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Abstract

Background: Therapeutic vaccination against disseminated prostate cancer (PCa) is partially effective in some PCa patients.
We hypothesized that the efficacy of treatment will be enhanced by individualized vaccination regimens tailored by simple
mathematical models.

Methodology/Principal Findings: We developed a general mathematical model encompassing the basic interactions of a
vaccine, immune system and PCa cells, and validated it by the results of a clinical trial testing an allogeneic PCa whole-cell
vaccine. For model validation in the absence of any other pertinent marker, we used the clinically measured changes in
prostate-specific antigen (PSA) levels as a correlate of tumor burden. Up to 26 PSA levels measured per patient were divided
into each patient’s training set and his validation set. The training set, used for model personalization, contained the
patient’s initial sequence of PSA levels; the validation set contained his subsequent PSA data points. Personalized models
were simulated to predict changes in tumor burden and PSA levels and predictions were compared to the validation set.
The model accurately predicted PSA levels over the entire measured period in 12 of the 15 vaccination-responsive patients
(the coefficient of determination between the predicted and observed PSA values was R2 = 0.972). The model could not
account for the inconsistent changes in PSA levels in 3 of the 15 responsive patients at the end of treatment. Each validated
personalized model was simulated under many hypothetical immunotherapy protocols to suggest alternative vaccination
regimens. Personalized regimens predicted to enhance the effects of therapy differed among the patients.

Conclusions/Significance: Using a few initial measurements, we constructed robust patient-specific models of PCa
immunotherapy, which were retrospectively validated by clinical trial results. Our results emphasize the potential value and
feasibility of individualized model-suggested immunotherapy protocols.
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Introduction

Prostate cancer (PCa) is the second most common malignancy

in men [1]. Primary treatment includes prostatectomy and/or

radiation therapy. If circulating levels of prostate-specific antigen

(PSA) increase after primary therapy, they indicate activation of

residual cancer that is then therapeutically controlled by androgen

deprivation. However, disseminated cancer cells often become

androgen-independent, leading to another increase in circulating

PSA levels and manifesting metastases [1]. From the observation

of the latter rise in PSA level to the appearance of symptomatic

metastases, the disease does not exert symptoms affecting physical

wellbeing. For this reason, no therapy is administered, lest the

quality of life be adversely affected by chemotherapy that is

currently used in terminal PCa [2]. Thus, the period of

asymptomatic PSA level increase has been considered appropriate

for studies testing the efficacy of immunotherapy that is usually

devoid of major adverse events.

PCa immunotherapy has begun to yield encouraging clinical

effects, though not a definitive cure [3–4]. For example, partial

responses have been induced by autologous transfer of ex vivo

activated antigen presenting cells [5–6], cytokine-secreting tumor

vaccines [7], vaccines containing recombinant proteins or nucleic

acids and other cell-based strategies targeting cancer antigens,

such as PSA or prostate-specific membrane antigen [8]. Most

recently, a treatment employing ex vivo processed autologous

antigen presenting cells combined with prostatic acid phosphatase

[9] has received regulatory approval for treatment of metastatic

PCa. In a recent phase 2 clinical study, an allogeneic PCa whole-

cell vaccine stimulated expansion of tumor-specific immune cells

in non-metastatic androgen-independent PCa patients [10]. The

treatment was safe, and the rate of PSA increase (‘‘PSA velocity’’)
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was reduced in 11 out of the 26 studied patients [10]. Yet, the

patients demonstrated a significant variability in response to

treatment, that could be due to differences in individual immune

history and tumor biology [11]. Suppressed immunity in PCa

patients could also contribute to the relative lack of efficacy of PCa

immunotherapy [12–16]. Restoring and enhancing immunity

should be a major goal of immunotherapy [17], yet the complexity

of immune system defies the attempts to achieve it. For that

reason, immunity has been often studied by mathematical

modeling.

Mathematical modeling has been a valuable tool in describing,

quantifying and predicting the behavior of complex systems. In

particular, mathematical models have played an important role in

providing non-intuitive insights into tumor growth and progression

[18–21], tumor-associated angiogenesis [22–25], and evolution of

drug resistance [26–27]. Mathematical models have been

successfully validated and applied for rational design of cancer

therapy, for optimizing efficacy while minimizing toxicity [28–32],

and for streamlining drug discovery and development [33]. More

recently, cytokine-based and cellular immunotherapy have been

modeled and scrutinized [34–44], and some models were validated

experimentally and clinically [39,45].

Differences in individual responses to PCa vaccination [10] raise

the question whether mathematical modeling can aid in predicting

the effects of immunotherapy on a single patient by quantitatively

describing the interactions of cancer and the immunotherapy-

modulated immune system. To study this question, we have

developed a simple mathematical model describing the basic time-

dependent relationships of PSA and immunity in patients treated

by the allogeneic PCa whole-cell vaccine [10]. The PSA levels

measured for each patient [10] were used to individualize and

validate our model. Although PSA has been abandoned as a

quantitative measure of PCa [46], in the absence of a more

pertinent marker we used its circulating levels as a correlate of

tumor burden and indicator of acute perturbation by therapy. By

simulating therapy outcomes following in silico treatment modifi-

cation (adjustment of the vaccine dose or administration schedule),

we have also defined the individualized treatment protocols to be

tested for more effective clinical outcomes.

Results

General mathematical model
First, we constructed a general mathematical model of the

immune response in PCa patients receiving vaccination therapy

(Fig. 1, Methods and Supplemental Material S1). The model gives

a general description of the dynamics of the disease, immune

stimulation and immune suppression. It takes into account the

time-dependent interplay of these processes, as affected by ongoing

vaccination, all determining the ultimate clinical outcome. The

model can be individualized by patient-specific parameters.

Retrospective model validation
Next, we tested the ability of the model to describe the PSA

course in the patients who initially responded to therapy (see

Methods). We used the PSA levels measured before and during the

initial five to nine treatment cycles (the total of 10–15

measurements; ‘‘training set’’) to individualize the model.

Individual models successfully predicted the PSA course during

the subsequent cycles and beyond (‘‘validation set’’) in 12 among

15 responders (Fig. 2). The predicted PSA values conformed

closely to the measured values in the validation sets (R2 = 0.972).

The initial stepwise increase of the size of the training set

improved the prediction accuracy for all patients, but at some

point the improvement became negligible (Fig. 3). Prediction

accuracy as a function of the training set size followed different

patterns in different patients. For example, for Patient 3, the

prediction accuracy improved gradually and monotonically to

reach the near-best level with rather few training points (Fig. 3A,

seventh panel). In contrast, for Patient 20, a good accuracy was

achieved already at the fourth iteration with 11 training points

(Fig. 3B, fourth panel), but with more training points the accuracy

lessened until it stabilized at iteration 9.

Three patients displayed unusual and inexplicably abrupt

changes in PSA levels, or inconsistent PSA trends, towards the

end of treatment; the model could not account for this behavior

(Fig. 4). However, for these patients the overall fit during most of

the vaccination treatment was in good agreement with PSA values.

Personalizing model-guided therapy
Having validated the model, we could test the response to

modification of treatment, i.e., to the change in dose size or

administration schedule. We hypothesized that by the use of

personalized models, we can suggest treatment modifications to

stabilize PSA levels. Consequently, we simulated treatment

protocols modified either by an increased vaccine dose or decreased

intervals between vaccinations in the individually parameterized

models, for the nine patients who completed treatment.

We found that for each patient, the putative stabilization of PSA

levels required different modifications of vaccine dose or interval

between vaccinations (Table 1). For example, for Patient 14 a

moderate reduction of the interval (i.e., 21 days compared to the

standard 28 days) was predicted to suffice, while other patients

required more frequent vaccination with the standard dose

(2.46107 cells). Patient 20, however, required either the largest

among the considered vaccine doses (a 30-fold increase), or daily

administration of the standard dose.

To maintain the suggested regimens within clinical constraints,

we studied the effects of reducing the interval between vaccina-

tions to 14 or 21 days, or of doubling or tripling the standard dose,

and compared the predicted outcomes to the actually measured

effects of the administered standard treatment. Fig. 5 displays two

examples of such a comparison: for Patient 18, vaccinations with

the standard dose administered more often (every 21 days), or the

Figure 1. Model of interactions among the cellular vaccine (V ),
immune system and prostate cancer cells (P ). Dm, antigen-
presenting dermal dendritic cells; DC, mature dendritic cells; DR,
‘‘exhausted’’ dendritic cells; R, regulatory/inhibitory cells; C, antigen-
specific effector cells (e.g., cytotoxic T cells).
doi:10.1371/journal.pone.0015482.g001
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double dose administered at the standard 28-day interval, are

predicted to yield similar effects on PSA levels. In Patient 21, the

same predicted effect would be induced by the standard dose

administered as frequently as every 14 days, or by the triple dose

administered every 28 days.

Discussion

Co-evolution of tumors and immunity is complex and not fully

understood. The process includes time-dependent interactions that

shape both immunity and the tumor, and determine which will

prevail. For situations when immunity prevails, we have little

information about the factors that determine the outcome; when

tumors prevail, we observe only their manifest phase although

tumor effects on immunity may have started even at the

precancerous phase [47]. The paucity of pertinent information

and the inherent complexity of the system call for mathematical

modeling to formally describe and quantify the co-development of

malignancy and immunity, and to predict strategies for additional

immune manipulation to enhance clinical outcomes. The

feasibility of this approach is rooted in the role mathematical

models have played in providing non-intuitive insights into tumor

growth, progression, and treatment.

We have developed a simple mathematical model, individual-

ized it by fitting to PSA values recorded in individual patients

before and during vaccination therapy, validated the model by

subsequent individual PSA values, and used the results to predict

the immediate response of PSA levels to modifications of vaccine

dose or administration schedule. The model was remarkably

successful in predicting PSA level changes in 12 out of 15 analyzed

treatment-responsive patients. The manifested robustness of the

fits was not compromised by the model simplicity, encompassing

no more than four patient-specific parameters, with other

parameters being derived from preclinical and clinical information

collected from disparate published sources. Apparently, a generic

representation of the interplay of immune activation and

suppression suffices to describe clinical responses without the need

to consider all individual mechanistic elements participating in

immune regulation separately.

Derivation of patient-specific parameters from training sets

and the successful validation of individualized models ascertain

the predictive power of our model. For three patients, validation

was unsuccessful because of the non-monotonous behavior of

PSA levels at the end of vaccination course. Of note, deviation of

the course of PSA levels from monotony could indicate

unpredicted significant changes in the dynamic relationships

   

    

    

Figure 2. Validation of individualized models for patients responding to vaccination. Patient-specific best-fit model parameters were
derived by fitting the model to the respective pretreatment PSA values and the initial in-treatment PSA values (red). Subsequent PSA levels (blue)
were predicted by the use of the obtained best-fit parameters. In this and subsequent figures vertical dashed lines indicate the beginning of
vaccination treatment on day 0. Achieving good predictive power required a different size of the training set for each patient. The black box
emphasizes Patient 3 whose data are analyzed in Fig. 3A; the gray box pertains to Patient 20 analyzed in Fig. 3B.
doi:10.1371/journal.pone.0015482.g002
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between immunity and the tumor. It is tempting to speculate

that this took place because vaccination broke down tumor

progression.

As responses to vaccination differed among the patients

significantly, a major motive for this study was to ascertain the

feasibility of improving individualized treatment. Having validated

the individually parameterized models of the effect of vaccination,

we tested whether the model can suggest modifications in vaccine

dose or administration schedule needed to stabilize PSA levels.

The suggested changes also differed among patients, a finding

emphasizing the potential value of testing individualized vaccina-

tion protocols in clinical trials. It is noteworthy that modifications

of either the size of vaccine dose or the interval between doses

could result in comparable tumor responses, allowing considerable

flexibility in the choice of clinically and logistically most feasible

protocols. Thus, the benefit of the method is that it could identify

the patients who will not respond to therapy and enhance

treatment efficacy for those who will.

To obtain an accurate predictive model, we found that each

patient required a different number of PSA measurements to

complete his personal training set. This raises the question whether

one can determine, during treatment, the number of measure-

ments sufficient for evaluation of personal model parameters, so

that the model can be used for individualized modification of the

   

    

    

    

    

    

Figure 3. Model calibration by increasing the size of the training set. The number of PSA measurements in the training sets (red) for Patient
3 (A) and Patient 20 (B) was gradually increased, and the fitted model predictions were compared to the PSA measurements in the validation set
(blue). TPs = training points. Boxed panels (15 TPs in A, 11 TPs in B) indicate the individually adjusted, minimal training sets that yield accurate model
predictions (also shown in boxed panels in Fig. 2).
doi:10.1371/journal.pone.0015482.g003
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subsequent course of treatment. Hence, we recently developed an

algorithm by which one can determine the number of accumu-

lated measurements that suffices for completion of the training set

(Y. Kogan et al., in preparation).

The mechanistic underpinning of the model could be greatly

enhanced by the introduction of factors directly related to changes

in frequency and activity of immune cells and molecules, their

integrated effects on the tumor, as well as the effects of the tumor

on immunity. This, however, is a formidable task, as demonstrated

by numerous laboratory parameters compiled from the same

patients we analyzed in this study [10]. In our analysis, no single

immune parameter correlated with the delay of the onset of PSA

progression (an endpoint of the study); however, an artificial

intelligence analysis uncovered tenuous trends in integrated

outcomes of multiple parameters that might drive immunity into

a particular direction (e.g., towards TH1-type response [10]). This

insight opens numerous possibilities, however challenging, for

constructing and testing deterministic mathematical models of co-

evolution of tumors and immunity and studying the role of

immune manipulation for therapeutic purposes. Our model can be

employed with other biomarkers of tumor progression or other

treatment types. Its use for other cancer indications should be

examined.

In summary, we have presented and retrospectively validated a

novel personalized mathematical model of short-term effects of

vaccination on PCa. By iterative model fitting, we discovered that

only a few pretreatment and in-treatment PSA measurements

suffice to produce a predictive personalized model. The possibility

to anticipate clinical outcomes before completion of treatment

opens the door to in-treatment therapy modification to enhance

the clinical response.

Materials and Methods

Patients and treatment
We collected the de-identified data from a Phase 2 clinical trial

of an in vitro prepared allogeneic PCa whole-cell vaccine,

administered to asymptomatic nonmetastatic PCa patients, whose

circulating PSA levels were rising despite androgen suppression

(Cohort 1 in ref. [10]). Treatment included 14 intradermal

applications of the vaccine, the first two containing Bacille Calmette-

Guérin (BCG). The initial three doses were spaced two weeks apart,

followed by 11 doses spaced four weeks apart, so that the

treatment period lasted approximately one year. Circulating PSA

was measured prior to treatment, at vaccine injections, and

sporadically between injections and after completion of treatment.

The number of pre-treatment, in-treatment and post-treatment

PSA measurements varied among the patients.

To classify the patients by response to treatment, we evaluated

individual PSA velocity (linear change of logarithm of PSA levels)

before therapy and during the first four cycles of therapy. In 15

patients vaccination reduced the PSA velocity, while in others it

did not. We studied the PSA data solely from the responding

patients.

General mathematical model
We modeled the basic interactions of PCa and immunity by a

system of seven ordinary differential equations accounting for

interactions of the vaccine, the immune system and cancer cells

within the skin, the lymph nodes and other tissues (disseminated

tumor cells). The model is based on the assumption that the vaccine

stimulates cancer-specific immunity, but also that normal regulatory

 

Figure 4. Validation of individualized models for patients with non-monotonous PSA course. Best-fit model parameters for Patients 1, 9,
and 10 were obtained by fitting the model to the training set (red). Solid lines indicate the predicted subsequent directions of the PSA level change.
However, the measured PSA values indicate a drastic change in the behavior of PSA levels (blue).
doi:10.1371/journal.pone.0015482.g004

Table 1. Individualized therapy modifications predicted to
prevent tumor progression.

Patient No. Dose increase factor Administration interval (days)

3 2.5 15

5 2.3 17

7 3.2 16

12 2.7 16

14 1.5 21

18 2.1 18

20 27.9 1

21 5.0 12

22 5.08 12

Minimal dose increase or maximal administration interval required to prevent
in-treatment PSA elevation of more than 10 percent, analyzed for patients who
completed the treatment course.
doi:10.1371/journal.pone.0015482.t001
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mechanisms and the tumor suppress this immunity. The model is

fully detailed in Fig. 1 and Supplemental Material S1.

Model implementation
The model and curve-fitting algorithms were implemented on a

MATLABH programming platform (MathWorks, Natick, MA). We

solved the model equations by the numerical ordinary differential

equation solvers available in MATLAB. Fitting of the model to the

data was performed using constrained optimization procedures.

Individualized models
To individualize the model, we evaluated selected parameters

for individual patients. Most model parameters were evaluated

from published in vitro and in vivo data and were assumed to be

similar for all patients (Table 2; for details, see Supplemental

Material S1). Tumor growth rate (r), CTL killing activity (ap), as

well as A and B, the two parameters correlating tumor burden and

PSA levels, were considered patient-specific, based on the

observations that tumor growth rates, PSA secretion rates and

intensity of vaccine-induced immune response vary significantly

among individuals. To avoid over-parametrization, we attributed

the intensity of immune response to the single parameter ap.

To estimate patient-specific parameters in individual models, we

fitted the model by the least-squares method to the pertinent

‘‘training set’’ that included all pre-treatment and several initial in-

treatment PSA values for each patient; the number of training data

points could differ among the patients. Next, we used the results to

simulate the subsequent course of PSA change and compared the

simulation with PSA measurements recorded following measure-

ments in the training set (‘‘validation set’’). If prediction accuracy

was low, the size of the training set was iteratively increased by a

subsequent PSA measurement, subtracting the point from the

validation set.

Model validation
To predict PSA dynamics beyond the training set, we simulated

each individualized model under the personal vaccination

schedule (which could include minute variations from the general

   

    

Figure 5. Stabilizing PSA levels by model-aided modification of the vaccination regimen. Individualized models for Patients 18 and 21
were used to predict PSA dynamics after modification of the vaccination regimen within limits deemed clinically possible. Thin gray lines represent
the best-fit curves to PSA dynamics observed under the standard treatment regimen (2.46107 vaccine cells administered every 28 days; compare with
Fig. 2); thick red lines are the predicted courses of PSA levels when vaccination regimens is modified. For Patient 18, the simulated effects are shown
of the doubling of vaccine dose (4.86107 vaccine cells; A) or reducing the vaccination interval to 21 days (B). For Patient 21, the vaccine dose was
tripled (7.26107 vaccine cells; C) or vaccination interval halved (D).
doi:10.1371/journal.pone.0015482.g005
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schedule). For each patient, predictions were compared with the

clinically observed PSA levels in the validation set. Goodness-of-fit

was evaluated pooling together all the validation data points from

all the patients. To compare predictions with measurements, we

calculated the coefficient of determination, R2, between the

predicted and observed PSA values.

Therapy individualization
We probed whether intensifying treatment could improve

vaccine efficacy in individual patients. Hence, based on the

validated individual models for the nine patients who completed

treatment, we simulated the effects of many intensified vaccination

protocols for each patient. Intensification included a graded 10

percent increase above the standard vaccine dose or graded one-

day reduction of administration interval relative to standard

schedule. We singled out individual vaccine administration

schedules that should lead to stabilization of PSA levels at the

end of treatment, at concentrations not more than 10 percent

above the pre-treatment level. For each patient, minimal increase

in vaccine dose and minimal reduction in dosing interval that meet

the above PSA stabilization criterion are reported in Table 1.

Supporting Information

Material S1 This file includes (a) the mathematical model of

prostate cancer therapeutic vaccination; (b) parameter estimation.

(DOCX)
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