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Abstract
In the etiology of hepatocellular carcinoma (HCC), 
in addition to hepatitis B virus and hepatitis C virus  
infections, chemical carcinogens also play important 
roles. For example, aflatoxin B1 (AFB1) epoxide 
reacts with guanine in DNA and can lead to genetic 
changes. In HCC, the tumor suppressor gene p53 co
don 249 mutation is associated with AFB1 exposure 
and mutations in the K -ras  oncogene are related to 
vinyl chloride exposure. Numerous genetic alterations 
accumulate during the process of hepatocarcinogenesis. 
Chemical carcinogen DNA-adduct formation is the 
basis for these genetic changes and also a molecular 
marker which reflects exposure level and biological 
effects. Metabolism of chemical carcinogens, including 
their activation and detoxification, also plays a key 
role in chemical hepatocarcinogenesis. Cytochrome 
p450 enzymes, N -acetyltransferases and glutathione 
S-transferases  are involved in activating and detoxifying 
chemical carcinogens. These enzymes are polymorphic 
and genetic variation influences biological response to 
chemical carcinogens. This genetic variation has been 
postulated to influence the variability in risk for HCC 
observed both within and across populations. Ongoing 
studies seek to fully understand the mechanisms 

by which genetic variation in response to chemical 
carcinogens impacts on HCC risk.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is one of  the most 
common and rapidly fatal malignancies. Worldwide, 
more than a half  million new cases of  HCC are reported 
each year and most patients die within 1 year of  dia­
gnosis[1,2]. Although HCC has marked demographic 
and geographic variations, occurring mainly in East 
Asia and sub-Saharan Africa[1], it is also increasing in 
western developed countries such as the United States[3]. 
Previous studies indicated that hepatocarcinogenesis is 
a long-term, multistage process with the involvement 
of  multiple risk factors[4]. The major risk factors include 
chronic hepatitis B virus (HBV) and hepatitis C virus 
(HCV) infections and chemical exposures[5,6]. In specific 
geographic regions, such as Qidong, China, 40% of  
HCC can be attributed to exposure to a single chemical 
carcinogen, aflatoxin B1 (AFB1)[7].
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This paper focuses on some representative chemical 
carcinogens that cause HCC and summarizes advances in 
our understanding of  the correlation between chemical 
carcinogens and genetic alterations in the development 
of  HCC. There are other exposures which have also 
been reported to be related with HCC occurrence in 
animals or for which the correlation between exposure 
and HCC is not clear. These compounds are not inc­
luded in this paper.

DAMAGE TO DNA AND INDUCTION 
OF MUTATIONS OR OTHER GENETIC 
CHANGES
Aflatoxin
Aflatoxins are carcinogenic in several animal species 
but with variable potency[4]. AFB1 is a human hepa­
tocarcinogen and is also a liver carcinogen when fed to 
certain rodent species[8-10]. It is a secondary metabolite 
produced by Aspergillus flavus and Aspergillus parasiticus 
that occurs in tropical and subtropical regions of  the 
world. It contaminates foods such as corn, rice and 
peanuts that are stored under tropical conditions[11]. 
Metabolic studies of  AFB1 have shown that its acti­
ve form, AFB1-8, 9-epoxide, is highly mutagenic and 
carcinogenic for the liver in rats and other experim­
ental animals, with mutagenicity correlating with carc­
inogenicity[12,13]. AFB1 has also been implicated by 
epidemiological studies as a causative factor for HCC in 
humans[14]. The clinical appearance of  cancer is the end 
result of  a long chain of  cellular and molecular changes 
and there is substantial evidence that damage to DNA 
by environmental chemical carcinogens is critical in this 
process. 

AFB1 covalently binds to guanine and cytosine res­
idues of  DNA both in vivo and in vitro[15,16] and forms 
AFB1-DNA adducts; it also forms RNA and protein 
adducts impairing DNA, RNA and ultimately protein 
synthesis[17-19]. AFB1-DNA adducts were detected by an 
immunohistochemical assay in smeared HCC tissues and 
HCC sections[20-22]. The presence of  AFB1-DNA adducts 
can contribute to genetic alterations in loci involved in 
the development of  HCC. In 1977, Lin et al[23] reported 
that adduct formation by metabolically activated reactive 
intermediates with hepatocyte DNA could lead to 
mutations in the host genome. The p53 tumor suppressor 
gene is the most frequently mutated gene in human 
cancers. Two groups found at same time, that mutations 
of  the p53 gene on chromosome 17 are frequent in HCC 
and a point mutation at the third position of  codon 249 
resulting in a G:C to T:A transversion was common in 
HCC tissues which were collected in China and Africa[24,25]. 
This hotspot mutation in HCC from regions with high 
levels of  dietary aflatoxins links this genetic change to 
exposure to aflatoxins. Similar results were confirmed 
in Taiwan HCC samples[22]. Early epidemiologic studies 
suggested a synergistic effect of  AFB1 and HBV infection 

on HCC risk[26,27] but in our latest study in a larger sample 
size than both prior studies, the effect was additive[28]. 
The highly aberrant patterns of  genetic changes detected 
in different areas are suggestive of  the genotoxic effects 
of  aflatoxin. The combined effects of  HBV and high 
aflatoxin exposure could promote HCC development[22,29]. 
In vitro studies exposing human liver cell lines to AFB1 
found the same codon 249 mutational pattern on p53[30,31]. 
In recent years, the p53 codon 249 mutation has also been 
detected in plasma or serum DNA of  HCC patients[32-34]. 
This mutated DNA may serve as a biomarker of  exposure 
to AFB1 and for detection of  early HCC[33]. 

The molecular mechanisms underlying the carc­
inogenic effects of  AFB1 have also been investigated in 
rodent models. AFB1-induced HCC in Fischer 344 rats 
showed activating mutations in codon 12 of  K-ras[35], 
but in human HCC, the incidence of  point mutation 
of  K-ras and N-ras oncogenes was low[36]. In an in vitro 
study, AFB1 interfered with the molecular mechanisms 
of  cell cycle regulation[37]. AFB1 also induced mitotic 
recombination[38], and minisatellite rearrangements[39]. 
Mitotic recombination and genetic instability may ther­
efore be alternative mechanisms by which aflatoxin 
contributes to genetic alterations in HCC[40].

Vinyl chloride (VC)
VC is a major industrial chemical, a wide-spread envir­
onmental contaminant and a known animal and human 
carcinogen[41]. VC is a colorless toxic gas extensively used 
in the plastic industry. It is absorbed after respiratory ex­
posure and is activated primarily in hepatocytes by the 
enzyme cytochrome P450 (CYP2E1). Its metabolites can 
react with DNA bases to form DNA adducts[42]. After 
metabolic activation, VC induces several DNA adducts 
and various studies have shown that these DNA adducts 
are responsible for specific mutations[43]. VC is a multi- 
potential carcinogen in animals[9,43]. 

In humans, a causal relationship has been found bet­
ween occupational exposure to VC and angiosarcoma 
of  the liver[44,45]. In 1983, Evans et al[45] reported two 
cases of  HCC among VC workers. Afterwards, in HCC 
in workers exposed to VC, a high prevalence of  K-ras-2 
mutation was reported[46,47]. The p53 mutation pattern in 
HCC in workers exposed to VC includes point mutations 
in codons 175, 245, 248, 273 and 282 but it is still unclear 
whether these genetic changes are directly associated with 
exposure to VC[48]. However, another study concluded 
that in humans, A:T base pair mutations in p53 induced by 
VC represent a specific mutational “signature”[43].

Polycyclic aromatic hydrocarbons (PAHs) and 
4-aminobiphenyl (4-ABP)
Cigarette smoking is associated with a significantly 
increased HCC risk in several epidemiologic studies in 
Taiwan[49], China[50] and Japan[51]. Chemical carcinogens in 
tobacco smoke include polycyclic aromatic hydrocarbons  
such as benzo(a)pyrene [B(a)P], N-nitrosamines and 
aromatic amines such as 4-aminobiphenyl. PAHs are 
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ubiquitous environmental pollutants produced during 
all types of  combustions of  organic materials. Thus, 
they are found not only in cigarette smoke but also in 
polluted air, smoked and charbroiled foods, as well as 
contaminating fats and grains[52]. PAHs, especially B(a)P 
are known animal and human carcinogens[53]. In male 
infant mice, exposure to either B(a)P or manufactured 
gas plant residues which contain known carcinogens, 
including benzene and PAH, induces liver tumors[54]. In 
a wild brown bullhead catfish population, a decline in 
liver neoplasms was observed after a reduction in PAH 
exposure[55]. 

In humans, PAH-DNA adducts have been detected 
in HCC tissue samples[56,57]. Associations with HCC were 
found for PAH-DNA adducts levels in liver tissues and 
for the combination of  PAH-DNA adducts levels with 
some susceptibility factors including HBV infection, 
exposure to AFB1 and other factors[56]. In our study 
on paraffin tumor tissues and paired plasma samples 
from HCC patients, we found that the highest PAH-
albumin adducts were present in those with the highest 
mean PAH-DNA adducts in liver, although the results 
were not statistically significant[57]. A recent study dem­
onstrated that PAH-albumin adducts are associated with 
increased risk of  HCC especially among those with 
high aflatoxin exposure and that environmental PAH 
exposure may enhance the hepatic carcinogenic potential 
of  hepatitis B virus infection[56]. 

4-ABP is a well-studied aromatic amine and a known 
bladder carcinogen in both experimental animals and 
humans[58]. It is metabolized by hepatic CYP1A2 to 
yield N-hydroxyABP, a direct-acting mutagen capable 
of  inducing tumors at sites of  application[59]. Animal stu­
dies have demonstrated that administration of  4-ABP 
to dogs results in the formation of  N-(deoxyguanonsin-
8-yl)-4-ABP (dG-C8-ABP) as the major DNA adduct 
(approximately 70 percent of  total adducts) in hepatocytes 
and bladder cells[60,61]. In BALB/c mice, there was a linear 
relationship between levels of  dG-C8-ABP in liver DNA 
and liver tumor incidence[62]. In human liver tissues, higher 
levels of  4-ABP-DNA were observed in HCC cases 
compared with controls[63]. Even though there was a dose 
(number of  cigarettes smoked/day)-related increase in 
4-ABP DNA and an association with mutant p53 protein 
expression in bladder cancers[64], so far there are no rep­
orts on p53 or other specific gene mutations caused by 
exposure to PAHs or 4-ABP in HCC.

Arsenic (As)
As is a human carcinogen with various target tissues 
including liver[65]. Ecological, case-control and cohort 
studies have documented a significant association between 
HCC and ingested inorganic arsenic through medicinal, 
environmental and occupational exposures in Taiwan 
and other countries[66]. A recent study indicated that fetal 
exposure to inorganic arsenic in mice produces tumors 
in adulthood in a variety of  organs, including liver[67]. 
Several potential mechanisms for arsenical-induced hep­

atocarcinogenesis have been proposed including oxidative 
DNA damage, impaired DNA repair, acquired apoptotic 
tolerance, hyperproliferation, altered DNA methylation 
and aberrant estrogen signaling[68]. A marked overexpres­
sion of  hepatic ER-α at the transcript and protein levels  
occurred in adult males bearing HCC induced by in utero  
arsenic exposure[69]. Increases in hepatic cyclin D1 expres­
sion, an ER activated hepatic oncogene, also occurred[70].

Ethanol
Ethanol is a hepatotoxin and the most prevalent cause of  
cirrhosis, a primary clinical predictor of  HCC, in western 
countries. Additionally, alcohol is an important solvent 
for chemicals and promotes the absorption of  ingested 
toxins[71]. Ethanol damages the liver through oxidative-
stress mechanisms; alcoholic hepatitis shows increased 
levels of  isoprostanes, a marker of  oxidative damage[72]. 
Oxidative stress can also cause the accumulation of  
oncogenic mutations. For example, increased oxidative 
stress associated with iron overload has been associated 
with p53 mutations in HCC[73]. Oxidative damage may 
also accelerate telomere shortening which is correlated 
with the development of  liver cirrhosis, chromosomal 
instability and HCC[74].

METABOLISM OF CHEMICAL 
CARCINOGENS
Most chemical carcinogens are not intrinsically reactive. 
They require metabolic conversion into biologically 
active forms by phase Ⅰ enzymes, including various CYP 
enzymes. Activated metabolites of  chemical carcinogens 
are subject to metabolic conjugation and other kinds of  
detoxification by phase Ⅱ enzymes including epoxide 
hydrolase, arylamine N-acetyltransferases (NAT) and 
glutathione S-transferases (GST). Studies have demo­
nstrated gene-environment interactions in which risk 
of  HCC from exposure to environmental agents was 
modulated by genetic susceptibility related to genetic 
variations in chemical carcinogen metabolism genes.

AFB1

The CYP enzymes are a superfamily of  hemeproteins 
that are important in the oxidative, peroxidative and 
reductive metabolism of  endogenous compounds and 
participate in the chemical carcinogenesis process[75]. Afl­
atoxin is activated by CYP1A2 and CYP3A4 to AFB1-8, 
9-epoxide, which covalently binds with DNA to form 
DNA-adducts, primarily AFB1-N7-guanine[76,77]. CYP2A6 
and CYP2B6 likely represent minor forms in the in 
vitro activation of  AFB1

[78]. The overall contribution of  
these enzymes to AFB1 metabolisms in vitro depends 
on the affinity of  the enzyme but in vivo it also depends 
on expression levels in human liver where CYP3A4 is 
predominant[40]. Expression of  CYP1A1/2 and 3A4 
in liver tissues of  hepatocellular carcinoma cases and 
controls was detected and their relationship to HBV and 
AFB1- and 4-ABP-DNA adducts was also investigated[79]. 
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For CYP3A4, in contrast to control tissues, there was 
a significant association with AFB1-DNA adducts in 
tumor and adjacent non-tumor tissues of  HCC cases.

Humans show large interindividual variations in xen­
obiotic metabolism activities that lead to different sus­
ceptibilities to the genotoxic actions of  carcinogens[80]. 
A model using human liver epithelial cell lines stably 
expressing P450 cDNA revealed that CYP1A2 and 
CYP3A4 both contribute to the formation of  AFB1-ind­
uced p53 mutation whereas CYP2A6 does not appear to 
play a significant role[31]. In an in vitro study, inhibition of  
CYP1A2 and CYP3A4 by oltipraz, a drug which has been 
reported to inhibit AFB1 activation in human hepatocytes, 
was shown[81].

GST are a family of  conjugation enzymes involved in 
the metabolism of  exogenous and endogenous lipophilic 
compounds for their excretion and detoxification. For 
AFB1, the detoxification pathway is via GST-mediated 
conjugation with reduced glutathione (GSH) to form 
AFB1 exo- and endo-epoxide GSH conjugates[76,82,83]. 
Members of  the GST family, such as GST-μ (GSTM1) 
and GST-θ (GSTT1), are important candidates for in­
volvement in susceptibility to AFB-associated HCC 
because they may regulate an individual’s ability to met­
abolize the ultimate carcinogen of  aflatoxin, the exo-
epoxide[83]. Epidemiological studies have suggested that 
genetic polymorphisms in AFB1 metabolizing enzymes 
are factors in individual susceptibility to aflatoxin-related 
HCC[84,85]. GSTM1 genotype can be categorized into two 
classes: the homozygous deletion genotype (GSTM1 
null genotype) and genotypes with one or two alleles 
present (GSTM1 non-null genotype); GSTT1 can also be 
deleted[86,87]. Carriers of  GSTM1 and GSTT1 homozygous 
null genotypes lack the corresponding enzyme activities[86]. 
Chen et al[85] documented a biological gradient between 
serum AFB1-albumin adduct levels and HCC risk among 
chronic HBsAg carriers who had null GSTM1 and 
GSTT1 genotypes but not among those who had non-null 
genotypes in a Taiwan population. Wild et al[88] reported in 
a Gambian population an association between the GSTM1 
null genotype and AFB1-albumin adducts, although the 
association was restricted to people who were not infected 
with HBV. The effect of  aflatoxin exposure on HCC 
risk was also more pronounced among chronic HBsAg 
carriers with the GSTT1 null genotype than those who 
were non-null[89]. Based on the above studies conducted 
in different places and others not reviewed, whether or 
not there are interactions among AFB1, HBV infection 
and GSTs genotypes in the development of  HCC is still 
controversial.

VC
Vinyl chloride is primarily metabolized in the liver by 
the CYP2E1 to form the electrophilic metabolites chl­
oroethylene oxide and chloroacetaldehyde[90]. These 
metabolites are thought to be the reactive intermediates 
involved in the formation of  VC-DNA adducts. The 
promutagenic properties of  these adducts have been 

characterized extensively in vivo and in vitro and involve 
mainly base pair substitution mutations[91]. Metabolism 
of  the reactive intermediates is thought to involve several 
pathways that rely on CYP2E1, aldehyde dehydrogenase 
2, GSTs, microsomal epoxide hydrolase and other 
enzymes, presumably to generate less reactive metabolites 
for excretion[92]. All of  those enzymes are known to 
have polymorphic variants with altered activities that 
could produce variable VC metabolism[93]. Such variable 
metabolism could account for differing susceptibilities to 
the carcinogenic effects of  VC in exposed individuals. The 
GST family is known to be involved in the metabolism 
of  environmental chemical carcinogens including vinyl 
chloride monomer; it plays critical roles in protection 
against products of  oxidative stress and electrophilic 
compounds[94,95]. So far, no direct evidence has shown 
that genetic polymorphisms of  metabolizing enzymes 
are correlated with HCC development caused by VC 
exposure.

PAH and 4-ABP
CYP1A1 metabolically activates PAH into carcinogenic 
metabolites (diol epoxides), which covalently bind 
to DNA to form DNA-adducts[96], while CYP1A2 
metabolically activates arylamine carcinogens such as 
4-ABP and heterocyclic amines derived from cooked 
meats[90]. CYP1A1 was generally considered to be involved 
in extra hepatic carcinogenesis because early studies 
showed that the expression of  CYP1A1 was low in human 
liver[90]. A later study using more sensitive techniques for 
the detection of  CYP1A1 messenger RNA demonstrated 
that CYP1A1 is expressed in a high proportion of  human 
liver tissues[97]. A study of  the role of  CYP1A1 genetic 
polymorphism in susceptibility to HCC has suggested 
that CYP1A1 variants are important modulators of  the 
hepatocarcinogenic effect of  PAHs. The Msp1 and lle-
Val polymorphisms of  CYP1A1 may have different 
mechanisms for increasing susceptibility to smoking-
related HCC[98]. Recently, a second study obtained similar 
result but in non-smoking HCC patients[99]. These 
inconsistent findings justify the need for additional studies 
of  larger sample sizes to further evaluate the role of  the 
CYP1A1 variants in HCC development. Chen et al[100] 
reported genetic polymorphism of  CYP1A2 is associated 
with HCC risk. Polymorphisms of CYP2E1 may also play 
an important role in cigarette smoking-related hepatocarci- 
nogenesis[101]. 

Activated metabolites of  B(a)P are subject in part 
to metabolic detoxification by GSTM1[102]; GSTT1 can 
detoxify smaller reactive hydrocarbons[103]. Diol epoxides 
are substrates for phase II detoxifying enzymes including 
GSTP1[104]. Alterations in the expression of  GSTs have 
been found in HCC tissues compared to liver tissues from 
healthy subjects[105]. These alterations may influence the 
association between exposure and PAH-DNA adduct 
formation among HCC cases. Chen et al[56] reported a 
significant combinatory effect of  PAH-DNA adduct 
levels and GSTP1 genotype on HCC risk but in the 
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same study there were no associations between HCC 
and GSTM1 or GSTP1 genotype. Subjects with high 
compared to low PAH-DNA adduct levels had a 2-fold 
higher HCC risk after adjustment either for age, sex and 
HBsAg or for age, sex, HBsAg, 4-ABP- and AFB1-DNA 
adduct levels. Evidence of  a possible interaction between 
GST polymorphisms and smoking was reported in two 
studies[106,107], with a non significant excess risk reported 
among light smokers with the GSTT1 null genotype in 
one study[107] and a significant excess risk among smokers 
with a GSTM1 and GSTT1 null genotypes and low levels 
of  plasma beta-carotene reported in the other[106].

NAT plays a role in the activation and detoxification 
of  certain carcinogens in tobacco smoke[108]. Two isofo­
rms of  NAT1 and NAT2 participate in the metabolic 
activation and detoxification (O- and N-acetylation resp­
ectively) of  aromatic amines (including arylamines and 
heterocyclic amines)[108], which are found in tobacco 
smoke. Exposure to 4-ABP, which is primarily a result of  
cigarette smoking, plays a role in human hepatocarcino­
genesis[63]. Wang et al[63] found greater levels of  4-ABP-
DNA in liver tissues from HCC patients than controls. 
NAT1 and especially NAT2 are characterized by several 
allelic variants, which cause variations in acetylation 
capacity. Agundez et al[109] investigated the effect of  NAT2 
polymorphisms on HCC and found they are relevant to 
HCC risk. Results of  a study in Taiwan suggested that 
NAT2 activity may be particularly critical in smoking-
related hepatocarcinogenesis among chronic HBV car­
riers[110]. Farker et al[111] reported a significant association 
between NAT2 polymorphism and HCC among chronic 
HBV carriers who were smokers but not among those 
who were non-smokers. It was postulated that genetic 
polymorphisms in biotransformation enzymes could be 
important with regards to individual susceptibility to cig­
arette smoking-related HCC[109,112].

As
Inorganic arsenic (iAs) is metabolized by reduction of  
pentavalent iAs to trivalent, followed by oxidative meth­
ylation to monomethylated arsenic (MMA), further redu­
ction from pentavalent MMA to trivalent, and finally 
methylation to dimethyl arsenic[113]. One study indicated 
that polymorphisms in GST omega 1, which encodes an 
enzyme that can reduce pentavalent arsenic species, might 
be related to enzyme activity and patterns of  methylated 
arsenic metabolites[114,115]. Because glutathione plays an 
important role in arsenic metabolism, its regulation via 
GST polymorphisms may modulate metabolism and, as a 
consequence, alter urinary excretion profiles. Thus, as low 
GST activity may decrease the detoxification function of  
glutathione, it has been hypothesized that humans with 
null genotypes for GSTM1 and GSTT1 may have arsenic 
methylation capabilities and body retention differences 
compared to those with non-null genotypes. In addition, 
humans with null genotypes for GSTM1 and GSTT1, as 
well as the val/val genotype for GSTP1, may be at high 
risk of  cancer due to their glutathione deficiencies[116]. 

Ethanol
Alcohol consumption also induces the expression of  a 
number of  xenobiotic metabolism enzymes that activate 
procarcinogens[4]. CYP2E1, one of  the important mem­
bers of  the CYP super family, catalyses the conversion of  
ethanol to acetaldehyde and acetate but also metabolizes 
many exogenous drugs and procarcinogens[116]. As CYP­
2E1 is an ethanol inducible enzyme, its functional chara­
cterization has been focused on alcoholic liver diseases[117]. 
Decreased expression of  CYP2E1 is associated with poor 
prognosis of  hepatocellular carcinoma[118].

CONCLUSION
Exposure to chemical carcinogens including AFB1, 
B(a)P, 4-ABP, arsenic, alcohol and others may act either 
independently or interact with HBV and HCV to cause 
DNA damage, induce liver cirrhosis and contribute to 
the development of  HCC. During this process, genetic 
variation will impact on risk. Various types of  genotoxic 
endpoints including DNA-adducts, point mutations of  
tumor suppressor genes and other cancer-related genes, 
small deletions (loss of  heterozygosity) and chromosomal 
aberrations are dominant characteristics of  HCC. 

Metabolism of  chemical carcinogens involves multiple 
pathways of  transformation of  certain chemicals. Thus, 
the regulation of  genes coding for many of  these meta­
bolic enzymes is important in hepatocarcinogenesis and 
has lead to studies of  inter-individual genetic variation.

Understanding the interaction of  viral infection, gen­
etic variation and exposure to environmental chemical 
carcinogens will help to elucidate mechanisms of  human 
hepatocarcinogenesis and develop more effective strate­
gies for HCC prevention.
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