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Abstract
Nitric oxide (NO) is a lipophilic, highly diffusible and 
short-lived physiological messenger which regulates a 
variety of important physiological responses including va-
sodilation, respiration, cell migration, immune response 
and apoptosis. NO is synthesized by three differentially 
gene-encoded NO synthase (NOS) in mammals: neuro-
nal NOS (nNOS or NOS-1), inducible NOS (iNOS or 
NOS-2) and endothelial NOS (eNOS or NOS-3). All 
isoforms of NOS catalyze the reaction of L-arginine, 
NADPH and oxygen to NO, L-citrulline and NADP. NO 
may exert its cellular action by cGMP-dependent as well 
as by cGMP-independent pathways including postrans-
lational modifications in cysteine (S-nitrosylation or 
S-nitrosation) and tyrosine (nitration) residues, mixed 
disulfide formation (S-nitrosoglutathione or GSNO) or 
promoting further oxidation protein stages which have 
been related to altered protein function and gene trans-
cription, genotoxic lesions, alteration of cell-cycle check 
points, apoptosis and DNA repair. NO sensitizes tumor 
cells to chemotherapeutic compounds. The expression 
of NOS-2 and NOS-3 has been found to be increased in 

a variety of human cancers. The multiple actions of NO 
in the tumor environment is related to heterogeneous 
cell responses with particular attention in the regulation 
of the stress response mediated by the hypoxia induci-
ble factor-1 and p53 generally leading to growth arrest, 
apoptosis or adaptation. 
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INTRODUCTION
Discovery of nitric oxide
Nitric oxide (NO) is a lipophilic, highly diffusible and 
short-lived physiological messenger[1]. NO regulates a 
variety of  important physiological responses including 
vasodilation, respiration, cell migration, immune res-
ponse and apoptosis. Ignarro et al[2] and Moncada et al[3]  
identified simultaneously the endothelium-derived relaxing 
factor (EDRF) as NO. Hibbs et al[4] demonstrated that 
the reaction using L-arginine as substrate results in the 
formation of  L-citrulline and the end products, NO2

-/
NO3

-. The 1990s brought several landmarks to the field 
including the molecular characterization of  the NO 
synthase (NOS) family of  enzymes[5-8], the discovery of  
peroxyntrite (ONOO-)[9], the importance of  NO-mediated 
posttranslational protein modifications[10], the regulation 
of  mitochondrial function by NO[11-14] and the chemistry 
of  NO diffusion/reactivity[15].
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Nitric oxide synthase isoenzymes
NO is synthesized by three differentially gene-encoded 
NOS in mammals: neuronal NOS (nNOS or NOS-1), 
inducible NOS (iNOS or NOS-2) and endothelial NOS 
(eNOS or NOS-3). All three isoforms share similar struc-
tures and catalytic modes, yet the mechanisms that control 
their activity in time and space are quite diverse. The 
expression of  NOS-2 is induced by inflammatory stimuli 
while NOS-1 and NOS-3 are more or less constitutively 
expressed[16]. The full active NOS form requires two NOS 
monomers associated with two Ca2+-binding protein 
calmodulin (CaM). NOS contains relatively tightly-
bound cofactors such as (6R)-5,6,7,8-tetrahydrobiopterin 
(BH4), FAD, FMN and iron protoporphyrin Ⅸ (haem) 
and catalyze the reaction of  L-arginine, NADPH and 
oxygen to NO, L-citrulline and NADP[16]. The reaction 
is composed of  two sequential steps involving the hydro-
xylation of  guanidino nitrogen of  L-arginine generating 
the intermediate Nω-hydroxy-L-arginine (NOHA) which 
is oxidized to NO and L-citrulline[17]. HB4 acts as a redox 
cofactor in the second reduction step and prevents the 
uncoupling of  NOS and generation of  anion superoxide 
(O2-

-). All NOSs require similar amounts of  L-arginine, 
BH4 and NADPH for activity. NOS isoforms are diffe-
rentially regulated at transcriptional, translational and 
post-translational levels. However, the activity of  NOS-1 
and NOS-3 is highly dependent upon intracellular Ca2+ 
concentration whereas NOS-2 forms an active complex 
with CaM. NOS-2 is already maximally activated by Ca2+/
CaM even at basal levels of  intracellular Ca2+[16]. Several 
inhibitory and activator phosphorylated sites in NOS-1 
and NOS-3 tightly regulate their NO production[18].

The intracellular localization is relevant for the activity 
of  NOS. It appears that there are compartments that 
allow full activation of  NOS with free access to substrates 
and cofactors as well as the presence of  activators[19]. In 
this sense, accumulating evidence indicates that NOSs are 
subject to specific targeting to subcellular compartments 
(plasma membrane, Golgi, cytosol, nucleus and mitochon-
dria) and that this trafficking is crucial for NO production 
and specific posttranslational modifications of  target pro-
teins[20,21].

NITRIC OXIDE CELL SIGNALING
The biological activity of  NO is classified by cGMP-
dependent and cGMP-independent pathways, both 
attributed to physiological and pathological conditions[22-24]. 
cGMP-dependent protein kinases, cyclic-nucleotide-gated 
ion channels and cGMP-regulated phosphodiesterases 
mediate several cellular effects. However, during the 
last decade, cGMP-independent reactions have gained 
considerable interest. A variety of  effects are achieved 
through its interactions with targets via redox and additive 
chemistry that may promote covalent modifications 
of  proteins as well as oxidation events that do not re-
quire attachment of  the NO group. In fact, NO is the 
prototypic redox-signaling molecule more versatile than 

O2-
- or H2O2 and clearly better identified with redox-

related modifications of  intracellular proteins[25]. 

Nitric oxide cGMP-independent pathways
The most prominent and recognized NO reaction with 
thiols groups of  cysteine residues is called S-nitrosylation 
or S-nitrosation which leads to the formation of  more 
stable nitrosothiols[26]. However, other modifications 
such as disulfide, mixed disulfide formation with reduced 
glutathione (S-nitrosoglutathione or GSNO) or oxidation 
towards sulfenic acid are also important since they are 
reversible. Higher thiol oxidation states such as sulfinic 
or sulfonic acids are irreversible modifications with subse-
quent loss of  functional control. Nitrosothiol formation 
can be the result of  a direct reaction with NO or of  an 
oxidative nitrosylation reaction involving the preformation 
of  ONOO-[27]. The pattern of  nitrosylated proteins is 
specific, probably dependent of  the presence of  specific 
consensus motifs which influence the accessibility of  the 
thiols groups to NO[28]. Different proteins such as NMDA 
and ryanodine receptors, ras, caspases, glyceraldehyde-3-
phosphate dehydrogenase and DNA repair proteins are 
widely post-translationally modified by nitrosylation[29].

Oxidative and nitrosative stress is sensed and closely 
associated with transcriptional regulation of  multiple 
target genes[30]. The net effect of  NO on gene regula-
tion is variable and ranges from activation to inhibition 
of  transcription. S-nitrosation of  specific cysteines in 
active zinc fingers sequences in SP-1, EGR-1 and gluco-
corticoid receptors, induces Zn2+ release, concomitant 
conformational changes and reduced DNA-binding[31]. 
The impact of  NO in other transcription factors such 
as NF-kB may affect at different levels such as IkB ex-
pression and stability, NF-kB activation, nuclear trans-
location or cysteine residue modification involving 
alteration of  DNA binding. The administration of  NO 
donors reduces NF-kB activation and downstream 
expression of  anti-apoptotic gene products[32] which is 
relevant for NO-dependent sensitization chemotherapy-
resistant tumor cells[33,34]. It now seems more certain 
that reducing conditions are required in the nucleus for 
NF-kB DNA binding whereas oxidizing conditions in 
the cytoplasm promote NF-kB activation[30]. AP-1 is 
a transcription factor that belongs to the basic leucine 
zipper (bZip) family in which a single cysteine residue is 
present that confers redox sensitivity[35]. NO, mostly by 
S-nitrosylation[36] and glutathiolation[37] of  cysteine, inhi-
bits c-Jun and c-Fos DNA binding in a reversible manner. 
p53 also binds to its specific DNA sites in a reducing 
environment and mutations of  cysteine residues in the 
p53 core binding domain (loop-sheet-helix motif  linked 
to a loop-helix motif) prevents DNA binding and p53-
induced transcription[38]. HIF-1α has a single cysteine 
in the basic-helix-loop-helix of  the carboxyl-terminal 
trans-activating domain which participates in protein–
protein interactions that activate transcription[39]. Other 
transcription factors whose binding to DNA is facilitated 
under reducing conditions include c-Myb, USF, NFI, 
NF-Y, HLF, PEBP2, GABPa, TTF-1 and Pax-8[30].
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The generation of  O2-
- and NO may lead the produc-

tion of  the harmful molecule ONOO-[40]. ONOO- may 
result in S-nitrosylation and tyrosine nitration of  proteins 
with a concomitant change in their function[41]. The genera-
tion of  ONOO- may exert a negative feedback regulation 
on the NO production. In this sense, the reaction of  
ONOO- with Akt and BH4 altered NO production gene-
rated by NOS[42,43]. Proteins that can be nitrated on tyro-
sine residues include actin, histone proteins, protein kinase 
C, prostacyclin synthase, manganese superoxide dismutase, 
tyrosine hydroxylase, cytochrome P450B1, transcription 
factor STAT1 and p53[44]. Also, different proteins ap-
peared to be nitrated in cultured human hepatocytes[45]. 
Alternatively, NO may indirectly induce gene transcription 
via activation/modulation of  signaling pathways such as 
mitogen-activated protein kinases (MAPK), G-proteins, 
Ras pathway or phosphatidylinositol-3 kinase (PI3K) 
pathways[46].

NITRIC OXIDE, CELL PROLIFERATION 
AND CANCER
Nitrogen oxide chemistry is critical in the nitrogen cycle, 
converting nitrate(NO3

-) and nitrite (NO2
-) to ammonia 

(NH4
+), an essential component of  protein synthesis as 

well as in the vascular tone and cell signaling regulation. 
However, it has also been associated to the deleterious/
cytotoxic effects in air pollution, antibacterial in the pre-
servation of  food as well as the generation of  carcino-
genic nitrosamines[47]. In this sense, NO may participate 
in the induction of  genotoxic lesions as well as promoting 
angiogenesis, tumor cell growth and invasion[48]. 

Participation of nitric oxide in carcinogenesis
The infectious and non-infectious generation of  chronic 
injury and irritation initiates an inflammatory response[49]. 
A subsequent respiratory burst, an increased uptake of  
oxygen that leads to the release of  free radicals from leu-
kocytes, including activated macrophages, can damage 
surrounding cells. This process can drive carcinogenesis 
by altering targets and pathways that are crucial to normal 
tissue homeostasis. NO and NO-derived reactive nitrogen 
species induce oxidative and nitrosative stress which re-
sults in DNA damage (such as nitrosative deamination 
of  nucleic acid bases, transition and/or transversion of  
nucleic acids, alkylation and DNA strand breakage) and 
inhibition of  DNA repair enzymes (such as alkyltrans-
ferase and DNA ligase) through direct or indirect me-
chanisms[50]. However, the diversity of  reactive species 
produced during chronic inflammation under different 
cellular microenvironments has impaired identification 
of  a clear biomarker that identifies the involvement of  
a single reactive species in the carcinogenic process[51]. 
Chronic inflammation contributes to about one in four of  
all cancer cases worldwide[49]. The induction of  mutations 
in cancer-related genes or post-translational modifications 
of  proteins by nitration, nitrosation, phosphorylation, 

acetylation or polyADP-ribosylation are some key events 
that can increase the cancer risk. In particular, high levels 
of  NO are genotoxic through formation of  carcinogenic 
nitrosamines or by directly modifying DNA or DNA re-
pair proteins. It was found that aerobic solutions of  NO, 
NO2 and N2O3 led to deamination of  nucleic acids[52]. 
Unlike oxidation by ONNO- or reactive oxygen species 
(ROS) that preferentially results in transversions, nitro-
sative mixtures of  NO2/N2O3 mediate transitions[53]. How-
ever, NO may also influence the carcinogenesis process 
by alteration of  cell-cycle checkpoints[54], apoptosis[55] 
and DNA repair[56]. NO donors sensitize tumor cells to 
chemotherapeutic compounds by nitrosilation of  critical 
thiols in DNA repair enzymes in hepatoma cell line[57]. 
Other studies have demonstrated increased susceptibility 
to chemotherapy to cisplatin[58] and melphalan[59] by NO 
donors in different cell lines. These results implied sub-
stantial modification of  key biological target(s) including 
DNA repair proteins and transcription factor known to 
be inhibited by NO.

Cell signaling of NO in carcinogenesis
It is difficult to identify the specific role of  NO in carci-
nogenesis because it is dependent on its concentration, 
interaction with other free radicals, metal ions and pro-
teins, and the cell type and the genetic background that it 
targets. The expression of  NOS-2 has been found to be 
increased in a variety of  human cancers[60-62]. However, 
NOS-3 has also been suggested to modulate different 
cancer-related events (angiogenesis, apoptosis, cell cycle, 
invasion and metastasis)[63]. NO can both cause DNA 
damage and protect from cytotoxicity, can inhibit and 
stimulate cell proliferation and can be both pro- and 
anti-apoptotic[64-67]. Lancaster and Xie[68] suggest that the 
multiple actions of  NO in the tumor environment are 
related to its chemical (post-translational-related modifica-
tions) and biological heterogeneity (cellular production, 
consumption and responses). However, one of  the critical 
insights into this dichotomy may be the regulation by NO 
of  the stress response mediated by the hypoxia inducible 
factor-1 (HIF-1)[69] and p53[70] generally leading to growth 
arrest, apoptosis or adaptation[71]. 

Nitric oxide and p53
The biological outcomes of  p53 activity include apop-
tosis, inhibition of  cell cycle progression, senescence, 
differentiation and accelerated DNA repair. The types 
of  stress that promote p53 activation include many con-
ditions associated with cancer initiation and progression 
such as direct DNA damage, chromosomal aberrations, 
illegitimate activation of  oncogenes, hypoxia, telomere 
shortening etc. p53 is found at very low steady state 
in non stress conditions by the mouse double minute 
(Mdm2, the human orthologue form is named Hdm2) 
protein[72]. Mdm2 displays an E3 ubiquitin ligase activity 
towards p53 for ubiquitin-dependent proteasomal degra-
dation, although non-proteasomal mechanisms for p53 
degradation may also play a significant role under certain 
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circumstances[73]. The induction of  cell death or anti-
tumoral properties of  NO has been extensively related 
to nuclear p53 accumulation[74-77]. NO donors induce 
p53 accumulation and apoptosis through JNK-1/2, but 
not ERK1/2 or p38, activation in RAW 264.7 macro-
phages[78]. A peptide corresponding to the JNK binding 
site on p53 protein efficiently blocks its ubiquitination 
and consequently increases p53 half-life[79]. The nuclear 
accumulation of  p53 is mainly regulated by posttrans-
lational modifications by phosphorylation[80] or tyrosine 
nitration[81]. S-nitrosoglutathione and NO donors prevent 
poly-ubiquitinated-dependent p53 degradation by pro-
teasome which it is antagonized by reducing agents[82]. 
Ubiquitin-activating enzyme (E1), a key component of  
ubiquitinization process, has a cysteine residue that is 
S-nitrosylated by NO donors[83]. 

The overexpression of  NOS-2 reduced in vitro cell 
proliferation[84-86] and in vivo tumor progression in xeno-
graft experimental models[84,86] using different carcinoma 
cell lines. Le et al[87] have recently shown that NOS-2 
overexpression exerts antitumor activity in vitro and in 
vivo dose dependently, regardless of  its up-regulation 
of  protumor factors. Also, NOS-2-derived NO suppre-
sses lymphomagenesis even in a p53-/- back-ground by 
promoting apoptosis and decreasing tumor cell proli-
feration[88]. NOS-2 overexpression has also been shown to 
induce radiosensitization through p53 accumulation in in 
vitro and in vivo xenograft models[89,90]. Furthermore, wild-
type p53-induced transrepression of  NOS-2 provides 
a protective mechanism against prolonged exposure to 
pathological conditions of  NO[75,91]. The frequency of  
p53 mutations occurs in about 50% of  all human tumors 
suggesting that can be an early event in the process of  
hepatocellular carcinogenesis[92,93]. The expression of  
NOS-2 has been associated with increased expression 
of  p53 mutated isoforms in liver sections from patients 
with hemochromatosis and Wilson diseases[94], ulcerative 
colitis[95], colon cancer[96] and stomach, brain and breast 
cancers[60,62,97]. Ambs et al[84] have observed that NOS-2 
overexpression in cells with mutated p53 accelerated tu-
mor growth, increased vascular endothelial growth factor 
(VEGF) expression and neovascularization. These studies 
indicate that exposure of  cells to high levels of  NO and 
its derivatives during chronic inflammation in the absence 
of  wild-type p53, and therefore the negative NOS-2 regu-
lation, may increase the susceptibility to cancer. Therefore, 
loss of  functional p53 may lead to a reduction of  NO 
sensitivity and transfer to other stress survival response 
such as HIF-1 that may promote a selective tumoral 
growth advantage. However, recent study has shown that 
NOS-2 overexpression abrogated the growth of  various 
human tumor cells with different p53 functional status 
(wild-type, mutated and gene loss)[87]. The contradictory 
results among studies showing the potential role of  p53 
in high NO production may be explained by the different 
overall genetic background of  tumoral cell lines as well as 
the stromal cell-derived NO in xenograft models that may 
modulate the response of  surrounding tumor cells.

Nitric oxide and HIF-1  
NO has also revealed an impact on the redox-sensitive 
target HIF-1. HIF-1 is predominantly active under hypo-
xic conditions because the HIF-1α subunit is rapidly 
degraded in normoxic conditions by proteasomal degra-
dation[98]. Different genes involved in erythropoiesis and  
iron metabolism (erythropoietin or transferrin), glu-
cose/energy metabolism (glucose transporters), cell pro 
 liferation/viability decisions (transforming growth fac-
tor-β), vascular development/remodeling and/or vaso-
motor tone (VEGF or NOS-2) contain HRE (hypoxia 
responsive element)[99]. HIF-1α is overexpressed as a re 
sult of  intratumoral hypoxia and/or genetic alterations 
affecting key oncogenes and tumor suppressor genes in 
human cancer[100]. Different signals other than hypoxia 
such as growth factors, reactive oxygen species, cytokines, 
NO and/or NO-derived species participate in hypoxic 
signaling[101]. NO, through cGMP-dependent pathways, 
regulates different modifications during drosophila develo-
pment in oxygen deprivation conditions[102]. However, 
thiol groups in HIF-1 or the proteins that are involved in 
the regulation of  HIF-1 are also potential targets for post-
translational modifications by NO. GSNO or selected 
NO donors enhance S-nitrosylation of  propyl hydroxylase 
which lead to HIF-1α accumulation[103,104] and HIF-1 
DNA-binding activity in cell systems[105]. However, small 
NO concentrations induce a faster but transient HIF-1α 
accumulation than higher doses of  the same donor[106]. 
NO-related HIF-1 activation mediates up-regulation of  
VEGF expression in normoxic human glioblastoma and 
hepatoma cells[107]. Different studies have also shown that 
phosphorylation mechanism by PI3K/Akt pathway is also 
involved in GSNO-induced HIF-1 accumulation[108].

As described above, HIF-1 is predominantly active 
under hypoxic conditions in which the generation of  
oxygen species, specifically H2O2, is supposed to attenuate 
HIF-1 activation. Similarly, the redox cycler DMNQ 
(2,3-dimethoxy-1,4-naphthoquinone) generating O2-

- and/
or H2O2 (derived from superoxide dismutase-triggered 
conversion of  O2-

- to H2O2) attenuated NO-derived reac-
tive nitrogen species-elicited HIF-1α accumulation[108]. 
The attenuation by NO of  hypoxia-evoked reporter 
gene activation has been extended to several genes such 
as insulin-like growth factor binding protein (IGFBP-1), 
endothelin-1 and VEGF[101]. In this condition, NO has 
been shown to prevent HIF-1 accumulation in Hep3B 
and PC-12 cells which it reduced by addition of  a lipo-
philic glutathione analog or ONOO- scavenger[109]. If  
indeed the steady state of  O2-

- increases under hypoxia, 
it may be hypothesized that hypoxia in the presence of  
NO-derived reactive nitrogen species delivery promotes 
formation to the strong oxidant ONOO-. ONOO- in 
turn may not only oxidize reduced glutathione but also 
damage mitochondria. The differential behavior of  NO 
in normoxic and hypoxic conditions may also be related 
to its capacity to regulated mitochondrial oxidative phos-
phorylation which may limit ROS generation and HIF-1 
accumulation in hypoxic conditions[110]. In addition, the 
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interference of  NO signaling by mitochondrial O2-
- gene-

ration can be rationalized by the diffusion-controlled 
radical interaction which may redirect signaling qualities 
of  NO towards other species, i.e. ONOO- that may not 
share the ability to stabilize HIF-1α. Hypoxic intracellular 
environment is characterized by a complex network of  
radical pattern generation that in conjunction with variable 
amounts of  defense-systems may reveal a variable HIF-
response to NO. 

CONCLUSION
Different studies have shown that increased and conti-
nuous NO production plays a pivotal role in the regula-
tion of  carcinogenic process. The alteration of  redox 
status and transcriptional pattern modifications induced 
by NO in tumoral cells increase cell death and exerts 
antineoplastic properties. In this sense, more studies shou-
ld be done in order to identify the temporal, spatial and 
concentration-dependent intra- and extra-cellular NO 
generation that exerts its maximum antitumoral activity 
either as monotherapy or combined treatment with chemo-
therapy.
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