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Abstract
Many different artificial liver support systems (biological 
and non-biological) have been developed, tested pre-
clinically and some have been applied in clinical trials. 
Based on theoretical considerations a biological artificial 
liver (BAL) should be preferred above the non-biological 
ones. However, clinical application of the BAL is still 
experimental. Here we try to analyze which hurdles 
have to be taken before the BAL will become standard 
equipment in the intensive care unit for patients with acute 
liver failure or acute deterioration of chronic liver disease.
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INTRODUCTION
Nowadays intensive care doctors have many artificial 
devices to support their patients with failing organs. 
They possess different types of  hemodialysis devices, 
artificial ventilation, artificial heart, aortic balloon 
pumping, blood oxygenators, heart-lung machines and 
are able to apply total parenteral nutrition in the patient 
with short bowel syndrome. However, the patient with 
acute liver failure (ALF) is still a major challenge[1].

ALF is a devastating clinical syndrome with a high 
mortality (60%-80%, depending on the cause and the 
experience of  the clinical centre) with most frequent causes 
of  death being brain edema, SIRS (systemic inflammatory 
response syndrome) and multiple organ failure (MOF). 
Emergency whole or partial liver transplantation (orthotopic 
(OLT) or auxiliary) is the only life-saving therapy. 

Many attempts have been made to develop artificial 
liver support devices (ALSD): non-biological ones such 
as hemodialysis, charcoal hemoperfusion, selective 
plasma filtration, plasma exchange, hemo-diadsorption, 
albumin dialysis and biological ones such as whole liver 
perfusion, liver cell transplantation and bioartificial liver 
support.

The status of  ALSDs has been the subject of  many 
reviews, at least one a year, since 2001[2-14]. It does not 
seem wise to repeat their contents in this editorial and the 
reader is referred to the publications for global and/or 
detailed information. From reading them, at least one 
common conclusion emerges: devices that only support 
the failing detoxification function of  the severely diseased 
liver are not sufficient to save the lives of  ALF patients. 
It is generally accepted that the syndrome of  ALF is not 
only determined by failing hepatic detoxification, but also 
by failing hepatic synthetic and regulatory function. This is 
also one of  the conclusions of  a workshop on ALF held 
in the USA in 2008[1].

The purpose of  this editorial is, however, to analyze 
the critical issues that have to be solved in the near 
future.
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CRITICAL ISSUES
What can we expect from cell or even organ-based 
ALSDs?
Whole animal liver perfusion as an ALSD seems to be a 
logic approach. There is some experience in a few case 
reports[15], but it has never been accepted as a common 
treatment, because of  its complexity and its important 
xenotransplantation-related problems. 

There are a few case reports concerning the more 
simple technique of  liver cell transplantation (LCTX)[16] 
as a treatment for ALF. LCTX has at least 2 important 
drawbacks: (1) the availability of  sufficient amounts 
of  fully differentiated human liver cells; (2) the so far 
unsolved problem of  transplanting large amounts (at 
least 10% of  the normal parenchymal mass) of  cells 
where there is adequate blood supply.

Ideally, a tissue-engineered transplantable liver should 
be the final solution. Such a bioengineered liver (BEL) 
should resemble the native liver as much as possible. This 
means a composite of  parenchymal and non-parenchymal 
liver cells in a sponge-like configuration in which a 
vascular system provides, by direct plasma contact, oxygen 
and nutrients to the liver cells and which is equipped 
with a biliary outflow system. Ideally this BEL has to be 
connected to the splanchnic circulation (inflow tract), the 
caval vein system (outflow tract) and the intestine (biliary 
tract).

At present, such a BEL is only in a very preliminary 
and experimental phase[17-22] and, as second best to liver 
transplantation, patients have to be treated by one of  
the existing bioartificial livers (BALs) that can only be 
connected outside the body to the patient’s systemic blood 
circulation

A BAL is defined as a bioreactor charged with liver 
cells that is connected outside the body to the blood or 
plasma circulation of  the patient. Since a BAL supports 
both the failing detoxification and the failing synthetic 
and regulatory function of  the diseased liver, it should 
have a beneficial effect on the degree of  hepatic coma 
and the severity of  MOF and, last but not least, on 
survival of  ALF patients and preferably also of  patients 
with acute on chronic liver disease (AoCLD). 

In general, 4 types of  BAL bioreactors can be disting
uished: hollow fiber; flat plate and monolayer; perfused 
beds/scaffolds; encapsulation/suspension. Every system 
has its pros and cons. For details see Allen et al[2].

To prove their right to belong to the standard equip
ment of  an intensive care unit BALs need to be validated 
in randomized, controlled clinical trials. Several questions 
have arisen as to whether pre-clinical research on BALs 
has been sufficient to justify their clinical application.

How good are results in experimental animals?
In general, the answer is positive. In many different 
models of  ALF several BALs based on animal liver 
cells have shown to prolong survival significantly in 
comparison to standard treatment[23-33]. 

Can it contain a sufficient mass of parenchymal liver 
cells?
It is generally accepted (based on safe surgical resections) 
that survival is possible with a minimum of  20% of  liver 
mass with optimal functionality. Assuming that the ALF 
patient still has some residual functioning liver mass, a 
BAL should contain at least 15% of  liver mass. However, 
the reality is that isolated liver cells in a bioreactor do not 
have optimal functionality, so more than 15% (preferably 
20%-30%) of  liver mass will be required[34].

Furthermore, it is well known that parenchymal liver 
cells function at best in a 3-dimensional (3D) configuration. 
In addition their functionality increases when they are co-
cultured with non-parenchymal cells[35] For these reasons, 
the ideal BAL should contain at least a mixture of  well-
differentiated liver cells in a 3D configuration at a mass 
of  at least 20% of  the normal liver (200 g cells in 1 kg of  
liver). Vital Therapies ELAD® (Extracorporeal Liver Assist 
Device) and Hep-Art AMC-BAL have this capacity.

How is bi-directional mass transport of oxygen, 
carbon dioxide, nutrients and liver cell products best 
guaranteed?
In BAL devices, bi-directional mass transfer is needed 
to provide nutrients to sustain cell viability and allow 
export of  therapeutic cell products. Although most device 
designs address this, there are important limitations 
involving the use of  semi-permeable membranes as 
a barrier between plasma and the bio-component. 
Bioreactors in which direct contact between plasma and 
the liver cells is guaranteed or those using semi-permeable 
membranes with high porosity are preferred. 

In addition, liver cells need sufficient oxygen supply 
to function optimally[36]. The amount of  oxygen actually 
dissolved in plasma is insufficient in this respect. 
Therefore, the cells in the bioreactor should see either full 
blood (with many problems such as hemolysis, clotting 
and platelet loss) or plasma with an extra oxygen carrier 
such as fluorocarbons[37] or locally supplied oxygen by 
oxygen capillaries interwoven with the cell containing 
hollow fibers (Modular Extracorporeal Liver Support)[38] 
or matrix (AMC-BAL)[39] inside the BAL: a so-called 
internal oxygenator.

Do BALs support drainage of bile?
Another aspect of  current BALS is the universal absence of  
functional biliary excretion into an isolated compartment. 
Liver cells in 3D configuration can form functional 
canaliculi, but it is unknown to what extent biliary 
compounds still accumulate intracellularly and whether 
these will shorten the vitality of  the cells. If  some export 
of  biliary compounds occurs at the basal lateral side to the 
plasma compartment a hybrid system removing them from 
this compartment is a logic next step. This might mean 
a modular system in which a BAL is combined with an 
artificial liver support device such as hemodialysis, charcoal 
hemoperfusion or albumin dialysis[40]. 
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How long do cells remain viable and functional? 
Cell viability is of  paramount importance for the life 
supporting capacity of  a BAL. The experience is that 
primary liver cells in a bioreactor lose functionality over 
time. With this already being the case under optimal 
culture conditions, it is especially problematic when the 
environment of  cells is 100% human plasma. A decrease 
in function is even more marked if  cells have to live in the 
plasma of  ALF patients[41-46]. Increased concentrations of  
toxic products and probably decreased concentrations of  
essential nutrients play a role in this regard. For this reason, 
BALs are only temporarily sufficiently functional and have 
probably to be replaced after a critical time by fresh ones.  

Which cells can be used in the BAL?
Freshly isolated or cryopreserved porcine liver cells or 
a human hepatoma cell line have been most frequently 
used as the biocomponent in clinically applied bioartificial 
livers. 

Because of  the xenotransplantation-related disadvant
ages of  porcine cells (immunological reactions and 
possible pig endogenous retrovirus transmission)[47-50] 
and the shortage of  primary human hepatocytes, a well-
differentiated human liver cell line seems to be the Holy 
Grail. Such a cell line will have minimal immunogenicity, 
no risk of  xenozoonosis and required functionality and 
availability. 

Primary sources for the development of  such 
human cell lines are human liver tumor derived cell lines, 
immortalized fetal or adult hepatocytes and stem cells 
of  hepatic, hematopoietic, mesenchymal or embryonic 
origin. However, in all cell types tested so far, the in vitro 
differentiation cannot be stimulated to such an extent that 
functionality reaches that of  primary human hepatocytes. 
The future lies in having more insight into differentiation-
promoting factors and the influence of  matrix and co-
culture conditions on the functionality of  liver cell lines[51].

What is the current situation?
A few BAL systems are currently in the process of  being 
commercialized (Table 1). 

Vital Therapies just finished a controlled clinical trial 
in 49 AoCLD patients in China. At its website (www.
Vitaltherapies.com) one can read: “The pivotal China 
trial enrolled 49 patients and was carried out to support 
the registration of  ELAD in China. It demonstrated 
statistically significant improvement in transplant free 
survival for acute-on-chronic liver failure patients treated 
with ELAD compared to the control group. These were 
mostly hepatitis B patients. VTI filed an application for 
marketing approval with the China SFDA in September 
2007 and this application remains under review. These 
results remain to be confirmed in studies outside China”.

HepaLife (www.hepalife.com) is promoting the 
Demetriou system (formerly brought by Circe and Arbios) 
that is based on cryopreserved porcine liver cells combined 
with a charcoal column connected to a plasmapheresis 
circuit. More than 200 patients have been treated by this 
system. In a multicenter controlled clinical trial in 181 ALF 
patients, time to death was significantly prolonged only in a 
subgroup of  83 patients with ALF of  known etiology.

The Chinese ALSDs (TECA BALSS and HBAL) and 
the Dutch AMC-BAL have been tested in Phase 1-2a 
trials but are not yet commercially available.

Why is clinical proof of efficacy rather limited?
There are a few explanations: (1) The hardware used for 
bioreactors has not always been optimal. Hollow fiber-
based bioreactors will have mass transfer restrictions 
and the absence of  an internal oxygenator will limit cell 
functionality if  plasma perfusion is the approach to the 
patient’s blood circulation. In addition not all BALs have 
a 3D configuration of  the liver cells. (2) The optimal 
human liver cell line is still not available. Hepatoma-
derived cell lines are not fully differentiated, nor are 
immortalized liver cell lines. Future developments in this 
regard are urgently needed. (3) In the already published 
clinical trials, patient populations have been rather 
diverse making intention-to-treat analyses disappointing. 
(4) If  BAL treatment is applied in ALF patients to bridge 
the waiting time for OLT, post-transplantation survival is 
not only dependent on BAL treatment but also on OLT.
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Table 1  BALs to be commercialized

Company Device Characteristics Clinical experience & future plans

HepaLife Hepa-Mate™ (previously 
HepatAssist)

Cryopreserved porcine cells, treatment 3-6 h for 1-5 d, 
charcoal column, and centrifugal plasmapheresis. Cell 
mass  previously 60 g, in future trial 160 g

Phase Ⅱ/Ⅲ with HepatAssist in 171 ALF 
patients, only 9% improvement in OLT/NR as 
compared to controls. New trial in preparation

Vital therapies ELAD® Two-chambered hollow fiber cartridge with 
immortalized human C3A cell line. Treatment up to 
10 d. Ultrafiltrate perfusion. 4 replaceable cartridges. 
Cell mass 4 g × 200 g

Controlled study with 25 ALF patients 
completed. 92% recovery OLT/NR. Controlled 
clinical trial in 49 AoCLD patients in China

Beijing and Nanjing 
Universities

TECA-BALSS/HBAL Porcine cells (10-20 billion cells), outside compartment 
of hollow fiber devices

Phase I, 15 patients ALF and 3 patients AoCLD

Hep-Art AMC-BAL Perfused scaffold, oxygenation in situ, 10-15 billion 
freshly isolated SPF porcine hepatocytes

Phase Ⅰ/Ⅱa; 14 ALF patients. Safe, no PERV 
transmission

BAL: Biological artificial liver; ALF: Acute liver failure; OLT: Orthotopic liver transplant; AoCLD: Acute on chronic liver disease; PERV: Porcine 
endogenous retrovirus; NR: Native recovery; SPF: Specified pathogen-free; ELAD®: Extracorporeal Liver Assist Device; BALSS: Bioartificial Liver Support 
Systems; HBAL: Hybrid Bioartificial Liver; AMC-BAL: Academic Medical Center University of Amsterdam-Bioartificial Liver.
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CONCLUSION
Taking all these considerations together there is certainly 
a future for the BAL, based on pre-clinical data and the 
lessons that have been drawn from the existing con-
trolled trials. A well-differentiated human liver cell line is 
still the Holy Grail. If  this cell line were available, future 
clinical trials should be done with it in a BAL consisting 
of  minimal mass transfer restrictions and equipped with 
cell oxygenation in situ, loaded with a sufficient 3D mass. 
Eventually it should be combined with albumin dialysis 
and refreshed after a critical time. The trial population 
should be as homogeneous as possible and well defined 
with regard to survival capacity. 

POSSIBLE CONFLICT OF INTEREST
Chamuleau RAFM is CSO of  Hep-Art Medical Devices 
B.V. that produces the AMC-BAL.
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