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Abstract
The regulation of iron metabolism involves multiple 
organs including the duodenum, liver and bone mar
row. The recent discoveries of novel iron-regulatory 
proteins have brought the liver to the forefront of 
iron homeostasis. The iron overload disorder, genetic 
hemochromatosis, is one of the most prevalent ge
netic diseases in individuals of Caucasian origin. Fur
thermore, patients with non-hemochromatotic liver 
diseases, such as alcoholic liver disease, chronic 
hepatitis C or nonalcoholic steatohepatitis, often ex
hibit elevated serum iron indices (ferritin, transferrin 
saturation) and mild to moderate hepatic iron over
load. Clinical data indicate significant differences 
between men and women regarding liver injury in 
patients with alcoholic liver disease, chronic hepatitis 
C or nonalcoholic steatohepatitis. The penetrance of 
genetic hemochromatosis also varies between men 
and women. Hepcidin has been suggested to act as a 
modifier gene in genetic hemochromatosis. Hepcidin 
is a circulatory antimicrobial peptide synthesized by 
the liver. It plays a pivotal role in the regulation of iron 
homeostasis. Hepcidin has been shown to be regulated 

by iron, inflammation, oxidative stress, hypoxia, alcohol, 
hepatitis C and obesity. Sex and genetic background 
have also been shown to modulate hepcidin expression 
in mice. The role of gender in the regulation of human 
hepcidin gene expression in the liver is unknown. How
ever, hepcidin may play a role in gender-based diffe
rences in iron metabolism and liver diseases. Better 
understanding of the mechanisms associated with gen
der-related differences in iron metabolism and chronic 
liver diseases may enable the development of new treat
ment strategies.  
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INTRODUCTION
Clinical data suggest that men and women exhibit dif­
ferences regarding the progression of  certain liver diseases 
such as alcoholic liver disease, chronic hepatitis C and 
non-alcoholic steatohepatitis. Sex hormones and their 
effect on metabolic processes and oxidative stress have 
been suggested to play a role in this process.  Interestingly, 
patients with alcoholic liver disease, chronic hepatitis C 
or non-alcoholic steatohepatitis often display elevated 
serum iron and mild to moderate hepatic iron overload.  
Recently, alcohol, hepatitis C viral proteins and obesity 
have all been shown to affect the expression of  the key 
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iron regulatory protein, hepcidin. Oxidative stress and 
sex-specific differences have also been postulated to be 
involved in the regulation of  hepcidin expression by 
alcohol in the liver. However, it is unclear whether the 
pathophysiological differences observed between men 
and women with chronic liver disease are associated with 
gender-based variances in iron metabolism. This review 
will highlight gender-related differences in liver diseases 
and iron metabolism including the role of  the key iron-
regulatory hormone, hepcidin.

IRON
Iron is essential for an array of  key biological processes 
including erythrocyte production, DNA synthesis and 
cellular respiration[1-3]. The normal iron content of  the 
body in an adult male is 35 to 45 mg of  iron per kilog­
ram of  body weight. The majority of  the iron is bound 
to hemoglobin in erythrocytes. Macrophages of  the reti 
culoendothelial system supply the iron to the plasma 
transferrin pool to be delivered to bone marrow (~24 
mg/d) for hemoglobin synthesis in red blood cell pre­
cursors[4-6]. About 20% of  women, 50% of  pregnant 
women and 3% of  men do not have adequate iron stores. 
Based on the differences between the amount of  iron 
available for absorption and the increased requirement 
for iron, most females of  reproductive age, especially in 
the developing world, exhibit iron deficiency anemia[7]. 
Pregnant women require more iron due to the increasing 
iron demands of  the growing fetus, the placenta and the 
elevated red cell mass of  the mother[8]. However, it must 
also be noted that there is no regulated pathway for the 
excretion of  iron in the body except by blood loss or 
desquamated intestinal cells. Parenchymal cells of  the liver 
and reticuloendothelial macrophages serve as depots for 
excess iron storage. Liver not only carries the main burden 
of  iron overload but also acts as the central organ in the 
regulation of  body iron stores[9].  

PRIMARY AND SECONDARY IRON 
OVERLOAD, GENDER-DIFFERENCES AND 
LIVER DISEASES 
Hepatic iron overload is common in many liver diseases 
where iron is a risk factor in disease progression[10-16]. 
Genetic hemochromatosis (GH) is a prevalent iron over­
load disorder among the Caucasian population.  Muta­
tions in the Hfe gene are the main cause of  primary 
iron overload observed in GH[14]. Patients with genetic 
hemochromatosis absorb more than the normal amount 
of  iron through the intestine. Iron accumulation sub­
sequently results in organ damage including liver in­
jury[17,18]. GH is not a gender-specific disease. However, 
more males than females present with symptoms of  
hemochromatosis. Men accumulate more iron and have 
a higher incidence of  liver injury. Iron overload also 
affects the hypothalamic-pituitary axis eventually leading 

to hypogonadism, exposure of  sperm to oxidative in­
jury and infertility[19]. The clinical symptoms of  GH 
usually start later with women, possibly due to blood 
loss experienced with menstruation and childbirth. The 
majority of  patients exhibiting the clinical symptoms 
of  GH are homozygous for a Cys282-Tyr (C282Y) 
mutation in GH gene, Hfe[20]. Of  note, a male-specific 
association of  C282Y mutation with childhood acute 
lymphoblastic leukemia has also been reported[21]. The 
C282Y mutation inhibits the heterodimer formation of  
Hfe with the beta2-microglobulin (β2M) light chain and 
its delivery to the plasma membrane[22]. Interestingly, 
female mice deficient in β2M expression have been shown 
to exhibit more hepatic iron loading than male β2M-
deficient mice which is in contrast to that observed with 
genetic hemochromatosis patients[23]. However, it should 
be noted that unlike humans, female laboratory mice do 
not experience menstrual bleeding and live in a controlled 
environment. The observed sex differences in β2M-de­
ficient mice may be due to a possible protective effect of  
the Y chromosome or to hormonal differences[23].

β-thalassemia is a genetic hematological disorder 
whereby repeated blood transfusions and dysregulated 
iron homeostasis lead to secondary iron overload[24,25].  
Distinct from GH, patients with β-thalassemia also exhi­
bit iron deposition in the pituitary gland and hypotha­
lamus[26,27]. Thalassemic males develop hypogonadotropic 
hypogonadism whereas females have amenorrhea due to 
pituitary and gonadal damage caused by iron overload[26,28]. 

However, paternity has been shown to be less common in 
males including those with normal sperm counts[27-29].

Patients with non-hemochromatotic liver diseases 
such as chronic hepatitis C, alcoholic liver disease 
(ALD) and non-alcoholic fatty liver disease (NAFLD) 
frequently display an increase in serum iron values and 
mild to moderate elevation of  hepatic iron concentrat
ion[11-13,15,30-37]. Studies with HCV-infected chimpanzees 
also demonstrate that the viral infection leads to an in­
crease in body iron levels[38]. Furthermore, as shown by 
in vitro studies, iron alters HCV replication[39,40]. In male 
patients with chronic hepatitis C over 50 years of  age, 
iron has been implicated to be a fibrinogenetic factor in 
comparison to female patients of  the same age[41]. Men­
struating or iron deficient women with chronic hepatitis 
C have been reported to have a slower rate of  disease 
compared to men of  comparable age and women with 
normal iron status[42]. Population-based studies indicate 
differences in HCV clearance rates and the severity of  
disease between men and women[43-45]. IL-10 promoter 
polymorphisms have also been postulated to be associated 
with gender susceptibility to HCV infection[46].   

In vivo whole-body retention studies have demonstrated 
a two-fold increase in intestinal iron absorption in chronic 
alcoholics[13]. Recently, even mild to moderate alcohol 
consumption has been shown to elevate the indices of  
iron stores[12]. Experimental animal models of  ALD 
have also been reported to exhibit increased iron content 
in Kupffer cells which leads to the activation of  the 
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transcription factor, nuclear factor-kappa (NF-kB), and 
increased expression of  the proinflammatory cytokine, 
tumor necrosis factor-alpha (TNF-α)[47,48]. These effects 
are abolished by iron chelation, thereby indicating a role 
for iron-mediated cell signaling in the pathogenesis of  
experimental alcoholic liver disease[49]. There are sex-
specific differences in the metabolism and elimination 
of  ethanol both in humans and rodents[50,51]. The rates 
of  ethanol elimination are higher in women[50]. The ac­
tivity of  the alcohol metabolizing enzyme, alcohol dehy­
drogenase (ADH) in rodent livers is elevated in females 
and castration of  males increases ADH activity[52]. Mo­
reover, men with prostatic metastatic carcinoma who 
have undergone therapeutic orchiectomy have been 
shown to exhibit an increase in ethanol elimination[53]. 
Clinical studies demonstrate that females exhibit a greater 
susceptibility to alcohol-induced liver injury than men[54]. 
Estrogens, endotoxin and inflammatory processes have 
been suspected to play a role. However, it is unknown 
whether there is any association between iron and the 
gender-related differences observed in alcohol-induced 
liver injury. Alcohol suppresses the expression of  the 
key iron regulatory molecule, hepcidin in the liver, which 
leads to an increase in duodenal iron transport[55-58]. Inte­
restingly, male mice have been reported to display signi­
ficantly lower hepcidin expression compared to female 
mice following acute alcohol exposure[55].

NAFLD is the hepatic manifestation of  metabolic 
syndrome[59-61]. NAFLD ranges from benign steatosis 
to nonalcoholic steatohepatitis (NASH) which is diffe­
rentiated by histopathologic evaluation[62]. NASH is the 
severe manifestation of  disease which can lead to liver 
fibrosis and hepatocellular carcinoma[63,64]. Increased iron 
stores have been reported in NAFLD/NASH[15,36,37,65,66]. 
However, the relevance of  iron accumulation in disease 
progression is unclear[15,36,37,65,66]. Excess hepatic iron is 
postulated to cause insulin resistance[16,67]. Interestingly, 
iron depletion via phlebotomy in patients with NAFLD 
has been shown to have a positive effect on insulin re­
sistance and to reduce serum TNF-α levels[68,69]. Serum 
ferritin levels are also positively associated with BMI 
and serum glucose levels[70-73]. However, it should be 
noted that ferritin is an acute phase protein and may not 
accurately reflect the extent of  iron overload in NAFLD. 
There is a relationship between gender and NAFLD. 
However, the data from several studies are conflicting 
regarding the prevalence of  NAFLD among men and 
women[74-79]. Population-based studies suggest a protective 
role for endogenous estrogens in non-alcoholic hepatic 
steatosis[80]. The prevalence of  NAFLD increases in 
women over 50 years of  age[81]. Interestingly, the deletion 
of  histone variant macroH2A1 which is enriched on the 
inactive X-chromosome in females has been postulated to 
cause female-specific steatosis in mice[82].   

IRON REGULATORY PROTEINS
Since there is no physiological pathway of  excretion for 

excess iron in the body, the uptake, transport and sto­
rage of  iron must be tightly regulated. Divalent metal 
transporter 1 (DMT1), a multi-transmembrane protein, 
is responsible for importing dietary non-heme iron thr­
ough the apical site of  absorptive enterocytes in the duo­
denum[83,84]. Conversely, the iron transporter ferroportin 
is responsible for exporting iron into the circulation[85]. 
The ferroportin Q248H polymorphism is associated with 
increased serum ferritin levels in Sub-Saharan Africans 
and African Americans[86]. The frequency of  ferroportin 
Q248H polymorphism has been reported to be higher 
in African American males with elevated serum ferritin 
levels compared to those with normal serum ferritin. How­
ever, these differences were not observed among African 
American women. Furthermore, men with elevated serum 
ferritin were three times more likely to have Q248H 
polymorphism than women with elevated serum ferritin[86].

In the duodenum, the basolateral transport of  iron 
from the enterocytes into the bloodstream also requires 
hephaestin, a transmembrane-bound multicopper ferr­
oxidase[87,88]. Like its homolog ceruloplasmin in the liver, 
hephaestin also links copper and iron metabolism[89]. Sex-
linked anemia is an X-linked inherited iron deficiency 
anemia, first observed in the male descendants of  an irra
diated mouse[90]. Sex linked anemia (sla) mice are impaired 
in intestinal iron transport and contain a deletion in Heph 
gene yielding a truncated hephaestin protein[87].

In the plasma, iron circulates by binding to the gly­
coprotein, transferrin[91]. There are different glycosylated 
forms of  transferrin which are different in the number 
of  N-linked oligosaccharide chains[92,93]. Heavy alcohol 
drinkers display abnormal serum transferrin profile[94,95]. 
Males with high alcohol intake have been shown to dis­
play higher amounts of  disialotransferrin in the serum 
when compared to females. There are no gender-related 
differences in serum disialotransferrin levels between 
nondrinker males and females[96]. Iron-bound transferrin 
is taken up into the cell by transferrin receptors 1 and 2 
(TrfR1, TrfR2)[97,98]. TrfR1 is ubiquitously expressed where­
as TrfR2 is mainly expressed in the liver[98]. The regulation 
of  iron metabolism involves multiple organs including the 
duodenum, liver and bone marrow. Hepcidin is the iron-
regulatory hormone which mediates iron homeostasis 
between these distant organs[2,99].  

Hepcidin is a circulatory antimicrobial peptide, synth­
esized in the hepatocytes of  the liver as an 84 amino 
acid precursor protein[100,101]. It is subsequently cleaved 
into the 25 amino acid cysteine-rich mature (biologi­
cally active) peptide form[102,103]. Hepcidin achieves the 
regulation of  iron homeostasis by binding to the iron 
exporter ferroportin and thereby inhibiting the iron trans 
port in the duodenum and the release of  iron from 
reticuloendothelial macrophages (Figure 1)[104]. During 
pregnancy, iron is transferred from the mother to the 
fetus and hepcidin regulates maternofetal iron transport 
across the placenta[105]. Transgenic mice studies have 
confirmed the role of  hepcidin in the regulation of  
iron metabolism[106,107]. Hepcidin synthesis in the liver is 
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sensitive to body iron levels; increasing with iron over­
load and decreasing in the case of  iron deficiency[2]. He­
pcidin levels in humans have been reported to correlate 
with the liver iron concentration and the parameters of  
hepatic function (e.g. serum albumin)[108]. Furthermore,  
inflammatory signals and the inflammatory cytokines IL-1 
and IL-6 elevate hepcidin expression in the liver[109,110]. 
Conversely, hypoxia and anemia down-regulate hepcidin 
expression[111]. The decrease in hepcidin expression in 
the liver leads to increased iron absorption through the 
duodenum and the mobilization of  iron from reticu­
loendothelial stores to meet the demands of  erythrocyte 
production[2]. The synthesis of  hepcidin in the liver is 
modulated by upstream regulators. Transferrin receptor2, 
Hfe, the juvenile hemochromatosis gene product, Hjv, and 
bone morphogenetic protein 6 are positive regulators of  
hepcidin expression[112-118]. On the other hand, TMPRSS6 
(matriptase 2), a transmembrane serine protease, is the 
negative regulator of  liver hepcidin expression[119,120]. 
Patients expressing TMPRSS6 mutations exhibit iron-
refractory iron deficiency anemia due to elevated hepcidin 
production[119].

HEPCIDIN, SEX DIFFERENCES AND LIVER 
DISEASES
Human hepcidin gene (HAMP, HEPC, OMIM 606464) 
is located on the long arm of  chromosome 19 at position 
13.1[2,100]. Unlike humans or rats, mice have 2 hepcidin 
genes, hepc1 and hepc2, and both genes are located on 
mouse chromosome 7[106,121]. Hepcidin expression in the 
liver has been reported to differ by gender[122]. Female 
mice express significantly higher hepcidin levels in the liver 
than males[122,123]. Both hepcidin1 and hepcidin2 respond 
to iron. The higher level of  hepcidin expression in female 
mice is also associated with elevated liver and spleen iron 
concentrations[122,123]. However, it is unclear whether the 
elevated expression of  hepcidin in female mice is due to 
the increase in iron stores. It is also not known whether 
women and men differ in the level of  hepcidin expression 
in the liver. Women usually have lower iron stores than 

men mainly due to the physiological loss of  blood. A 
study utilizing enzyme-linked immunoabsorbent assay re­
ported lower serum hepcidin levels in healthy female vo 
lunteers compared to those measured in males[124]. The 
level of  serum hepcidin has been postulated to correlate 
with that of  serum ferritin levels[124]. However, it should 
be noted that besides iron, hepcidin is also regulated by 
other stimuli which may also play a role in sex-specific 
expression of  hepcidin in the liver.

Accumulating evidence suggests hepcidin as the mo­
difier gene in genetic hemochromatosis. Hepcidin mRNA 
expression is reduced in patients with GH and in Hfe 
knockout mice[125,126]. Some patients with Hfe C282Y 
homozygosity have been reported to carry additional 
mutations in hepcidin gene (HAMP)[127-129]. GH patients 
subjected to acute oral iron challenge have been shown to 
display a blunted hepcidin response compared to healthy 
control subjects[130]. Constitutive expression of  hepcidin 
has been shown to prevent iron overload in Hfe knockout 
mice[131]. Hepcidin is also altered in other non-Hfe-related 
forms of  hemochromatosis. Hemochromatosis patients 
harboring mutations in transferrin receptor 2 gene have 
lower urinary hepcidin levels[112]. Mutations in the hepci­
din gene and the juvenile hemochromatosis gene, hemo­
juvelin (Hjv), have been identified in juvenile hemochroma
tosis patients[114,132]. In contrast to hepcidin, Hjv does not 
respond to iron levels but its inactivation results in hep­
cidin deficiency[114,132-134]. Hjv acts as a bone morphogenic 
protein (BMP) co-receptor[118]. Furthermore, BMP6 regu­
lates hepcidin expression[115,116].

Hepcidin expression is also altered in other liver dis­
eases. Patients with alcoholic liver disease or chronic he­
patitis C and animal models of  alcohol and HCV display 
reduced hepcidin expression[35,56-58,135,136]. Hepcidin has 
been reported to be expressed in adipose tissue and the 
expression was increased in obese patients; correlating 
with the body mass index (BMI)[137]. The pathogenesis 
of  nonalcoholic steatohepatitis is associated with insulin 
resistance and metabolic syndrome[59,60,79]. However, he­
pcidin expression in the livers of  these patients was un­
changed[137]. High levels of  leptin accompany insulin resis­
tance which is suggested to play a role in the progression 
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Figure 1  Regulation of hepcidin and iron metabolism. The key iron-
regulatory hormone hepcidin is primarily synthesized in the parenchymal 
cells of the liver and is subsequently released into the circulation. The 
transcriptional regulation of hepcidin in the liver is regulated by various 
factors. Hepcidin released into the circulation in turn regulates iron 
metabolism by controlling the iron transport in the duodenum and iron 
export in the macrophages. Hepcidin achieves this by binding to the iron 
exporter protein ferroportin and inducing its internalization and degradation.
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of  NAFLD to NASH[138-140]. Interestingly, an in vitro study 
performed with Huh7 human hepatoma cells showed that 
the adipokine, leptin, increased the expression of  hepcidin 
through the Jak2/Stat3 signaling pathway[141]. 

The liver is sensitive to the action of  sex hormones 
including estrogens[142-144]. There is some evidence that 
estrogens can increase the production of  reactive oxygen 
species in the liver[145]. Recently, oxidative stress has been 
reported to regulate hepcidin transcription in the liver[55]. 
It is therefore possible that estrogens may play a role in 
sex-specific regulation of  hepcidin expression in the liver. 
A study of  patients with chronic hepatitis reported higher 
c-myc expression in the livers of  patients in which the 
liver expressed a variant form of  the estrogen receptor 
that exhibits constitutive transcriptional activity compared 
to patients in whom the liver expressed wild type estro 
gen receptor[145,146]. Estrogen has also been reported to 
cause c-myc overexpression in hamster kidneys[147]. c-myc 
belongs to the basic helix-loop-helix/leucine zipper 
(bHLH/zip) family of  transcription factors which also 
includes upstream stimulatory factor (USF) and transcrip­
tion factor E (TFE)[148]. These transcription factors bind 
to E-Box motifs in the regulatory elements of  promoter 
sequences of  target genes[148]. Hepcidin genes are located 
directly downstream of  the Usf2 gene. An involvement of  
USF1, USF2 and c-myc in the transcriptional regulation 
of  human and mouse hepcidin genes has been postu­
lated[106,107,149]. Moreover, the mutation of  E-box motifs in 
the human hepcidin gene promoter has been shown to 
abolish the transcriptional regulation by USF1, USF2 or 
c-myc[149]. However, it remains to be seen whether estro­
gen plays a role in the transcriptional regulation of  hepci­
din and in sex-based differences observed regarding the 
expression of  hepcidin in the liver.

CONCLUSION
Iron is essential for many biological processes. However, 
excess iron is harmful and can lead to tissue injury. The 
liver acts as a storage depot for iron and plays a central 
role in the regulation of  iron metabolism. The key iron re 
gulatory hormone, hepcidin, is synthesized in the liver. 
Genetic hemochromatosis (GH) is a prevalent iron over­
load disorder in the Caucasian population. Patients with 
non-hemochromatotic liver diseases such as alcoholic 
liver disease, chronic hepatitis C and non-alcoholic stea­
tohepatitis also frequently exhibit evidence of  iron over­
load. Hepcidin is suggested to play a role in GH and 
has been shown to be modulated by alcohol, hepatitis C 
viral proteins and obesity. Genotypic and sex differences 
have been shown to be involved in the regulation of  liver 
hepcidin expression in mice. Men and women exhibit 
clinical differences in the severity of  various liver diseases. 
Women of  childbearing age usually have lower iron 
stores compared to men mainly due to the physiological 
loss of  blood. However, an association between body 
iron levels and the gender-specific differences observed 
in the progression of  chronic liver diseases has yet to 
be established. Gender-specific regulation of  hepcidin 

synthesis in the liver may play a role in this process. Fur­
ther understanding of  the mechanisms underlying the 
gender-based differences in the pathophysiology of  chro­
nic liver diseases may lead to the development of  novel 
diagnostic markers and treatment strategies.
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