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Abstract
Even with the advent of laparoscopic techniques for 
liver tumours, classic resections still represent a major 
undertaking for numerous liver lesions. The avoidance of 
surgery using ablative techniques has been the aim for 
over 20 years. Large volumes can now be rapidly treated 
with low morbidity with the many technical developments 
and modifications of the delivery probes. Despite these 
advances recurrences rates remain high with all of 
the presently available techniques. The biological and 
pathophysiological basis underlying may help explain 
their limitations and are important in understanding 
where they may be appropriately applied and ways in 
which they may be improved in the future.
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INTRODUCTION
Advances in liver surgery and anaesthesia have expanded 
their potential applications and a fifth of  liver tumours are 
now resectable. Nevertheless, in the majority of  patients 
surgery is not possible and chemotherapy and palliative 
care remain the mainstays of  treatment. In these patients 
ablative techniques are an attractive option and offer an 
opportunity to increase survival. Experimental research 
over the last 20 years has seen the development of  a nu­
mber of  ablative modalities and several of  these have been 
applied clinically. This has provided hepatobiliary surgeons 
with techniques which can be used palliatively but also in 
combination with resection for multiple and awkwardly 
positioned lesions. Techniques which achieve local destru­
ction by modification of  the tissue temperatures adjacent 
to the treatment probe have been increasingly favoured 
over the “chemical” procedures (alcohol injection and 
tissue chemoembolization)[1]. However ablative techniques 
which utilise temperature changes are potentially associated 
with significant complications. In fact, although microwave 
(MW) and radiofrequency (RF) are used in clinical practice, 
cryotherapy (CRYO) has been largely abandoned and laser 
ablation was never widely employed.

Examining the literature regarding thermal ablation (TA) 
reveal many similarities but also demonstrate significant 
differences among techniques. These comparisons are val­
uable, identifying those properties that are essential for the 
development of  a safe and reliable treatment. In addition, 
the data is important when designing research strategies to 
facilitate further technical developments. The purpose of  
this editorial is to examine some of  these common critical 
factors that influence local failures and to propose approa­
ches to overcoming the current limitations.
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RECURRENCES RATES AFTER THERMAL 
ABLATIVE PROCEDURES AND RISK 
FACTORS
Technical advances have allowed modifications of  the 
equipment used for thermal ablative techniques. Differ­
ent approaches have been used in an attempt to augment 
the advantages of  the individual techniques and allow 
wider clinical application. Nevertheless, data from clinical 
studies does not confirm the superiority of  any particular 
modality especially in respect of  recurrence rates. The rate 
of  local recurrences ranged from 0% to 50% after MW 
ablation[2-6], 2% to 67% after RF[7-10], and 9% to 44% after 
CRYO[11-13]. Multivariate analysis of  the risk factors that 
could potentially influence local failure after ablation found 
only a few which were important in determining outcome. 
The tumor size, number of  nodules, and Child-Pugh clas­
sification had an influence after MW[14], tumor size and the 
ablative approach used (surgical versus percutaneous) after 
RFA[8] and tumor size, the presurgical level of  carcinoem­
bryonic antigen and tumor grading after CRYO[15,16].

REASONS FOR LOCAL FAILURE
Tumor size
With all ablative techniques, it is clear that tumor size is 
crucial and influences the short and long term results. 
Tumours of  3 cm or larger are most likely to recur and 
this is related to difficulties with achieving a complete 
ablation at the initial treatment. The ablation must en­
compass the lesion with a significant degree of  overlap 
to ensure complete treatment and this can be difficult 
with large tumours due to the proximity of  major va­
scular structures. One centimeter is considered a safe 
macroscopic margin and a 3 cm wide lesion therefore 
requires a 5 cm wide ablation to avoid local recurrence. 
Treatment zones which can be achieved with MW range 
between 3.5 and 5 cm[2,17,18], although newer devices have 
produced ablations with diameters up to 6.5 cm[19-22]. 
RF ablation is able to create lesions which range from  
0.5 to 5 cm[23,24], although ablations of  up to 7 cm have 
been reported[25]. In experimental CRYO studies most of  
the lesions produced were between 2 and 3 cm[26,27], with 
only one report described larger lesions with diameters 
up to 9 cm[28]. 

Different methods have been used to increase the 
diameters of  ablated lesions and treat tumours greater 
than 3cm. Modifications of  the shape and number of  
RFA electrodes and MW antennae lead to different 
shapes of  the ablated zones and achieved larger diameters 
compared to the single straight configuration[18,21,22,29-31]. 
Another approach employs cooling of  the RF-ablated 
tissue to avoid desiccation. The increase in tissue charring 
which occurs at the metal electrode–tissue interface during 
RF ablation results in elevated circuit impedance and 
markedly reduced RF output, limiting the heat diffusion. 
RF electrodes with internal cooling, those that release 
normal saline around the probe (wet electrodes) or where 

saline is added from an external source (saline-enhanced 
RFA) have all been investigated with promising results[29]. 
Finally, the temporary exclusion of  vascular inflow (using 
a Pringle manoeuvre) almost doubled the diameters of  the 
ablated lesions in all TA procedures and could potentially 
achieve volumes which are up to six-times greater[28,32-38].

Proximity to large vessels
Although tumour size is important both in respect of  
eligibility for initial surgery and the potential for treatment 
by an ablative technique some small liver tumours 
are still inoperable due to their anatomical position. 
Tumours adjacent to major vessels are often unresectable 
and at the same time at higher risks of  recurrence 
and complications following TA. Large blood vessels 
(greater than 3 mm), and to a lesser degree bile ducts, are 
relatively protected from thermal injuries as the inflowing 
warm blood conducts the excessive temperature from the 
vessel wall, but the blood flow also prevents an adequate 
heating/freezing of  perivascular tissues with consequent 
reduced destruction of  tumour cells. The phenomenon 
is called “heat (or cold)-sink effect” and is the basis for 
incomplete ablations.

No specific methods have presently been developed to 
overcome this problem, which still remains a major con­
traindication to TA. However, there are other modalities 
which do not rely on temperature changes and are conse­
quently not affected by local blood flow. Electrolytic abla­
tion, also known as low-level direct current therapy, is an al­
ternative method which produces no change in temperature 
and exerts its effects through electrochemical and pH modi­
fications and the production of  free radicals. These changes 
render the microenvironment close to the probe extremely 
cytotoxic, produce tissue necrosis and are not influenced 
to any large degree by the presence of  blood vessels or bile 
ducts[39,40]. Due to the almost complete absence of  thermal 
energy developed, the procedure has proved particularly 
safe in experimental studies where ablations were conduct­
ed close or even within major vessels (Figure 1)[41-43]. This 
characteristic makes this technique particularly useful for 
the treatment of  lesions positioned close to major vessels[44]. 
The presence of  the “electric-sink” effect, if  any, does not 
modify significantly the shape of  the ablated lesion which 
is able to include the vessel wall without damaging it[45]. If  
appropriate clinical trials confirm a clear survival advantage 
in this subgroup of  patients with unresectable lesions close 
to major vessels, this could become a specific indication for 
electrolytic ablation that would negate the relative disadvan­
tage of  long ablation times compared to those of  the more 
common TA procedures.

Histological zones
Although minor differences exist in descriptions of  the 
pathological changes following different TA procedures, 
the results are generally very similar and independent 
of  the method employed. The ablated region is com­
posed predominantly of  two concentric zones with 
a central area of  complete coagulative necrosis and a 
peripheral transitional rim of  inflammation, congestion, 

� January 27, 2010|Volume 2|Issue 1|WJGS|www.wjgnet.com



hemorrhage and thrombosis. While the coagulative 
zone is occupied entirely by dead cells and amorphous 
material, the transitional rim still contain viable cells that 
may survive the adverse microconditions produced by 
the inflammatory environment and ultimately give rise to 
tumor recurrences[31,46,47]. In this area cells express heat 
shock proteins and die by apoptosis, the effect of  which 
peaks 6 h following the ablation and expands the zone 
of  definitive necrosis[48-51], and a combination of  capillary 
microthrombosis and vasoconstriction further contributes 
to the enlargement of  the necrotic area[52]. 

Problems resulting from the production of  a transi­
tional zone have to be addressed if  recurrences in this 
rim of  tissue are to be eliminated. Experimental studies 
have provided considerable details about the process 
and mechanisms, but to date have failed to identify a 
reliable strategy to overcome the problem. Nevertheless, 
there are a number of  hypotheses that may allow the 
development of  future strategies. Firstly, techniques 
that selectively enhance the transitional rim may better 
differentiate tumor recurrences from the physiological 
repair that occurs normally following ablation. The recent 
advent of  targeted ultrasound (US) contrast media has 
been achieved by linking specific antibodies against a wide 
variety of  antigens with US echogenic microbubbles[53,54]. 
In this way, inflammatory molecules (ICAM-1, VCAM-1 
and E-selectin) have been successfully targeted by selective 
microbubbles able to visualise and identify different areas 
of  inflammation[55]. A similar approach has been employed 
for magnetic resonance imaging contrasts media, in which 
oxide nanoparticles have been rendered selective for AvB3 
Integrin and successfully tested in-vitro[56].

Secondly, the creation of  US microbubbles specific 
for the transitional inflammatory rim and linked with 
chemotherapeutic agents would guarantee a selective 
delivery of  the anti-tumor therapy to the zone where 
recurrences are most likely and they would also be able 
to visualize the zone at the same time to ensure it was 
effectively treated. Preliminary studies have already been 
conducted with targeted microbubbles loaded with 
chemotherapy for the treatment of  breast, ovarian and 
pancreatic tumours[57,58]. In liver tumours a combined 

therapeutic approach can be envisaged which would consist 
of  a TA procedures for the ablation of  the majority of  
the tumour, and following the ablation selective delivery 
of  chemotherapy to sterilize the remaining cells that may 
survive in the transitional inflammatory rim. Chemotherapy-
loaded contrast agents could target not only inflammatory 
antigens but also tumor-specific molecules (i.e. CEA), and 
the simultaneous administering of  both (inflammatory and 
tumor-specific loaded) could further help in the emergence 
prevention of  resistant cells. 

CONCLUSION
Although the best treatment for resectable liver tumour 
remains surgical resection[9], survival rates achieved by TA 
have been sufficiently promising that some centers have 
started to advocate trials comparing resection with abla­
tion[10]. Limitations that favour tumour recurrence follow­
ing TA are common to all techniques, but some of  those 
that did not enter clinical trials due to the disadvantage 
of  long ablation times could help in particular clinical set­
tings. Furthermore, newer techniques like MW have intra­
operative advantages over the older RF in terms of  faster 
execution times clearly demonstrated in dose-response 
studies[19,25,59]. Unfortunately, modification of  delivery 
probes and techniques have failed to reduce recurrence 
rates and a more integrated approach is required, possibly 
combining TA techniques with adjuvant therapies tailored 
to identify and treat specific areas in the transition zone. 
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liver model.
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