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Abstract

Background: Gene amplification is thought to promote over-expression of genes favouring tumour development. Because
amplified regions are usually megabase-long, amplification often concerns numerous syntenic or non-syntenic genes,
among which only a subset is over-expressed. The rationale for these differences remains poorly understood.

Methodology/Principal Finding: To address this question, we used quantitative RT-PCR to determine the expression level
of a series of co-amplified genes in five xenografted and one fresh human gliomas. These gliomas were chosen because we
have previously characterised in detail the genetic content of their amplicons. In all the cases, the amplified sequences lie on
extra-chromosomal DNA molecules, as commonly observed in gliomas. We show here that genes transcribed in non-
amplified gliomas are over-expressed when amplified, roughly in proportion to their copy number, while non-expressed
genes remain inactive. When specific antibodies were available, we also compared protein expression in amplified and non-
amplified tumours. We found that protein accumulation barely correlates with the level of mRNA expression in some of
these tumours.

Conclusions/Significance: Here we show that the tissue-specific pattern of gene expression is maintained upon
amplification in gliomas. Our study relies on a single type of tumour and a limited number of cases. However, it strongly
suggests that, even when amplified, genes that are normally silent in a given cell type play no role in tumour progression.
The loose relationships between mRNA level and protein accumulation and/or activity indicate that translational or post-
translational events play a key role in fine-tuning the final outcome of amplification in gliomas.
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Introduction

The development of tumours often relies on genomic rear-

rangements that alter the expression of genes favouring growth

and survival pathways. Among rearrangements frequently in-

volved in tumour progression is DNA amplification, which

drastically modifies gene dosage in cancer cells [1,2]. Amplified

sequences may be found within the chromosomes, clustered within

homogeneously staining regions (HSRs) or spread among different

loci. Alternatively, they may lie on circular extra-chromosomal

DNA molecules called double minutes (dmins) [3,4]. Regardless of

the localisation of extra copies, amplification events often lead to

the co-amplification of groups of neighbouring genes originating

from one or several genome regions. Each amplicon is supposed to

bear at least one driver gene. Depending on the tumours, a few or

most amplified genes may be over-expressed [5–10], so that

several genes co-amplified within a given amplicon could be

functionally relevant [11–13]. To determine the rationale for these

differences in expression patterns, we analysed the expression level

of all the co-amplified genes in five xenografted and one fresh

human gliomas containing dmins, the sequence of which has been

previously analysed in detail [14,15]. We found that the tissue-

specific pattern of gene expression is not modified upon

amplification. In contrast, protein accumulation and/or activity

are not tightly related to mRNA over-expression.

Results

In five out of the six gliomas we analysed (tumours 4, 7, 21, 22

and 30) the amplification process involved sequences originating

only from the 7p11 region, wherein lies the EGFR gene. We first

focussed on these simple situations, in which the amplicons range

from 0.7 to 2.1 megabases depending on the tumour, and all include

the EGFR gene [14] (Figure 1A). In addition, a rearrangement

leading to deletion of EGFR exons 2 to 7, which is commonly

observed in gliomas [16], was seen in all the amplicons of tumour 21

[14] and in about 20% of those of tumour 22 (Supplementary data

S1). The deleted genes encode the well-known variant III of EGFR

(EGFRvIII) [17], a constitutively active EGFR protein. Screening of

the human reference genome sequence revealed that 14 genes
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Figure 1. Relationships between gene copy number and mRNA expression in gliomas amplified for the 7p11–p12 locus. Full-length
names of the genes are listed in Supporting Information Table S1. A. Position of the genes co-amplified with EGFR. The extent of the amplified
regions is mapped for each glioma. In tumour 26, 3 amplicons of different sizes were present. B. Over-expression of genes co-amplified with EGFR in
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coding for proteins lie in the region extending from 53 to 56.2 Mb,

which overlaps all the sequences amplified in this set of tumours

(Figure 1A, Supplementary Table S1). Among these genes, the

SEC61G gene was co-amplified with EGFR in 5 tumours and the

VSTM2A gene in 4 of them. Two genes (LANCL2 and VOPP1)

and SEPT14 were respectively amplified in 3 and 2 tumours. Eight

genes centromeric to SEPT14 (ZNF713, MRPS17, GBAS, PSPH,

CCT6A, SUMF2, PHKG1 and CHCHD2) were amplified in

tumour 4 only. The number of genes co-amplified with the EGFR

gene thus ranges from 2 (tumour 22) to 12 (tumour 4).

The expression of these 14 genes was measured by RT-Q-PCR

in tumours 4, 7, 21, 22 and 30 and in a reference set of 5 non-

amplified gliomas (for an example of the procedure, see

Supplementary data S2). The expression of 5 genes (VSTM2A,

SEPT14, MRPS17, PSPH and CCT6A) was undetectable in all

these gliomas, regardless of their amplification status. The other

genes were expressed both in control and amplified tumours, and

always over-expressed when amplified (Supplementary Table 1).

In tumour 4, for example, 8 expressed genes were co-amplified

with the EGFR gene. We found that these genes were over-

expressed 4- to 12-fold, which agrees with their 9-fold amplifica-

tion (Figure 1B). It is noticeable that original tumour 4 was

available in addition to the xenograft, and that similar levels of

expression were found in both cases (not shown). The fact that

tumours with different copy numbers of a given gene are available

offered us the possibility to determine the relationships linking the

level of amplification to that of mRNA expression. We observed a

linear relationship between these two parameters for the EGFR,

SEC61G, VOPP1 and LANCL2 genes (Figure 1C), which shows

that the level of mRNA expression correlates tightly with the gene

copy number for expressed genes.

Protein extracts were available for tumours 4, 7, 21 and 22 but

exhaustive analysis of the accumulation of proteins encoded by

amplified genes was prevented by the lack of adequate antibodies.

However, it was possible to perform western-blot analysis of

PHKG1 and EGFR. In the case of PHKG1, we found that the

protein was more abundant in cells of tumour 4 than in cells of

tumours without amplification of that gene (Figure 2A). For

EGFR, we observed a band around 170 kDa in extracts from

tumours 4 and 7 that corresponds to the normal position of EGFR

(Figure 2B). Cells of tumour 21 accumulated a protein of about

130 kDa which corresponds to EGFRvIII. Two proteins migrating

at 145 and 130 kDa were detected in tumour 22. The latter band

corresponds to EGFRvIII which was encoded by about 20% of the

amplicons (see above). Even though the 145 kDa protein migrated

faster than the normal EGFR, sequencing of the whole EGFR

cDNAs indicated that no deletion affected the EGFR full-length

allele present in the rest of the amplicons (not shown). This result

suggests that post-translational modifications might be responsible

for the electrophoretic shift also observed for a fraction of the

protein in tumour 7 (Figure 2B). Quantification of the intensity of

the bands (Table 1) showed that the EGFR protein was always

more abundant in tumours where the gene was amplified than in

control tumours, but the relationship between EGFR mRNA and

protein accumulation was loose in some tumours. For example,

tumours 4 and 7 had a very similar gene copy number and mRNA

over-expression but showed an around ten-fold difference in

protein accumulation. In addition, the relative amount of wild type

and variant proteins do not parallel the copy number of the

corresponding genes.

Analysis of tumour 26 have revealed a complex situation, since

five types of amplicons were identified [15] (Figure 1A, Supple-

mentary Figure S1). Amplicons 1 to 3 contained fragments from

the EGFR locus. The gene was full-length in amplicon 1, the

region containing the first exon of the gene was missing in

amplicon 2, and only exons 11 to 28 were present in amplicon 3

(Details on the amplicon structures are available in supplementary

Figure S1). Only exons 11 to 28 were detected by RT-Q-PCR

analysis, indicating that only the truncated gene of amplicon 3 was

expressed in this tumour (Figure 3, Supplementary data S3). In

this amplicon, the fragment from the EGFR locus was associated

with a fragment from chromosome 5 (Supplementary Figure S1).

PCR and RT-Q-PCR scanning of chromosome 5 and 7 fragments

present in amplicon 3 showed that a sequence longer than 150 kb,

tumour 4 analysed by RT-Q-PCR. The expression ratio (Re) was calculated by dividing the normalised expression measured in the tumour by the mean
of the normalised expressions measured in the reference set of tumours. Genes SEPT14, MRPS17, PSPH and CCT6A are expressed neither in the
analysed glioma nor in the reference set. C: Relationships between amplification and mRNA expression for genes amplified in several tumours. EGFR
and SEC61G were amplified in tumours 4, 7, 21, 22 and 30; LANCL2 and VOPP1 in tumours 4, 7 and 30. Primers used for EGFR detected the full-length
and the deleted (EGFRvIII) forms of the gene.
doi:10.1371/journal.pone.0014249.g001

Table 1. Relationships between EGFR gene amplification and mRNA and protein accumulation.

Characteristic Case 4 Case 7 Case 21 Case 22 Case 26 Case 30

Histologya ODA GBM GBM ODA GBM GBM

DNA amplificationb 9 8 32 55 250c 30

mRNA over-expression d 8 13 24 38 300 27

Protein over-expressione 10 120 40 50+50f 150+100f NAg

pEGFR form wt wt vIII wt+vIII vI NAg

ODA: oligodendroglioma; GMB: glioblastoma multiforme.
aHistological type.
bmean level of amplification.
camplicon 3, unexpressed amplicons 1 and 2 were both amplified 8-fold
dMean level of mRNA expression.
eMean value of protein accumulation.
fThe 2 bands were quantified independently (see Figure 2).
gprotein extract not available.
doi:10.1371/journal.pone.0014249.t001
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containing the processed mRNA of the truncated EGFR gene, was

transcribed from this amplicon (Supplementary data. S4). This

transcript seems unusually long, but a global analysis (ENCODE

project) has previously suggested that such long-distance tran-

scription products are present in primary nuclear transcripts [18].

Western blotting revealed the presence of two EGFR variants of

75 and 90 kDa (Figure 2C) likely corresponding to the two forms

observed at the mRNA level. These truncated variants lacking the

extracellular part of the wild-type protein (Supplementary Data

S5) are similar to the constitutively active variant I of EGFR

(EGFRvI) [19]. Reanalysis of data previously published by Wong

et al. [20], allows us to suggest that the formation of an extra-

chromosomal circular DNA molecule could be a recurrent

mechanism in the amplification and over-expression of the

EGFRvI variant in gliomas (Supplementary Data S6).

In addition to the 3 amplicons containing the EGFR locus, two

other amplicons were present in tumour 26. We have previously

shown that amplicon 4 corresponds to the circularisation of a

single fragment from 1q32.1 while amplicon 5 results from the

complex association of 4 fragments from different regions of

chromosome 5 and 2 fragments from chromosome 9 [15] (Details

on the amplicon structures are available in supplementary Figure

S1). We analysed the expression of 24 genes present on these

amplicons, the others being pseudogenes or truncated genes with a

few amplified exons (Supplementary Table S1). Seventeen genes

were found to be over-expressed, 5- to 25-fold for those amplified

10 times (amplicon 4) and 10- to 50-fold for those amplified 15

times (amplicon 5) (Figure 4 A and B). The level of expression of

the 7 remaining genes was under the threshold of detection in

tumour 26 and in the 5 tumours of the reference set (Figure 4 A

and B). Antibodies were available for two of the over-expressed

genes, MDM4 and PIK3C2B. Western blot analyses showed that

both proteins accumulate in tumour 26 as compared with tumours

without amplification of the genes (Figure 4C).

The telomerase TERT gene was found over-expressed about

50-fold in tumour 26 but the level of protein accumulation could

not be evaluated as none of the currently available antibodies

allow efficient detection of the protein on western blot ([21] and

unpublished data). No increase in TERT activity was observed in

this tumour as compared with tumours without amplification of

the gene (Supplementary data S7). No deletion, insertion or

alternative splicing that could generate an inactive protein was

detected by sequencing the whole coding sequence of the mRNA

encoding the normal isoform 1 of the protein (not shown). In

addition, the RNA component of the telomerase (TERC) was

expressed at very low level in this tumour as compared with the

tumours of the control set (Supplementary data S7). Moreover, we

Figure 2. Western blot analysis of proteins encoded by amplified genes. A. Over-expression of PHKG1. The gene was amplified in tumour 4
and not amplified in tumours 7 and 21. B. Over-expression of EGFR. Controls (C): extracts from 2 glioblastomas without EGFR amplification expressing
the wild-type form of the protein. Tumours 4 and 7: full-length wild-type EGFR. Tumour 21: EGFRvIII variant. Tumour 22: EGFRvIII variant plus full-
length wild-type (the apparent small size of the wild-type form, also present as a minor product in tumour 7, could correspond to a protein with
posttranslational modifications). Receptor degradation products are visible in the tumour 7 lane. C. Over-expression of EGFR in tumour 26. The two
truncated proteins expressed in this tumour are of the EGFRvI variant form. Actin: loading control.
doi:10.1371/journal.pone.0014249.g002

Figure 3. RT-Q-PCR analysis of the expression along the EGFR
gene in tumour 26. For each pair, the forward and reverse primers
were localised in consecutive exons in order to prevent amplification of
DNA traces present in the mRNA preparations. The expression ratio (Re)
was calculated by dividing the normalised expression measured in the
tumour by the mean of the normalised expressions measured in the
reference set of tumours. Exons 1 to 10 were not over-expressed,
indicating that only the truncated form of the gene coded by amplicon
3 was expressed, whereas the large forms present in amplicons 1 and 2
were not expressed (see Figure 1).
doi:10.1371/journal.pone.0014249.g003
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found that the telomeres were shorter in tumour 26 (less than 5 kb)

than in two gliomas without TERT amplification, which display

normal telomere lengths of 5 to 15 kb (Supplementary data S7).

Discussion

Gene amplification plays a pivotal role during malignant

transformation when conferring a growth advantage to the cells.

Most of the time the amplicons are very large and contain many

genes, more than one of which may have a biological significance

for tumour development. For example, EGFR is generally

considered as the driver gene at 7p11 [22], however, SEC61G is

recurrently co-amplified and over-expressed in glioma ([23,24] and

Figure 1A). SEC61G encodes a subunit of a heterotrimeric protein

channel located in the endoplasmic reticulum and it has been shown

that silencing of SEC61G expression in glioblastoma cells led to

growth suppressiio and apoptosis [25]. Thus, in addition to EGFR,

SEC61G is an amplification target in a large fraction of the gliomas.

In order to get more insight into the final outcome of amplification,

we investigated the relationships between gene amplification,

mRNA over-expression and protein accumulation in a series of

gliomas with well-characterised extra-chromosomal amplicons

[14,15]. Even though our work is limited to six cases and a single

tumour type, several of our findings could be of general interest.

Not all amplified genes are over-expressed in the gliomas we

studied. We found that 5 out of 14 genes from the EGFR locus are

not expressed when amplified. Strikingly all five genes are also not

expressed in gliomas with a normal copy number of the locus

(Figure 1B and supplementary Table S1). In addition to sequences

from the EGFR locus, tumour 26 displays complex amplicons

containing fragments from chromosomes 1, 5, 7 and 9. Seven out

of 17 amplified genes originating from the latter chromosomes are

expressed neither in this tumour nor in the set of non-amplified

gliomas. Applying the hypergeometric law, the probability that the

12 unexpressed genes in a series of 38 genes remain unexpressed

after amplification only by chance is of 3.7610210. This strongly

suggests that maintenance of tissue-specific gene extinction is a

general occurrence in these tumours (Figures 4 A and B). In the

case of expressed genes, their mRNA appeared to be always more

abundant in amplified cells than in cells non-amplified for the

corresponding gene. However, we found that different genes co-

amplified on the same amplicon are not necessarily over-expressed

at identical levels (Figures 1B, 4A and B). This is likely due to

individual variations in gene expression, a phenomenon also

observed in the reference set of non-amplified tumours (Supple-

mentary data S2). Nevertheless, the results obtained with tumours

arboring different copy numbers of the EGFR, SEC61G,

LANCL2 and VOOP1 genes allow us to establish that mRNA

over-expression parallels the level of amplification (Figure 1C).

Thus, normal gene expression profiles are generally retained upon

amplification. Determination of the level of protein accumulation,

when possible, also showed that proteins are more abundant in

tumours in which the mRNA is over-expressed than in tumours

without over-expression (Table 1 and Figures 2 and 4), but the

correlation is far less close than between copy number and mRNA

over-expression. For example, gliomas with similar EGFR gene

copy number and mRNA over-expression may accumulate quite

different levels of the corresponding protein (Table 1).

It has long been known that the level of TERT mRNA is

elevated in high-grade gliomas as compared with low-grade

gliomas, and that high expression of the gene is associated with a

significant increase in telomerase activity [26,27]). Whether over-

expression of the TERT gene results from gene amplification was

not investigated in these tumours. A more recent study showed

that amplification and over-expression of both TERT and TERC

occur in leukemic cells [28]. In tumour 26, the mRNA of the

normal TERT isoform 1 was over-expressed at a high level but

TERC was weakly expressed. The lack of antibodies able to

Figure 4. RT-Q-PCR expression of genes amplified in tumour 26.
Full-length names of the genes are listed in Supporting Information Table
S1. A: Amplicon 4; B: Amplicon 5. Positions of the genes are shown in
Supporting Information Fig. S1. The expression ratio (Re) was calculated by
dividing the normalised expression measured in the tumour by the mean
of the normalised expressions measured in the reference set of tumours.
ATPB4, REN, GOLT1A, VLDLR, KCNV2, SLC6A19 and SLC6A18 are expressed
neither in tumour 26 nor in the reference set. C. Western blot probed with
the anti-MDM4 and anti-PIK3C2B antibodies for gliomas 26, 7 and 4.
Proteins were over-expressed in tumour 26. Actin: loading control.
doi:10.1371/journal.pone.0014249.g004
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specifically recognise the reverse transcriptase prevented us from

evaluating the level of protein present in these cells but in vitro

assays showed no increase in TERT activity. In addition, we found

that telomeres are rather short in cells of tumour 26 as compared

with tumours without TERT amplification, suggesting that TERT

protein does not accumulate in tumour 26 or that the RNA

component of telomerase is limiting [29]. Thus, if TERT gene

over-expression plays a role in the development of that tumour, it

should be in a telomere length-independent manner [30].

The actual impact of amplification of a given gene on glioma cell

biology is therefore difficult to predict from transcriptome analysis

only. Our results suggest that translational and/or post-translational

regulation plays a major role in the control of protein accumulation.

Besides, protein accumulation could be unlinked from protein

activity in many cases. Altogether, these features may minimise the

contribution of gene copy number to the physiological impact of

gene amplification.

Materials and Methods

Biological material
The 6 tumours (4 glioblastomas multiforme and two oligoden-

drogliomas) were described previously [14,15,31] (Table 1).

Xenografted tumours were used for cases 4, 7, 21, 22 and 26.

The corresponding fresh tumour was also studied for case 4. The

fresh tumour only was available for case 30. Five xenographted

glioblastomas without amplification were used as reference set.

DNA and RNA analysis
DNA and RNA preparation and characterisation, sequencing

procedures and PCR methods were described previously [14,15].

Expression analysis
Gene locations and sequences used in this work refer to the

human reference genome sequence (released March 2006) which

is available at the University of California, Santa Cruz Genome

Bioinformatics website (http//genome.ucsc.educ) [32]. The

mRNA level was measured by real-time fluorescent quantitative

RT-PCR. cDNAs were prepared using the SuperScript II system

according to the manufacturer’s protocol (Invitrogen) and

amplified using the GeneAmp 7500 sequence detection system

and SYBR Green PCR Kits (Applied Biosystems). The specificity

and the efficiency of the primers were tested using a mixture of

RNA from several cells lines. Primer sequences are available on

request. Gene expression was normalised using the 3 housekeeping

genes, the TATA box binding protein (TBP), beta-actin (ACTB)

and DNA-directed RNA polymerase II polypeptide A (POLR2A),

determined as described [33]. For each gene, the expression ratio

(Re) was calculated by dividing the normalised expression

measured in the tumour by the mean of the normalised

expressions measured in the reference set of tumours. Each point

was the mean value of three independent experiments. A gene was

considered as unexpressed when the RT-Q-PCR curve was

indistinguishable from the background (Ct.38).

Western blotting
Protein extraction and Western blot analysis were performed as

described previously [34]. Briefly, tumour tissues were solubilised in

Laemmli buffer and protein samples (20 mg) were subjected to SDS/

PAGE gel electrophoresis followed by electro-transfer on an

Immobilon-P membrane (Millipore). Rabbit polyclonal anti-EGFR

(sc-03, Santa Cruz), rabbit polyclonal anti-PHKG1 (RB3704,

Abgent), rabbit polyclonal anti-MDM4 (A300-287A, Bethyl), mouse

monoclonal anti-PIK3C2B (H00005287-M0, Abnova 2 and mouse

monoclonal anti-actin (sc-47778, Santa Cruz) were used. HRP-

conjugated goat anti-mouse-IgG or anti-rabbit-IgG secondary

antibodies (Dako) were used along with the Pierce Supersignal West

Pico Chemiluminescence substrate. Protein abundance was estimat-

ed by densitometry of the films at several exposure times. The level of

accumulation was determined by comparison with the mean value of

the expression of gliomas without amplification of the gene.

Telomerase activity
Telomerase (TERT) activity was measured after extraction of

the proteins in CHAPS buffer (TRAPeze CHAPS Lysis buffer,

Chemicon) as described [35]. The RNA component of telomerase

(TERC) was quantified by RT-Q-PCR [36]. Telomere length was

determined by Southern blot [37].
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