produced long-lasting mortality benefit. 
Thus, alternative approaches to treating this complex 
disease are needed. In this review, we put forward that 
oxidative stress plays a significant role in the pathogenesis 
of  this disease. Some studies suggest that improvement 
in physiological and micrographic parameters can occur 
when animals are treated early with statins. For significant 
improvement in this patient population to occur, it is criti-
cal that early recognition of  the condition be increased. 
In addition, clinical trials which evaluate approaches to 

preventing the deleterious effects of  the oxidative stress 
which can lead to an irreversible state of  pulmonary artery 
hypertension and resultant right ventricular failure and 
subsequently death must be conducted.
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