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Abstract

Microarray-based comparative genome hybridisations (CGH) and genome sequencing of Clostridium difficile isolates have
shown that the genomes of this species are highly variable. To further characterize their genome variation, we employed
integration of data from CGH, genome sequencing and putative cellular pathways. Transcontinental strain comparison
using CGH data confirmed the emergence of a human-specific hypervirulent cluster. However, there was no correlation
between total toxin production and hypervirulent phenotype, indicating the possibility of involvement of additional factors
towards hypervirulence. Calculation of C. difficile core and pan genome size using CGH and sequence data estimated that
the core genome is composed of 947 to 1,033 genes and a pan genome comprised of 9,640 genes. The reconstruction,
annotation and analysis of cellular pathways revealed highly conserved pathways despite large genome variation. However,
few pathways such as tetrahydrofolate biosynthesis were found to be variable and could be contributing to adaptation
towards virulence such as antibiotic resistance.
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Introduction

Clostridium difficile is a gram-positive spore-forming anaerobic

bacterium with a wide host range [1]. In recent years it has

emerged as a major nosocomial pathogen. The complications

arising from its infection are collectively called C. difficile-associated

disease (CDAD) [2,3]. In its simplest form CDAD can lead to mild

diarrhea, but in the extremes it results in serious sequelae, toxic

megacolon, intestinal perforation, peritonitis or death [2]. Several

CDAD outbreaks in the past decade in Europe and North

America have been attributed to the emergence of hypervirulent

C. difficile strains belonging to PCR ribotype 027/pulse-field type

NAP1 (027/NAP1) which produce elevated levels of toxins A and

B, the primary virulence factors of this bacterium [4–9].

The first sequenced C. difficile genome was of a strain isolated

from a patient with pseudomembranous colitis in Zurich,

Switzerland [10]. This genome contains a large number of mobile

genetic elements and very low genome conservation when

compared to other C. difficile strains and also to other members

of Clostridia. A microarray-based comparative genome hybridiza-

tion (CGH) of this strain against 8 other C. difficile strains showed

that the up to 61% of the total coding sequences (CDS) were

absent from at least one strain tested [10]. A subsequent CGH

comparison of 75 C. difficile strains revealed that only 19.7% genes

were shared by all strains studied [11]. In our recent CGH analysis

of a similar number of strains showed that the core genome of this

species could be as low as 16% [12]. The absent/divergent genes

in the tested strains were distributed across the entire C. difficile

genome and across all gene functional categories [12]. It is

surprising that the ‘‘core gene set’’ containing conserved genes in

all tested C. difficile strains is unusually low and to our knowledge it

is probably the smallest core genome reported for any bacterial

species so far. For example, in other bacterial species with a large

amount of genome variation such as Helicobacter pylori and

Campylobacter jejuni, the core genomes were reported to be 72.5%

and 59.2% of their total genomes, respectively [13]. Recently,

genome sequencing of additional C. difficile strains further

confirmed the large-scale genome variation in this species

[14,15]. Considering the ultra low genome conservation in C.

difficile, in this study, we conducted a detailed analysis of the

genome variation by integrating microarray CGH data, compar-

ative genome sequencing and genome pathway data. First we

compared 167 C. difficile strains using CGH data and the results

were then corroborated using comparative genome sequencing of

4 divergent strains from the CGH-analyzed strains and also by

comparing these genomes with 11 other C. difficile genomes.

Finally the impact of the genome variation on C. difficile pathways

was analyzed by pathway reconstruction and annotation using

high-throughput experimental data as well as overlaying CGH

data onto the curated pathways.

Results and Discussion

Analysis of genome variation using CGH data
The microarray dataset in this study comprised CGH

comparison of 167 strains in total from three different sources.
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First, we carried out CGH analysis of 18 C. difficile isolates from

human, bovine, canine and food origin (Table S1) using our

C. difficile spotted arrays (Gene expression omnibus (GEO)

platform: GPL6118). Although CGH analysis of isolates from

human and bovine origins has been carried out previously, this

study is the first CGH comparison of food and canine C. difficile

isolates. The other sources of the data are meta-analyses of CGH

data from Stabler et al study [11] and a former study by our group

[12]. Since these two studies utilized PCR-based and 70-mer

oligonucleotide spotted array platforms, we therefore evaluated the

comparability of both datasets before combining them. Using

GACK transformed CGH data (Table S2), we devised an index

called Locus Plasticity Index (LPI). The LPI value for a CDS

represents a numerical value of the degree of each gene’s variation.

Under this scheme, when a gene is present in all strains in the

comparison, it would receive a value of +1.0 and when the gene is

absent from all strains except the reference strain, the value will

be 21.0. The range in between will be indication of degree

of divergence. A projection of LPI values for all CDS in C. difficile

630 calculated separately and jointly from these two platforms

is given in Figure 1. The results revealed that both platforms

were highly comparable with a high correlation coefficient of 0.88

(Table S3). Consistent with the previous findings, the variation

was distributed across the entire C. difficile genome. The regions

with negative LPI values corresponded to those of mobile

genetic elements. Deletions in several loci have been

proposed to be specifically associated with hypervirulent strains

[11]. However, a closer examination of our dataset showed that

this is not always the case. For example, the loci of CD0719-

CD0724 were intact in some of the 027/NAP1 strains in our

collection. The genome of one of these strains, QCD-32g58, has

been sequenced and these results also support the microarray data.

Two studies of CGH of C. difficile yielded slightly different

predictions of the core genome size [11,12]. Here, the genes with

high LPI values represent the core genes or genes with limited

sequence variation.

Although there are a total of 3,971 CDS in C. difficile 630, we

could only map 3,574 CDS in our dataset due to microarray

platform differences. Of these, 151 CDS had an LPI value of +1.0.

The genes with LPI values in the range of 0.95 to 0.99 received the

lower values because 1–3 strains in either of the datasets classified

these loci as divergent. This discrepancy arises due to the

difference in microarray platform used. Stabler’s data were based

on PCR product arrays which although provided higher signals as

full CDS were printed, but were prone to cross-hybridization.

Microarrays used by our group were 70mer-based spotted array

that produced more stringent results. However when the probes

representing a CDS span a hyper-variable region of the gene, the

signal could be reduced or lost and the CDS could be classified as

being absent/divergent. This reflected in the core gene estimations

in the previous analysis. According to Stabler et al the C. difficile

core genome is 19.7% of the total 630 genome [11] while Janvilisri

et al estimated it to be 16% of the total CDS [12]. Both estimates

heavily lean towards eliminating false positives. For example,

slpA gene encoding a major cell surface protein that forms a

paracrystalline array in C. difficile contains a conserved region and

a variable region [16–18]. This gene was classified as absent

in both the previous analysis. Similarly it has been pointed out

that due to several point mutations in tcdB, toxin B-positive strains

were marked as negative as this is beyond the detection specificity

of microarrays [11]. In the ternary classification scheme such

genes are not included in the core gene set and the LPI index

scheme would be a better representation of variability in such

instances.

Transcontinental strain comparison
For transcontinental strain comparison, using the GACK

transformed data; we constructed an hierarchical clustering

(HCL) support tree (Figure 2). Evidently, each cluster contained

C. difficile isolates from different host origins, except one (marked as

a red branch in Figure 2) that was entirely composed of human

isolates. Interestingly, all strains in this cluster belonged to the

hypervirulent (HY) clade in Stabler et al. [11] and the Group II

cluster in Janvilisri et al. [12] studies. Except for one strain (BI-14)

from Stabler’s dataset [11], the strains from both of these previous

reports did not mix in this cluster and formed two close sub-

clusters under a single branch. However, we considered strains

within this major cluster as HY strains because of (i) the similarity

between the strains from the Group II in Janvilisri et al. study [12]

and the HY clade in Stabler et al. study [11]; (ii) the association

between the outbreaks and the 027/NAP1 phenotype of certain

strains in this cluster (#5098, 6088, 32g58, 4102 and 6071); (iii)

the clustering of the HY outlier BI-14 strain in Stabler’s study [11]

with the Group II strains from Janvilisri et al. study [12]; and (iv)

the clustering of the human strain 8694 (originally designated as

CIP 107932) that was isolated in 1984 from a patient with

pseudomembranous colitis from Reims, France, with the HY clade

strains.

To analyze the relationship between total toxin production and

clustering pattern, we measured the total toxin production in the

strains from our collection using ELISA. The results showed that

there was no correlation between clustering pattern and total toxin

production (Figure 2). The highest amount of toxin was produced

by the strain #6432. This strain belonged to toxinotype XIV/XV

and had an 18 bp deletion in tcdC gene [12]. The strain #8694

(CIP 107932) was the second highest toxin-producing strain.

Consistently, this strain has been shown to produce more toxin

than several 027/NAP1 strains [19]. It has also been shown that

the 8694 (CIP 107932) strain exhibits a lower sporulation rate

compared to other strains [19]. Such strains with a high level of

toxin production but a low level of sporulation usually have a poor

transmission rate. This may explain the reason why this strain is

not reported in recent outbreaks. The third highest toxin

production level was found in an equine isolate (#115). This

strain however was not included in the HY cluster. Our results

showed that certain non-027/NAP1 strains exhibited comparable

or higher toxin levels than 027/NAP1 strains, pointing towards the

possibility of additional factors responsible for the HY phenotype.

Although hypervirulence in C. difficile has often been linked to

elevated levels of toxin production [9], involvement of other

factors such as an increase in sporulation have also been suggested

[19]. Consistent with our results, a study of 164 C. difficile strains

with different PCR ribotypes isolated from patients with different

severities of CDAD revealed that there was no correlation between

the levels of toxin measured in vitro and fecal samples for the

corresponding C. difficile isolates or between the PCR ribotypes

and disease severity [20].

The isolates for which the CGH was conducted exclusively in

this study were found to be clustering in different parts of the HCL

support tree. The prevalence of C. difficile isolated from both farm

and companion animals is increasing recently [21]. C. difficile

transmission between animals and human is often suspected as the

reason for widespread CDAD incidences [22]. Hence this

clustering pattern particularly for the dog isolates is not surprising.

Interestingly, one of the food isolates (#6430) was grouped in the

HY cluster, suggesting the possibility of food-borne transmission of

HY C. difficile. The other food isolates were scattered in the HCL

tree.

Low Genome Conservation in C. difficile
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Genome sequencing of human, bovine and equine
isolates

Based on CGH comparison with the reference genome C.

difficile 630, we selected four isolates with high levels of CDS

divergence for sequencing. These included two human (#6466

and 6503), one equine (#6407) and one bovine (#6534) isolates.

The sequencing read parameters for the above genomes is given in

Table 1. Comparison between these sequenced genomes with

other C. difficile genomes available in NCBI database showed that

the median number of genes for all strains to be 4,047. The

number of unique genes (i.e. genes that have no homology in any

other genomes compared here) in four strains sequenced in this

study was much higher than other sequenced genomes (Table 2).

Previous CGH analysis of these four strains showed that ,700

CDS in these strains were divergent [12]. Hence the discovery of

higher number of unique genes in these genomes supports the

detection of large number of divergent CDS in CGH comparisons.

Since the median number of CDS across the strains is close to the

number of CDS in the reference strain, it can be assumed that

despite massive variation, the genome size is stable. OrthoMCL

program was used to identify orthologues that were shared across

all genomes (core genes), orthologues shared between two or more

genomes (shared genes) and genes unique to only one genome

(unique genes). There were a total of 7,846 genes for all 15 strains.

Of these, 1,026 were present across all genomes, 3,864 were

shared and 2,956 were singletons. The pairwise comparisons

between all 15 genomes are summarized Figure 3. A fasta file

containing all the CDS from all strains compared in this study is

available in Dataset S1 and S2.

Prediction of core and pan genome size
The core and pan genome size was estimated using both

microarray and genome sequence data. The accuracy of these

estimates depends on the nature of the strains sampled and the

sample size, where a larger dataset containing isolates from various

hosts from different geographical locations would yield a better

prediction. The GACK transformed microarray dataset (Table

S2), was used to fit exponential regression function [23]. As

expected, the number of core genes reduced dramatically with

initial addition of strains in the random sampling, but stabilized

with progressive sampling and reached a plateau. The results

indicated a core genome size of about 947 genes (23.7% of the

total CDS) (Figure 4A).

In order to estimate the core and pan genome size using

genome sequence data, we followed a method similar to the one

described by Tettelin et al. [23]. We sequentially added strains in

random order and parsed the OrthoMCL output to calculate (a)

the number of genes that have homologous genes in all strains and

(b) the number of genes that are ‘‘new’’ to each strain, i.e. those

that have no homology in any of the strains. We repeated this for

10,000 random permutations of strain order. As pointed out in a

recent review [24], the choice of cut-off points to define the core,

Figure 1. Comparison of CGH data from different microarray platforms and projection of CDS variability across C. difficile genome.
From outside to inside: Ring 1 (Solid line). Molecular clock drawn using C. difficile 630 genome. Ring 2 (Blue). LPI calculated using strains from Janvilisri
et al. data. Ring 3 (Green). LPI calculated using Stabler et al data. Ring 4 (Orange). LPI calculated using combined dataset (Table S3).
doi:10.1371/journal.pone.0015147.g001

Low Genome Conservation in C. difficile
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unique and shared genes and also the annotation parameters can

greatly influence these projections. Hence we used low, medium

and high BLAST-P E-values to make the comparisons in

OrthoMCL analysis. However, all three parameters returned

similar gene estimates. To avoid the effect of differences in the

genome annotation, we also re-annotated previously sequenced

genomes using the JCVI annotation pipeline. The genes with

homology in all strains constitute the ‘‘core genome’’ of C. difficile,

and a plot of the number of core genes as a function of strain

number (n) is shown in Figure 4B. It was observed that the core

genome consists of 1,033 genes at n = 15. The difference in the

estimated core genome size could be due to the difference in the

number of CDS in microarray and sequence data. However, the

number of core genes in both predictions is higher when compared

to the previous reports [11,12]. A plot of the number of new genes

per sequenced strain (strain-specific genes) as a function of the

number of strains (n) is shown in Figure 4C. We found that the

number of strain-specific genes was ,286 (n = 15) with a

decreasing trend if the n is higher. Using a cubic function fit in

the extrapolation, we found that the number of new genes tended

Figure 2. Support tree constructed from CGH data of a total of 167 C. difficile isolates. Solid circles and triangles represent strains from our
collection and Stabler et al. respectively. Open circles represent sequenced strains. Numbers next to these symbols are strain abbreviation from
Figure S1. Color legends for host origin are given at the center of the figure. Hypervirulent clade is marked as a red branch. Strains sequenced in this
study are marked as green branch. The diamonds in the outermost ring represent the total toxin estimates of strains from our collection. The toxin
intensity scale normalized to C. difficile 630 is given at the bottom of the figure.
doi:10.1371/journal.pone.0015147.g002
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toward zero at n = 26. This indicated that roughly 26 strains were

required to capture the entire pan-genome of C difficile. We also

found that the size of pan genome increased sharply with initial

addition of genomes, but seemed to reach a plateau at ,9,640

genes (Figure 4D).

Although the new core genome projection is higher than the

previous estimates [11,12], it is still much lower than the core

genome estimates of other bacterial species. For example, when

Tettelin et al first introduced the concept of core and pan genome,

they estimated the core genome in Streptococcus agalactiae to be 80%

of the genome [23]. In S. pneumoniae, this is estimated as low as

46.5% of the genome [25]. The naturally competent H. pylori is

projected to have a core genome of 72.5% of the total genome

[13] and in Campylobacter jejuni it is estimated to be 59.2% [26]. The

pan genome estimate of C. difficile (9,640 genes) derived from

sequence data extrapolation, showed that many more strains are

needed to be sequenced to reveal the complete species genome

pool. Since the non-epidemic animal and human isolates

contained more unique genes than other epidemic strains, we

speculate that the ‘‘accessory gene pool’’ available in these non-

epidemic strains is being exchanged between strains, thereby

enabling adaptive responses to new niches.

Prediction and curation of pathways in C. difficile
In the light of the large-scale genome variation, we analyzed the

impact of this variation in the cellular pathways and biochemical

networks. Since the perturbation in basic cellular machinery can

make cell unviable, reconstruction of cellular pathways can

complement sequence-based genome analysis. When such recon-

structions are combined with experimental data including

transcriptional profiling and proteome sequencing, it cannot only

provide a quality control of the assumptions made from the

sequence data but also can identify missing enzymes and potential

targets for combination therapy [27,28]. Pathologic program [29]

in Pathway tools package [30] was used to construct the cellular

pathways of C. difficile 630 from its genome sequence. Metacyc was

used as the reference database and pathway hole filler in

Pathologic was used to infer missing links in pathways [31]. The

pathologic program in Pathway tools package is reported to have

accuracy comparable to that of an expert biochemist, but exceeds

the expert analysis in its comprehensiveness [32]. This automated

reconstruction returned a total of 866 enzymes, 1,038 reactions,

828 compounds and 191 pathways. To ascertain our predictions,

we then used microarray expression and proteome sequencing

data onto the predicted pathways. First, we used the microarray

dataset derived from Emerson et al. study [33] in which the

transcriptional profile of C. difficile was analyzed after exposure to

antibiotics, pH shift, temperature shift and aerobic shock. When a

combined list of significantly differentially expressed (DE) genes

following the exposure to antibiotics including amoxicillin,

clindamycin and metrinadazole was overlaid onto cellular

pathways, it was found that most DE genes were involved in the

reactions of cell structure biosynthesis pathways (peptodoglycan

biosysnthesis I, II & III, teichoic acid biosynthesis and UDP-N-

acetyle-D-glucosamine biosynthesis I). The fact that the antibiotics

such as amoxicillin disrupt the cell wall biosynthesis supports our

strategy of using high-throughput data for pathway curation.

Using the combination of all conditions in the Emerson et al.

dataset, a total of 168 pathways were mapped (Table 3). Next, we

were able to map a total of 62 pathways using the dataset from a

study by our group in which C. difficile 630 was used to infect Caco-

2 cells up to 120 min post-infection [34]. Some of these were

overlapping with pathways mapped from previous dataset but

some were unique to this dataset. Finally, we used data from C.

difficile membrane protein sequencing [35] and spore proteome

sequences [36] to ascertain the predicted pathways. Using the

spore protein data, we were able to map 81 pathways whereas

membrane protein sequences were mapped onto 32 pathways. All

the pathways mapped using membrane protein data were already

mapped by spore protein data. When all pathway mappings were

converged, we were able to ascertain the presence of 398 enzymes,

584 reactions, 598 compounds and 152 pathways (Table 3). Since

several pathways were mapped to more than one dataset, these

pathways could be ascertained with high confidence. A summary

of the mapped pathways from all datasets is given in Figure S1,

and the list of the genes in all datasets used for this analysis is given

in Table S4. Similar approaches have been employed in the

pathway reconstruction of H. pylori, Vibrio cholerae and Leishmania

major [32,37,38]. Since we integrated multiple independent

datasets into the pathway verification, our results can be viewed

with high confidence.

Analysis of pathway variation reveals adaptations
towards increased virulence

To further characterize the pathways in C. difficile, we also

analyzed the variation in these pathways by overlaying LPI index

for each gene. The results revealed that despite the massive

Table 1. Summary of sequencing parameters for C. difficile
genomes sequenced in this study.

Strain
Total number
of reads

Total number
of bases

Average read
length (bp)

6503 401956 90156026 224.3

6466 234489 50759251 216.5

6407 102112 19265037 188.7

6534 182210 38828208 213.1

doi:10.1371/journal.pone.0015147.t001

Table 2. Summary of C. difficile genomes compared in this
study.

Strain
Host
origin

Genome
size (bp) Genes

Genbank
Accession

630 Human 4290252 3971 AM180355

QCD-97b34 Human 4061547 3748 ABHF00000000

ATCC 43255 Human 3919385 3959 ABKJ00000000

CIP 107932 Human 4056252 3686 ABKK00000000

QCD-23m63 Human 4198222 3611 ABKL00000000

QCD-63q42 Human 4442974 4243 ABHD00000000

QCD-76w55 Human 4395390 4094 ABHE00000000

QCD-37x79 Human 4331780 4082 ABHG00000000

QCD-32g58 Human 3919067 4071 AAML00000000

R20291 Human 4073348 3567 NC_013316

CD196 Human 4006976 3595 NC_013315

6466 Human 3914179 4601 ADDE00000000

6407 Equine 3548389 7328 ADEH00000000

6503 Human 4211360 4024 ADEI00000000

6534 Bovine 4411772 5609 ADEJ00000000

doi:10.1371/journal.pone.0015147.t002
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genome variation, almost all cellular pathways in C. difficile were

conserved. Variation in certain pathways was due to the variability

of less than a dozen of enzymes that were part of multiple

pathways (Figure 5). The most notable variation was in the

biosynthesis pathways of cofactors, prosthetic groups, electron

carriers as well as nucleotides and nucleosides. Examples include (i)

folD (LPI = 0.6) encoding for the bifunctional protein, a key

component of tetrahydrofolate biosynthesis pathway; (ii) malY (LPI

= 0.5) encoding a bifunctional protein in the methionine

biosynthesis pathway which is coupled with tetrahydrofolate

synthesis; (iii) nrdE (LPI = 0.78) encoding a component of

ribonucleoside reductase alpha chain; (iv) CD0244 (LPI =

20.45) encoding a glycerophosphotransferase in teichoic acid

biosynthesis pathway and (v) erm1b (LPI = 20.45) encoding a

protein involved in antibiotic resistance. Variation in other

pathway components with disposable functions was also found.

Interestingly, when the product of CD0244 was searched against

other NCBI bacterial genomes using BLAST-P, the best

bidirectional hit was against the gene HMPREF0542_1838

(hypothetical protein) from Lactobacillus ruminis E194e ATCC

25644, indicating that this gene might have been acquired by

horizontal transfer. It is surprising to find the variation in

tetrahydrofolate biosynthesis indicated by the low LPI values of

folD and malY as this pathway is conserved in all bacteria [39].

Figure 3. Pairwise genome sequence comparisons. Each of the genome is compared against 14 other genomes. Color-coding designates the
following four comparisons between pairs of genomes. Grey; the total number of genes in each pair, green; the number of shared genes in each pair,
yellow; the number of genes that are different between the pair, and purple; the number of conserved genes between the pair but absent in all other
genomes.
doi:10.1371/journal.pone.0015147.g003

Low Genome Conservation in C. difficile

PLoS ONE | www.plosone.org 6 December 2010 | Volume 5 | Issue 12 | e15147



Tetrahydrofolate serves as a donor of one-carbon units in a number

of biosynthetic processes, including the formation of methionine,

purines and thymine. Furthermore, tetrahydrofolate can also act as

an acceptor of one-carbon units in degradative reactions [39].

Although all organisms require folate, methods for obtaining them

differ between prokaryotes and higher organisms. While mammals

possess an active transport system, utilizing membrane-associated

folate transport proteins [40], folates must be synthesized de novo

through the folate biosynthetic pathway in plants and most

microorganisms. Hence, folate biosynthesis pathway is usually a

target of many antibiotics including sulfonamide and trimetho-

prims. To exclude the possibility that the low LPI values of these

could have resulted from the loss of signal in microarray

hybridization due to sequence variability in the gene, we examined

the OthoMCL output of all sequenced genomes in this analysis. We

found the presence of folD in all strains with variation in the

nucleotide sequence in some of these genomes.

Genes like dnaN, dnaH, gyrB and recA that are associated with

DNA replication, recombination and repair pathways were also

found to have relatively low LPIs. Fluoroquinolone (FQ)

antibiotics such as ciprofloxacin interfere with bacterial growth

by causing DNA damage [41,42]. Surveys now show an alarming

pattern of resistance to the majority of FQs currently used in

hospitals and outpatient settings with many strains having

mutations in gyrA [43]. It has been also suggested that

ciprofloxacin may induce repair pathways that involve RecA-

ssDNA filament formation; the drug itself may act to induce the

mutations that confer resistance [44]. Hence the sequence

variation in genes like gyrB and recA could be the result of FQ

therapy to treat C. difficile infection.

Figure 4. Estimation of core and pan-genome size. The GACK transformed microarray data (Table S2), was used to fit exponential regression
function [27] (A) For calculation of core genome size using sequence data, OrthoMCL output after comparing 15 genomes was parsed using custom
PERL script and genome sequences were added in random order with 10,000 permutations (B). A plot of the number of new genes per sequenced
strain (strain-specific genes) as a function of the number of strains (n) is shown in 4(C). Pan-genome estimate using a cubic function fit is shown in
4(D).
doi:10.1371/journal.pone.0015147.g004
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The conservation in the cellular pathways was also confirmed

by comparing the presence of these genes in all sequenced

genomes. The comparisons showed the presence of the genes with

high LPI values in all sequenced genomes, indicating that the

pathway preservation indicated by microarray data also reflected

in the sequence level data. Since some sequence variation was

found for genes like gyrB and recA in sequenced genomes, the

distribution of all the genes constituting homologous recombina-

tion, mismatch repair, nucleotide excision repair, base excision

repair and DNA replication machinery was examined across all

sequenced genomes. The results showed that all of these pathways

and most of the genes constituting these pathways were conserved

across the genomes (Table S5). Although the link between

antibiotic exposure and bacterial sequence variation in genes such

as gyrB and recA has been established, evidence for the role of

sequence variation in genes such as dnaN and dnaH antibiotic

treatment is scanty. It has been shown that in E. coli, ciprofloxacin

induced damage is countered by induction of nucleotide excision

repair (NER), homologous recombination (HR) and SOS response

[42]. Hence it is possible that the variation in dnaN in C. difficile

could be the result of a recombination-mediated mechanism to

counteract the action of antibiotic like ciprofloxacin. However,

further investigations are required to clarify this probability.

Materials and Methods

Genomic DNA extraction, microarray hybridization, data
analysis and support tree construction

Genomic DNA extraction, DNA labeling and microarray CGH

of food, dog and bovine isolates against C. difficile 630 DNA was

carried out using a custom array (GEO platform ID GPL6118) as

described previously [12]. CGH data from this study were

submitted to GEO (accession number GSE19343). CGH data of

73 C. difficile isolates hybridized against C. difficile 630 DNA was

downloaded from GEO Series GSE9693 [12]. Normalized CGH

data for 75 C. difficile isolates from Stabler et al [11] was

downloaded from ArrayExpress (accession number E-BUGS-41).

The complete detail of all strains used in this analysis is given in

Table S1. To place the reference strain C. difficile 630 in

comparison tree, self-CGH was performed. After normalization,

the genes in the whole dataset (167 strains in total) were classified

as present, absent or divergent using 100% EPP cutoff using

GACK algorithm [45]. For transcontinental strain comparison, a

support tree was constructed using HCL support tree algorithm in

Mev [46]. Trees were re-sampled by jackknifing with 1,000

iterations with Pearson correlation as the distance matric and

complete linkage rule. The resulting tree was exported in Newic

format and modified in MEGA 4.0 [47].

Calculation of locus plasticity index
GACK algorithm does not give information on the degree of

divergence of individual genes in the divergent category [45]. To

numerically represent the level of divergence in each CDS, we

devised a new index named Locus Plasticity Index (LPI) from

GACK transformed data; calculated as

Locus Plasticity IndexLPI~
NpzNa

N

� �

Where, Np = number of present loci, Na = number of absent

loci and N = number of present, absent and divergent loci.

Measurement of total toxin production
Strains were stocked in 280uC and were inoculated into

modified BHI broth. BHI broth was prepared from DifcoTM Brain

Heart Infusion. For reducing the medium, 20 ml/L of OxyraseH
for broth was added and the medium was incubated at 37uC in an

anaerobic chamber overnight. To ensure equilibration of all

strains in the growth medium, all strains were sub-cultured three

times. 1 ml was withdrawn at 48 h post-inoculation from the third

culture and was then passed through 0.22-mm membrane. 200 ml

of the filtrate was then used for total toxin quantification using

Premier Toxin A&B ELISA kit following the manufacture’s

protocol (Meridian Bioscience Inc. Ohio). To normalize any cell

density differences in between strains growth and toxin levels, each

strains OD600 was measured and ELISA intensity values were

divided by corresponding OD600 values. Two biological replicates

were performed and the means of ELISA intensity were taken as

the final toxin level. For comparative analysis, ELISA intensities of

all strains were divided by the reference strain C. difficile 630

ELISA intensity.

Pathway reconstruction, curation and analysis of
pathway variation

For reconstruction of C. difficile pathways, the complete genome

sequence of the reference strain C. difficile 630 was downloaded

from Genbank (accession number AM180355). Using Pathologic

tool from Pathway tools software [30,48], the complete cellular

pathways were predicted. Pathway hole filler program [29] was

used to fill the missing links or holes in the predicted pathways.

This program utilizes the BLAST searches of a set of sequences

encoding the required activity in other genomes to identify

candidate proteins in the genome of interest, in addition to

genomic context (such as the candidate enzyme being in the same

operon as another gene in the pathway) to determine the

probability that a candidate enzyme has the required function

[29]. Automatically predicted pathways were then curated

manually using microarray expression and proteome data. A list

of genes in C. difficile 630 whose expression changed significantly in

different transcriptional conditions was obtained from Emerson

et al study [33]. A second set of genes that were detected to be

active at protein level was derived from C. difficile 630 membrane

proteome analysis conducted by Wright et al [35]. Finally genes

that were coding for C. difficile spore were obtained from spore

proteome sequencing conducted by Lawley et al [36]. A pathway

was deemed present when any gene from the above datasets

mapped to that pathway. Cellular Omics viewer program [48] in

Pathway tools was used for overlaying the LPI values for all C.

difficile CDS on to the curated pathways.

Table 3. Summary of pathway prediction and evidence
support.

Condition Pathways Enzymes Reactions Compounds

Total predicted 191 866 1038 828

pH 18 80 119 189

Temperature 62 252 307 368

Antibiotic 88 312 425 471

Caco-2 cell infection 62 265 299 344

Spore protein 81 289 378 423

Membrane proteins 32 121 133 167

Combination of all
evidences

152 398 584 598

doi:10.1371/journal.pone.0015147.t003
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Genome sequencing, assembly, annotation and
comparative analysis

Based on the CGH results, we selected four strains with large

number of variant CDS (strains 6407, 6466, 6503 and 6534) for

genome sequencing. Genomic DNA of these strains was

sequenced by 454 Life Sciences GS-20 sequencer using standard

protocols [49]. Using non-paired end sequencing chemistry,

strains were sequenced up to a depth of 15x and assembled de

novo by the 454 Newbler assembler. Contigs were ordered and

oriented based on their alignment to the reference genome C.

difficile 630 using NUCMER. Contigs thus ordered and those

matching to reference sequence were joined together into a

pseudochromosome, and non-matching contigs were added at the

end in random order. A linker sequence (NNNNN CAT TCC

ATT CAT TAA TTA ATT AAT GAA TGA ATG NNNNN)

that provided start and stop codons in all six reading frames

permitting the identification of genes that extend past the ends was

used to join the contigs. The pseudochromosome for each strain

was submitted to the J. Craig Venter Institute (JCVI) annotation

service, where it was run through JCVI’s prokaryotic annotation

pipeline. Included in the pipeline is gene finding with Glimmer,

Blast-extend-repraze (BER) searches, HMM searches, TMHMM

searches, SignalP predictions, and automatic annotations from

AutoAnnotate. All of this information is stored in a MySQL

database and associated files which were downloaded to our site.

The other 11 genomes included in this analysis were downloaded

from NCBI, thus constituting a total of 15 strains in the

comparative analysis (Table 2). Using coding sequences from

each strain, orthologs were determined and clustered using

OrthoMCL[50]. OrthoMCL was run with a BLAST E-value

cut-off of 1e-5, and an inflation parameter of 1.5. Custom PERL

scripts were used to parse the OrthoMCL output for cluster

information and pair wise strain comparisons. Core and pan-

genome size was estimated following the methods described by

Tettelin et al [23]. Core genome size was calculated using both

microarray data and OrthoMCL output and pan-genome size was

calculated using OrthoMCL output alone.

Supporting Information

Table S1 A list of strains used in CGH comparisons.

(XLS)

Table S2 A list containing GACK transformed micro-
array data for all strains.

(XLS)

Table S3 A list containing LPI values for all genes in C.
difficile.

(XLS)

Table S4 A list of DE genes from all microarray and
proteome sequencing that were used for annotating C.
difficile pathways.

(XLS)

Table S5 A list containing LPI of genes involved in
recombination, mismatch repair, nucleotide excision
repair, base excision repair and DNA replication
machinery of C. difficile.

(XLS)

Dataset S1 A text file containing all gene sequences in
FASTA format from all 15 strains used for genome
comparisons.

(RAR)

Dataset S2 A text file containing all gene sequences in
FASTA format from all 15 strains used for genome
comparisons (continuation of Dataset S1).

(RAR)

Figure 5. Analysis of pathway variation. LPI values from combined microarray CGH data were overlaid on C. difficile 630 pathways. The color
scale on the right side of the figure indicates LPI range. Red indicates no variation and yellow indicates maximum variation. Key variable reactions are
indicated by numbers on the pathways and their LPI values are given as bar graphs on the right bottom of the figure.
doi:10.1371/journal.pone.0015147.g005
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Figure S1 A pdf file containing a figure showing
overview of different C. difficile pathways annotated
using all data sources.

(PDF)
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