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Abstract
Hepatocelluar carcinoma (HCC) is the most lethal cancer 
in the world. Most HCC over-express c-Myc, which plays 
a critical role in regulating cellular growth, differentiation 
and apoptosis in both normal and neoplastic cells. 
c-Myc is among the most frequently overexpressed 
genes in human cancers. Overexpression of c-Myc in 
hepatic cells leads to development of hepatocellular 
carcinoma. Here, we review the current progress in 
understanding physiologic function and regulation of 
c-Myc as well as its role in hepatic carcinogenesis and 
discuss the association of c-Myc activation in chronic 
hepatitis B infection and the upregulation of HIF-1/
VEGF. We also explore the possibility of treating HCC 
by inhibiting c-Myc and examine the pros and cons of 
such an approach. Although this strategy is currently 
not available in clinics, with recent advances in better 
drug design, pharmacokinetics and pharmacogenetics, 

inhibition of c-Myc might become a novel therapy for 
HCC in the future.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is a major cause of  
cancer death worldwide[1]. Each year, approximately 
350 000 patients are diagnosed with HCC in China, 
representing half  of  the new cases in the world. 
Surgical resection is the only way to cure this disease, 
yet most patients are not suitable for surgery because 
of  poor hepatic reserve, comorbidity, or the presence 
of  infiltrative and metastatic nature lesions. With less 
than 20% response rate, chemotherapy is not a good 
option either. Therefore it is imperative to develop 
novel therapeutics. Genetic analyses have revealed that 
c-Myc over-expression, which is commonly caused by 
genomic amplification is present in up to 70% of  viral 
and alcohol-related HCC[2]. Furthermore, the presence 
of  c-Myc amplification portends a more advanced and 
aggressive phenotype, indicating that c-Myc plays a 
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critical role in pathogenesis of  HCC[3,4]. In this review, 
we will focus on current understanding of  c-Myc in 
hepatic carcinogenesis and its potential as a novel 
therapeutic target.

PHYSIOLOGIC ROLE OF C-MYC AND ITS 
REGULATION
c-Myc, together with L-Myc, and N-Myc in the family of  
c-Myc genes, was first discovered as the cellular homolog 
of  the v-Myc oncogene[5]. The identification of  c-Myc 
as a target for activation by chromosomal translocation 
in Burkitt’s lymphoma resulted in the decade-long 
studies for its role in carcinogenesis[6]. In fact, c-Myc 
is the most commonly overexpressed gene in human 
cancers. In mammalian cells, c-Myc expression is highly 
regulated and closely tied to cell growth, apoptosis 
and differentiation [7]. The importance of  c-Myc in 
development was exemplified by the embryonic lethality 
of  c-Myc homologous knockouts[8].

c-Myc proteins consists of  over 430 amino acids 
with 150 amino-terminal residues in the transactivation 
domain and 90 carboxy-terminal amino acid in the DNA 
binding and dimerization domain for binding to the 
obligate partner, Max[5]. To transactivate its downstream 
genes, c-Myc has to form heterodimers with Max to 
bind a consensus E-box site in the target promoter. In 
contrast to c-Myc, Max is a ubiquitous protein, thus 
the transactivating activity of  c-Myc/Max heterodimers 
relies on the sophisticated control of  c-Myc expression. 
Yet c-Myc is not the only protein that can partner with 
Max. Mad is another protein that forms heterodimers 
with Max to regulate c-Myc/Max transactivating activity. 
Upon differentiation, the binding of  target DNA motif  
switches from c-Myc/Max to Mad/Max[9-11]. Mad protein 
contains a Sin3-containing domain that recruits Sin3, 
transcription repressor N-Cor, and histone deacetylase to 
repress target gene expression, thus adding another layer 
of  control for c-Myc/Max mediated transactivation[12]. 

However, c-Myc also acts as a transcription repressor, 
especially for genes regarded to be differentiation markers. 
For example, when it is recruited by Miz-1 to target 
DNA binding motif  as in the scenario found in p21[13]. 
Recent studies have found that c-Myc interacts with 
Miz-1 and recruit DNA methyltransferase DNMT3 to 
p21 promoter to silence p21 transcription, a critical step 
during tumorigenesis[14]. Along with the recruitment of  
DNA methyltransferases, c-Myc also acts as transcription 
repressor by interacting with histone deacetylases[15]. 
Other proteins related to cellular differentiation such 
as CCAAT/enhancer binding proteins and AP-2 have 
also been shown to be modulated by c-Myc-mediated 
transcription repression[16,17]. Both the transactivating and 
transcription-repressive properties are essential for c-Myc-
mediated transforming activity. 

In the past decades, various approaches have been 
used to identify c-Myc target genes[18-22]. So far, as many 
as 15%-20% of  human genes can be regulated directly or 

indirectly by c-Myc. These genes are related to cell cycle 
control, protein synthesis, cytoskeleton and cell motility, 
cell metabolism, and microRNA- the small regulatory 
molecules that regulate the stability and translation of  
target mRNA[23]. How these genes interact with each 
other to modulate growth, differentiation, apoptosis, 
and survival is largely unknown, and it will require 
tremendous efforts to dissect the intricate networks and 
elucidate their role in tumorigenesis.

In order fine tune the sophisticated cellular network, 
the activity of  c-Myc is tightly regulated at multiple 
levels. The half-life of  c-Myc is as short as 20-30 min, 
meaning that its level changes dynamically in response 
to a broad range of  cellular activities. But in cancer 
cells, the delicate balance of  c-Myc expression is 
deranged by diverse mechanisms such as unidentified 
epigenetic aberration, dysregulated transcription, altered 
protein functionality, or resistance to modulation and 
proteasomal degradation. The story of  c-Myc-mediated 
tumorigenesis is further complicated by a recent finding, 
indicating that it is not just its overexpression that 
matters, the levels of  expression also determine its 
cellular response[24]. Low levels of  deregulated c-Myc 
induce proliferation and sensitize cells to apoptotic 
signals; while high levels of  c-Myc activate intrinsic 
ARF/p53 surveillance pathways. It is conceivable that 
different levels of  c-Myc might trigger distinct subsets 
of  target genes to determine the cell fate.

ROLE OF C-MYC DURING HEPATIC 
CARCINOGENESIS
The association of  c-Myc with liver carcinogenesis 
was first identified by the high expression of  c-Myc in 
chronic liver disease and HCC[25,26] and the frequent 
c-Myc amplification in liver cancer tissue, which is 
commonly seen in patients at younger age and with 
poor prognosis[3,4,25]. Using a chemically-induced liver 
cancer model, the expression of  c-Myc is increased 
in proportion to hepatic injury but not in normal 
liver[27]. Studies on the HBV, whose chronic infection 
is often associated with HCC in Asian countries, also 
identified that HBx has been implicated in HBV-
mediated HCC[28]. HBx transforms hepatocytes through 
multiple mechanisms. One of  the critical genes activated 
by HBx is c-Myc[29,30]. In turn, activation of  c-Myc 
accelerates HBx-mediated oncogenic potential[31], 
further underscoring the importance of  c-Myc in HCC 
development. One of  the downstream genes activated by 
c-Myc in HCC is human telomerase reverse transcriptase 
(hTERT), which has two c-Myc-binding E-boxes in its 
core promoter and is a direct target of  c-Myc[32]. The 
activation of  hTERT by c-Myc in HCC has important 
clinical significance. Inhibition of  hTERT activity by 
either RNAi, or lipid-conjugated oligonucleotides leads 
to tumor regression in xenogenic HCC models[33, 34].

Another gene that interacts with c-Myc during 
hepatocarcinogenesis is HIF-1α, which is upregulated 
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during hypoxia and induces angiogenesis. HIF-1α 
cooperates with c-Myc to enhance the expression of  
vascular-endothelial growth factor-A (VEGFA), a critical 
gene for angiogenesis[35]. Both HBx and HCV infection 
have been found to stabilize HIF-1α expression in 
HCC cells[36,37]. Such stabilization could be critical in 
promoting hepatic carcinogenesis and be responsible for 
the drug resistance in HCC[38].

TARGETING C-MYC IN HEPATOCELLUL-
AR CARCINOMA
Given the importance of  c-Myc in HCC carcinogenesis, 
it is not surprising that c-Myc is an attractive target 
for developing novel therapies. The first evidence that 
down-regulation of  c-Myc can be used as a strategy 
to treat HCC comes from an inducible c-Myc animal 
model, in which inactivation of  c-Myc induced the 
regression and differentiation of  liver tumors[39], yet 
could not eradicate them. This finding also echoes the 
recent discovery that, among the four factors required 
to maintain stem cell phenotypes, c-Myc is crucial[40-42]. 
Subsequent studies have indicated that in cells with intact 
p53, Rb and p16 signaling, inactivation of  c-Myc leads 
to cell senescence[43]. This is also consistent with current 
knowledge on the relationship between cell senescence 
and hTERT. In addition, using antisense oligonucleotide 
strategies to downregulate c-Myc also inhibits HCC 
growth in vitro[44]. Recently small-molecule inhibitors 
that interfere with the c-Myc/Max heterodimerization 
have also been developed to block c-Myc-mediated 
transactivation[45]. Testing one of  these small molecule 
c-Myc inhibitors, 10058-F4, in HCC reveals that 
10058-F4 inhibited the growth of  HCC cells in vitro, 
blocked the binding of  E-box, and downregulated 
hTERT activity. Furthermore, c-Myc inhibition further 
sensitizes the chemotherapeutic agents against HCC[46]. 
However, the use of  these small molecule c-Myc 
inhibitors in vivo has been less encouraging, probably 
due to rapid metabolism, resulting in low concentrations 
in tumors[47]. Subsequent development of  c-Myc-Max 
inhibitors has tried to improve the activity with better 
pharmacokinetic profiles[48]. Hopefully these new 
compounds could better inhibit HCC in future in vivo 
studies.

Currently another small molecule compound, CX-3453  
(Quarfloxin), which targets c-Myc by reducing c-Myc 
mRNA, is now in phase Ⅱ clinical trials (NCT00780663) 
for neuroendocrine carcinoma. Likewise, CX-3543 also 
inhibits VEGF expression. Since the small molecule 
VEGFR inhibitor, sorafenib, has been approved for 
treating advanced HCC[49]. Testing this compound in HCC 
might shed more light on its potential for future HCC 
therapy.

However, some caveats are noteworthy in targeting 
c-Myc in HCC. First, in a transgenic model, re-activation 
of  c-Myc leads to regrowth of  tumors, indicating that 
this approach might target more mature cancer cells, 

instead of  cancer stem cells. A combination with other 
strategies, such as chemotherapy or agents that target 
other critical pathways might be needed to enhance 
anti-cancer effects. In addition, there is concern about  
systemic toxicity upon c-Myc inhibition, especially in 
patients with impaired hepatic reserve. In an animal 
model, knocking down c-Myc expression does not impair 
liver regeneration, but the architecture of  c-Myc-deficient 
hepatic tissues is disorganized with hypertrophied 
hepatocytes[50]. The less-than-anticipated toxicity in adult 
animals indicates that c-Myc might be dispensable in 
adult but not in neonatal tissues. Further investigation 
is crucial to determine whether the disorganized hepatic 
tissues still function like normal tissues and whether 
disorganized hepatic cells are prone to transformation. 

CONCLUSION
Since the first discovery of  its oncogenic properties in 
Burkitt’s lymphoma more than two decades ago, the 
role of  c-Myc in normal and neoplastic cells has been 
extensively studied[51]. Although its critical functions in 
regulating cell physiology and in carcinogenesis have 
been well-recognized, the development of  c-Myc as a 
therapeutic target lags far behind basic research. Reasons 
for such a slow progress are related to the sophisticated 
regulation of  its expression and concerns of  potential 
catastrophic events upon its inhibition. Indeed, even 
minor differences in its expression level might have 
divergent consequences[24]. Yet, with the advances in 
drug design, and in imaging tools to monitor cellular 
activity, it is now possible to better target c-Myc and 
investigate its potential as a novel therapeutic agent for 
HCC.
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