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Overexpression of SERCA1a in the mdx Diaphragm
Reduces Susceptibility to Contraction-Induced Damage
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Abstract

Although the precise pathophysiological mechanism of muscle damage in dystrophin-deficient muscle remains
disputed, calcium appears to be a critical mediator of the dystrophic process. Duchenne muscular dystrophy
patients and mouse models of dystrophin deficiency exhibit extensive abnormalities of calcium homeostasis,
which we hypothesized would be mitigated by increased expression of the sarcoplasmic reticulum calcium
pump. Neonatal adeno-associated virus gene transfer of sarcoplasmic reticulum ATPase 1a to the mdx dia-
phragm decreased centrally located nuclei and resulted in reduced susceptibility to eccentric contraction-
induced damage at 6 months of age. As the diaphragm is the mouse muscle most representative of human
disease, these results provide impetus for further investigation of therapeutic strategies aimed at enhanced
cytosolic calcium removal.

Introduction

Duchenne muscular dystrophy is due to the absence of
dystrophin and characterized by progressive muscle

degeneration, weakness, and death due to cardiopulmonary
failure. Dystrophin serves as a mechanical link between the
extracellular matrix and cytoskeleton and functions to stabi-
lize the sarcolemma during contraction. The absence of dys-
trophin at the sarcolemmal membrane leads to a secondary
loss of the dystrophin-associated glycoprotein complex, sar-
colemmal instability, and increased susceptibility to muscle
degradation following contraction (Petrof et al., 1993). Al-
though the precise mechanism of muscle damage has not been
delineated, one hypothesis is that dystrophin deficiency pro-
motes transient excess calcium influx following contraction
and activates proteolytic breakdown of the cytoskeleton pri-
marily by calpains (Deconinck and Dan, 2007; Claflin and
Brooks, 2008; Zhang et al., 2008). The source of the elevated
calcium found in dystrophic muscle is controversial. Possible
sources of excess calcium influx are tears in the plasma
membrane, stretch-activated calcium channels, and/or leak
channels (Bodensteiner and Engel, 1978; Fong et al., 1990;
Franco and Lansman, 1990; Millay et al., 2009).

Extensive evidence suggests calcium homeostasis is dys-
functional in dystrophic muscle. Sarcoplasmic reticulum
calcium ATPase (SERCA) activity is most likely not impaired

in dystrophic muscle, although disparate results have been
reported depending on the muscle group examined and
method used (Kargacin and Kargacin, 1996; Khammari et al.,
1998; Culligan et al., 2002; Divet and Huchet-Cadiou, 2002;
Plant and Lynch, 2003). Numerous abnormalities of SERCA
and other calcium-handling proteins have been reported in
dystrophin-deficient skeletal muscle. In the mdx mouse,
levels of SERCA1a are elevated in the spared intrinsic la-
ryngeal and toe muscles, unchanged in the mildly affected
tibialis anterior, and reduced in the moderately affected ex-
tensor digitorum longus (EDL) muscle (Culligan et al., 2002;
Dowling et al., 2002, 2003; Ferretti et al., 2009). Similarly,
calsequestrin, a high-capacity intraluminal calcium-binding
protein, is elevated in intrinsic laryngeal muscle and reduced
in the EDL (Ferretti et al., 2009). Other reports describe de-
creased levels of calsequestrin-like protein, whose function is
unknown but may contribute to reduced calcium-binding
capacity in the dystrophic sarcoplasmic reticulum (Leberer
et al., 1988; Culligan et al., 2002; Doran et al., 2004).

These observations led us to hypothesize that increased
expression of sarcoplasmic reticulum ATPase 1a would re-
duce muscle damage following eccentric contraction. We
used neonatal gene transfer of adeno-associated virus (AAV)
pseudotype 2/6 to overexpress the fast skeletal muscle iso-
form of SERCA in the diaphragm of the dystrophin-deficient
mdx mouse model and analyzed muscle function and
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morphology at 6 months of age. Increased SERCA1a protein
levels in the diaphragm increased the proportion of type IIA
fibers, reduced the percentage of centrally nucleated fibers,
and attenuated the loss of force production following ec-
centric contractions.

Materials and Methods

The use of mice in these experiments was approved by the
University of Pennsylvania Animal Care and Use Commit-
tee. The viral construct used in this study consisted of the
constitutive chicken b-actin promoter and the murine fast
skeletal muscle isoform of SERCA (SERCA1a). AAV pseu-
dotype 2/6 was produced by the University of Pennsylvania
Vector Core, and 1E12 genome copies of virus in a total
volume of 50 ml was injected into neonatal mice (Bish et al.,
2008). At 6 months of age, muscle function was measured,
and tissues were harvested for further analysis. Im-
munoblotting, muscle histology, and functional assessments
were performed as described previously (Morine et al., 2010),
with the following modification for the assessment of ec-
centric contraction-induced force deficit. Following meas-
urement of maximum isometric tetanus, the diaphragm was
subjected to a series of five eccentric contractions with a
5-min rest between contractions. Muscles were stimulated

for a total of 700 msec and stretched 10% of optimum length
in the final 200 msec of stimulation. The two-tailed unpaired
Student’s t test was used to compare means between groups;
data are reported as means� SD.

Results and Discussion

Neonatal mdx mice (n¼ 9 control mdx, n¼ 9 mdx/SER-
CA1a) were injected via a subxyphoid approach with 1E12
genome copies of AAV2/6 CB.SERCA1a to target trans-
duction of the diaphragm (Bish et al., 2008). Mdx diaphragm
was found to contain approximately one third of the SER-
CA1a protein content of C57 Bl/6 muscle, whereas gene
transfer restored SERCA1a protein levels to 52% of normal
(Fig. 1a). Analysis of muscle morphology revealed that in-
creased expression of SERCA1a did not alter fiber size, in-
creased the proportion of type IIA fibers from 54% to 75%,
and decreased the proportion of type IIX fibers from 27% to
10% (Fig. 1b and c). Quantification of centrally nucleated
fibers, a marker of fibers that had previously undergone
degeneration and regeneration, demonstrated a reduced
percentage of centrally nucleated fibers in the mdx/SERCA1a
diaphragm (Fig. 1d). Dystrophin-deficient muscle fibers are
profoundly sensitive to eccentric muscle contractions and
exhibit a rapid loss of force production following repetitive

FIG. 1. Overexpression of SERCA1a in the mdx diaphragm protects from eccentric contraction–induced loss of force
production. (a) Immunoblotting of diaphragm homogenates demonstrated 69% less SERCA1a in the mdx diaphragm (red
column) in comparison with C57 Bl/6 controls (navy column). AAV-mediated gene transfer increased SERCA1a content in
mdx/SERCA1a diaphragm (green column) to 52% of control. (b) The muscle fiber size distribution was unaffected by
SERCA1a overexpression. (c) An increase in the proportion of type IIA fibers and a decrease in the proportion of type IIX
fibers were observed in the mdx/SERCA1a group. (d) The percentage of centrally nucleated fibers (CNFs) was reduced from
25% in the mdx diaphragm to 13% in the mdx/SERCA1a diaphragm. (e) Force production was measured following a series of
eccentric contractions (ECC). Beginning at the second contraction, there was a significant attenuation of the force loss in mdx/
SERCA1a diaphragm in comparison with the untreated mdx diaphragm. Data represent means� SD. *P< 0.05, mdx vs. C57/
Bl6. #P< 0.05, mdx vs. mdx/SERCA1a. Color images available online at www.liebertonline.com/hum.
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stimulation (Petrof et al., 1993). Following a series of five
eccentric contractions, the mdx/SERCA1a diaphragm was
partially protected from force loss (Fig. 1e). Specific force,
or absolute force production normalized to cross-sectional
area, was unchanged (9.4� 0.7 N/cm2 in control mdx vs.
9.9� 1 N/cm2 in mdx/SERCA1a).

Here we show that SERCA1a overexpression was suffi-
cient to ameliorate eccentric contraction–induced damage
and improve some aspects of disease pathology in the mdx
mouse model. The progression of dystrophic pathology is
largely accounted for by the loss of muscle fibers following
muscle contraction (Lynch, 2004). In dystrophin-deficient
muscle, sarcolemmal stabilization achieved by dystrophin
replacement or utrophin up-regulation prevents abnormal
calcium influx and muscle damage due to contraction and
slows or prevents disease progression (Harper et al., 2002;
Krag et al., 2004; Liu et al., 2005; Gregorevic et al., 2006, 2008;
Odom et al., 2008). Modulation of sarcoplasmic reticulum
calcium uptake activity thus represents a novel therapeutic
target for muscular dystrophy.

The prevention of abnormal calcium influx and the acti-
vation of downstream effectors in muscular dystrophy have
been explored in prior preclinical and clinical studies. In the
1980s, trials of the calcium-channel blockers nifedipine and
diltiazem did not attenutate Duchenne muscular dystrophy
in humans (Moxley et al., 1987; Bertorini et al., 1988). Al-
though there is in vitro and in vivo evidence from mdx mice
that the calcium-channel blockers diltiazem and verapamil
can prevent calcium influx (Iwata et al., 2005; Matsumura
et al., 2009), these agents predominately act on L-type voltage-
dependent calcium channels, and it has not been demon-
strated that they act on other pathways of calcium influx
implicated in muscular dystrophy, such as stretch-operated
and store-operated channels. At doses sufficient to effect
clinically meaningful blockade of calcium influx in dystro-
phic muscle, the untoward cardiovascular side effects of
these agents may limit use in humans. Alternatively, selec-
tive inhibition of the degradative pathways activated by
calcium, such as the calpain and ubiquitin-proteasome sys-
tem, have shown some promise in preclinical studies
(Spencer and Mellgren, 2002; Bonuccelli et al., 2003; Burdi
et al., 2006; Briguet et al., 2008).

An important limitation of our study is that transgene
overexpression of SERCA1a was lost over time secondary to
muscle-fiber turnover. Although we demonstrate that partial
restoration of SERCA1a protein content to normal levels
provides *50% protection from contraction-induced dam-
age, the diaphragm was not fully protected from cumulative
muscle damage as specific force was not improved.

Prior evidence indicates that chronic calcium influx can
activate the slow/oxidative gene program through the cal-
cineurin/NFAT (nuclear factor of activated T cells) pathway
(Chakkalakal et al., 2003; McCullagh et al., 2004; Calabria
et al., 2009). Hence, it would be expected that correction of
the chronic calcium overload present in dystrophic muscle
would prevent the fast to slow transition of myosin heavy-
chain expression present in the mdx diaphragm. However,
we found that SERCA1a overexpression led to an abundance
of type IIA fibers in lieu of type IIX fibers. Type I and IIA
fibers express significantly more utrophin than type IIB and
IIX fibers (Chakkalakal et al., 2003). In addition to enhanced
calcium uptake afforded by SERCA1a overexpression, the

fiber-type switch and concomitant increase in utrophin
expression may underlie the partial protection from eccen-
tric contraction–induced damage observed in our study.
Although increasing extrasynaptic utrophin content is un-
equivocally beneficial in dystrophin-deficient muscle, it
is unclear if inducing the slow gene program in general
would be a desirable aim in Duchenne muscular dystro-
phy patients. Studies of activated calcineurin in the
mildly affected mdx mice and the severely affected d-sarco-
glycan-deficient mouse have yielded contrasting results
(Chakkalakal et al., 2004; Parsons et al., 2007). Differences in
responsiveness to calcineurin inhibition or deletion in these
models may reflect underlying differences in pathophysi-
ology or disease severity. Future studies should examine
the efficacy of SERCA overexpression in more severe dys-
trophic models and determine if inducing a fast to slow
fiber-type transition is beneficial independent of utrophin
up-regulation.
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