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Abstract
Gastric cancer is the most common malignancy of the 
gastrointestinal tract in East Asian populations and the 
second most frequent cause of cancer-related mortality 
in the world. While previous studies have investigated 
the genetic factors involved in gastric carcinogenesis, 
there still exist relatively few studies that have investi-
gated the genetic traits associated with the risk of gastric 
precancerous conditions. In this paper we will review the 
biology and genetic polymorphisms involved in the gen-
esis of gastric precancerous conditions reported to date 
and discuss the future prospects of this field of study. 
The associations of gastric precancerous conditions with 
polymorphisms in the cytotoxin-associated gene A-related 
genes (e.g. PTPN11 G/A at intron 3, rs2301756), those 
in the genes involved in host immunity against Helico-
bacter pylori  (H. pylori ) infection (e.g. TLR4 +3725G/C, 
rs11536889) or polymorphisms of the genes essential 
for the development/ differentiation of the gastric epi-
thelial cells (e.g. RUNX3 T/A polymorphism at intron 3, 
rs760805) have been reported to date. Genetic epide-

miological studies of the associations between H. pylori -
induced gastric precancerous conditions and other gene 
polymorphisms in these pathways as well as polymor-
phisms of the genes involved in other pathways like 
oxidative DNA damage repair pathways would provide 
useful evidence for the individualized prevention of these 
H. pylori -induced gastric precancerous conditions.
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INTRODUCTION
Gastric cancer is the most common malignancy of  the 
gastrointestinal tract in East Asian populations and the 
second most frequent cause of  cancer-related mortality in 
the world[1,2]. Helicobacter pylori (H. pylori) infection has been 
established as a major risk factor for developing gastric 
cancer and its precursor lesions by numerous epidemio-
logical studies[3,4]. More than 50% of  the world population 
is infected with this bacterium[5]. Most case-control and 
cohort studies have shown that the risk of  patients with 
H. pylori infection for developing gastric cancer is from 
two- to six-fold[6]. Moreover, some of  the trials on H. pylori 
eradication revealed that cure of  its infection reduces the 
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development of  gastric cancer in high risk populations[7,8]. 
Meanwhile, accumulated evidence indicates that there are 
three steps in gastric carcinogenesis: H. pylori infection, 
development of  gastric precancerous conditions and car-
cinogenesis[9] (Figure 1). Severe gastric atrophy (GA) and 
corpus-predominant gastritis, intestinal metaplasia (IM) 
and dysplasia are well recognized as predominant predis-
positions to gastric cancer[10,11]. The extent of  these gastric 
damages due to H. pylori infection seems to vary from 
one subject to another, suggesting the existence of  some 
genetic factors that play important roles in determining 
the long-term outcome of  H. pylori infection. While previ-
ous studies have investigated the genetic factors involved 
in gastric carcinogenesis[12,13] or H. pylori infection[14], the 
number of  the reports that examined the roles of  genetic 
factors in each step of  gastric carcinogenesis was limited. 
Especially, few studies investigated the genetic traits as-
sociated with the risk of  gastric precancerous conditions 
which would potentially be of  significance for the preven-
tion of  gastric cancer itself. In this paper we will review 
the biology and genetic polymorphisms involved in the 
genesis of  gastric precancerous conditions reported to 
date and discuss the future prospects in this field of  study. 

EPIDEMIOLOGY OF GASTRIC ATROPHY
GA is supposed to be a result of  inflammation induced 
by H. pylori infection[15-21]. In epidemiologic studies, serum 
pepsinogens (PGs) have been used as a marker of  GA[22] 
because it is easily available with a less invasive method. 
Several lifestyle factors like salty food intake[23], low light-
colored vegetable intake[15,21], low vitamin C[16] and high 
starch intake[24] have been shown to be risk factors for GA 
among subjects with and without H. pylori infection. A 
recent study with 1071 H. pylori-infected Japanese revealed 
that those who take too much rice, miso soup, cod roe, 
and cuttlefish, representative Japanese traditional food, 
were at higher risk of  developing GA[25]. Frequent rice in-
take was shown to increase the risk of  atrophic gastritis in 
another study with 291 H. pylori-infected Japanese Brazil-
ians[26]. A double-blinded randomized controlled interven-
tion study in Japan demonstrated that 500 mg of  vitamin 
C supplementation for 5 years prevented the decrease in 
average PGI/II ratio slightly without reduction of  H. py-
lori seropositive percentage[27].

GENES AND POLYMORPHISMS 
INVOLVED IN GASTRIC PRECANCEROUS 
CONDITIONS
Identifying candidate genes for genetic predisposition to 
a gastric precancerous condition is a major challenge that 
stems from a profound understanding of  the etiology of  
this condition. p53 mutations are shown to be detected 
during the stages of  GA and metaplasia[28]. The deregula-
tion of  the “hummingbird phenotype” induction in the 
gastric epithelial cells through cytotoxin-associated gene 
A (CagA)-src homology 2 domain-containing protein ty-

rosine phosphatase-2 (SHP-2) interaction[29] or the disrup-
tion of  epithelial cell polarity through the CagA-Partition-
ing-defective 1 (PAR1) interaction[30] might possibly play 
important roles in the formation of  gastric precancerous 
conditions. Also, like in other gastrointestinal carcinogen-
esis, TGF-β signaling and the subsequent inflammatory 
process might play essential roles in the genesis of  these 
conditions[31]. These hypothetical biological mechanisms 
underlying the genesis of  gastric precancerous conditions 
need to be investigated further in future research.

Although biological mechanisms involved in the gen-
esis of  gastric precancerous conditions remain largely 
unclear, they seem to involve both direct effects by the 
virulence factors of  H. pylori and indirect effects derived 
from pro-inflammatory immune response by the host[28].

Cag pathogenicity island-related genes and their 
polymorphisms
The former effects of  H. pylori virulence factors may 
include those induced by H. pylori induced virulence fac-
tor CagA[32-34]. CagA is a 120 to 145-kDa H. pylori protein 
encoded by the cagA gene[35,36] which is localized at one 
end of  the cag pathogenicity island (cagPAI), a 40-kb DNA 
segment considered to be horizontally transfected to the 
H. pylori genome[37,38]. CagA is delivered from H. pylori 
bacterium into host cell cytoplasms through the type Ⅳ 
secretion system[39] and undergoes tyrosine phosphoryla-
tion[40]. In the injected gastric epithelial cells, CagA induces 
cellular spreading and elongation, called the hummingbird 
phenotype, which is thought to play important roles in 
H. pylori-induced gastric carcinogenesis. In this CagA-de-
pendent morphologic transformation of  gastric epithelial 
cells, a key molecule SHP-2 is required[41]. Binding of  tyro-
sine phosphorylated CagA to the SH2 domains of  SHP-2 
causes a conformational change in SHP-2 itself  that leads 
to aberrantly activated SHP-2 phosphatase. SHP-2 plays 
a major role in intracellular signaling provoked by vari-
ous growth factors, hormones or cytokines and is widely 
expressed in both embryonic and adult tissues[30,42]. SHP-2 
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is required for full activation of  the Ras-MAP kinase cas-
cade in response to growth factor-receptor interaction and 
plays an important role in cell morphogenesis as well as 
cell motility[43] which might partly explain the mechanism 
for the formation of  hummingbird phenotype.

Meanwhile, CagA is shown to disrupt the tight junc-
tions and causes loss of  epithelial apical-basolateral polari-
ty through the specific interaction of  CagA with partition-
ing-defective-1 (PAR1)/ microtubule affinity-regulating 
kinase-2 (MARK2)[30,34] (Figure 2). PAR1b is localized to 
the basolateral membrane in normal polarized epithelial 
cells while atypical protein kinase C (aPKC) complex is 
localized specifically to the apical membrane. When CagA 
is delivered and injected into normal polarized gastric epi-
thelial cells, CagA inhibits the kinase activity of  PAR1b by 
binding directly to its kinase domain which subsequently 
leads to junctional and polarity defects followed by the 
disorganization of  the epithelial monolayer[30]. PAR1b ex-
ists as a homodimer in the cells and two CagA proteins 
bind to a PAR1b dimer, also essential for stable CagA-
SHP2 interaction.

Recently, a cytosolic pattern recognition receptor, 
nucleotide-binding oligomerization domain protein 1 
(NOD1), was found to respond to peptidoglycan deliv-
ered by H. pylori cagPAI[44]. NOD1 is known to sense the 
essential γ-D-glutamyl-meso-diaminopimelic acid (iE-
DAP) dipeptide which is uniquely contained in pepti-
doglycan of  all gram negative and certain gram-positive 
bacteria[45].

As the precise relationship of  gastric precancerous 
conditions like GA and IM with these cagPAI-associated 

molecules is largely left unknown, further investigations 
are required to clarify the roles of  these cagPAI-related 
molecules in the genesis of  gastric precancerous condi-
tions.

The studies on the associations between genotypes 
and GA among the infected were relatively limited (Table 
1)[46-59]. In the majority of  these studies, serum PGs were 
measured for the diagnosis of  gastric mucosal atrophy 
where gastric mucosal atrophy was grouped into “none” 
(PG Ⅰ >70 ng/mL or PG Ⅰ/PG Ⅱ > 3), “mild” (PG Ⅰ ≤ 
70 ng/mL and PG Ⅰ/PG Ⅱ ≤ 3, excluding “severe” cas-
es) or “severe” (PG Ⅰ ≤ 30 ng/mL and PG Ⅰ/PG Ⅱ ≤ 
2)[46,47,50,52,54-56,58], while the diagnosis of  GA was done 
based on the endoscopic findings in the rest of  the stud-
ies[48,49,51,53,58,60].

Protein tyrosine phosphatase, non-receptor type, 
11  G/A at intron 3 (rs2301756): The protein tyrosine 
phosphatase, non-receptor type, 11 (PTPN11) G/A poly-
morphism at intron 3 (rs2301756) is a G-to-A single nu-
cleotide substitution at 223 bp upstream of  exon 4 in the 
PTPN11 gene encoding SHP-2 at chromosome 12q24.1. 
The biological function of  this polymorphism has not yet 
been reported. The first dataset showed that one (11.1%) 
out of  9 infected individuals with the AA genotype had 
GA while 134 (56.1%) among 239 infected with the G al-
lele had atrophy[60]. Our recent report of  1636 non-cancer 
Japanese subjects demonstrated that the risk of  severe 
GA was significantly reduced for those with at least one A 
allele of  this PTPN11 G/A polymorphism at intron 3 (OR 
= 0.62, 95%CI: 0.42-0.90), confirming the association of  
this PTPN11 gene polymorphism with the risk of  gastric 
precancerous conditions in H. pylori-infected subjects[46]. If  
the polymorphism is functional or linked to a functional 
one, the association can be biologically explained by the 
difference in the strength of  signal transduction through 
the CagA-SHP2 complex. According to the NCBI db-
SNP, the frequencies of  the G allele of  rs2301756, high 
risk allele for GA, is 0.802 among 1484 Japanese and 0.917 
among 48 Chinese while it was 0.348 among 46 African 
American and 0.064 among 46 Caucasians, indicating that 
Japanese and Chinese become high risk ethnic groups 
through CagA-positive H. pylori infection if  the hypothesis 
that the G allele confers stronger signals via the CagA-
SHP2 interaction is true.

Nucleotide-binding oligomerization domain protein 
1  G796A (E266K): A recent report revealed that the car-
riage of  the NOD1 G796A mutation increases the suscep-
tibility for GA strikingly: OR = 34.2 in NOD1 796AA and 
OR = 13.35 in NOD1 796GA compared to subjects with 
NOD1 796GG[48].

Immune related genes and their polymorphisms
For the latter effects of  pro-inflammatory immune re-
sponse by the hosts, TLR4 recognizes lipopolysaccharide 
(LPS) of  gram-negative bacteria and is proved to play im-
portant roles in H. pylori infection through the interaction 
of  macrophage/monocyte TLR4 with H. pylori LPS[61,62]. 
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The initial recognition of  LPS and subsequent signaling 
by TLR4 is supported by several accessory proteins: LPS 
first binds to lipopolysaccharide-binding protein (LBP) 
which works as an opsonin for CD14 which then acts as 
a catalyst for the binding of  LPS to MD-2[63]. Then the 
signal induced by LPS/MD-2/TLR4 complex is transmit-
ted through myeloid differentiation factor 88 (MyD88), 
interleukin (IL)-1 receptor associated kinase (IRAK), 
tumor necrosis factor (TNF) receptor-associated factor 6 
(TRAF6) and inhibitory κB kinase (IKK) to nuclear factor 
(NF)-κB, leading to the production of  pro-inflammatory 
cytokines such as IL-1A, IL-1B, IL-6 or TNF-A[64] (Figure 
3). Meanwhile, the human immune system is also bal-
anced by the anti-inflammatory cytokines like IL-10, IL-4 
or IL-13 which are controlled by regulatory T cells[65]. In 

these inflammatory processes, increased expression of  
inducible nitric oxide synthase (iNOS) is shown to play 
important roles in the production of  oxygen radicals 
whereas overexpression of  cyclooxygenase-2 (COX-2) 
is demonstrated to contribute to the proliferation of  the 
gastric epithelium through the up-regulation of  cell-cycles 
as well as to the propagation of  gastric inflammation via 
the prostaglandin pathways[66]. The induction of  iNOS is 
also supposed to be modulated by the activity of  protein 
kinase C-eta (PRKCH) via the phosphorylation of  NF-κB 
or activator protein-1 (AP-1)[67,68].

Oxidative DNA damage is also supposed to play imp-
ortant roles in the pathogenesis of  H. pylori-induced gastric 
mucosal damage where 8-OHdG is a potential sensitive 
marker of  DNA oxidation[69]. The damaged bases in DNA 
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Table 1  Polymorphisms reported on the associations with gastric atrophy among Helicobacter pylori seropositives as well as odds 
ratio and/or gastric atrophy percent.

Polymorphism Function Rs No. Subjects [Ref.] OR and/or GA%

IL-1B C-31T 5'UTR rs1143627 253 Japanese[104] CC (54%),CT (52%),TT (56%)
IL-1B C-31T 5'UTR rs1143627 455 Jpn.Brazil.[59] CC, CT: 0.61,TT: 0.58 CC (36%), CT (31%), TT (21%)
IL-1B C-31T 5'UTR rs1143627 1328Venezuelan[94] TT, CT: 1.01, CC: 0.91
IL-2 T-330G 5'UTR rs2069762 244 Japanese[52] GG ,TG: 1.64, TT: 2.78 aGG (38%), TG (50%), TT (62%)
IL-4 C-33T 5'UTR rs2070874 249 Japanese[52] CC, CT: 2.47, TT: 1.80 CC (38%), CT (60%), TT (53%)
IL-4 T-590C 5'UTR rs2243250 1301 Venezuelan[53] TT, CT: 0.82, CC: 0.81
IL-4R C-3223T 5'UTR rs2057768 1301 Venezuelan[53] CC, CT: 0.97, TT: 1.01
IL-4R A398G Non-synonymous (Ile50Val) rs1805010 1301 Venezuelan[53] AA, AG: 1.14, GG: 1.52a

IL-6 G-174C 5'UTR rs1800795 1315 Venezuelan[94] GG, CG: 0.98, CC: 0.57
IL-8 T-251A 5'UTR rs4073 1347 Venezuelan[94] TT, AT: 0.98, AA: 1.07
IL-10 G-1082A 5'UTR rs1800896 1301 Venezuelan[53] GG, AG: 1.05, AA: 1.14
IL-13 C-1111T 5'UTR rs1800925 248 Japanese[52] CC, CT+TT: 0.41 aCC (59%), CT+TT (45%)
TNF-A T-1031C 5'UTR rs4647198 455 Jpn.Brazil.[105] CC (29%),TC (33%), TT (34%)
TNF-A C-857T 5'UTR rs1799724 456 Jpn.Brazil.[105] CC (32%), CT (36%), TT (39%)
TNF-A-1031&-857 5'UTR rs1799724 455 Jpn.Brazil.[105] CC&CC (29%), TT&CC (33%), TC&CT (43%), TT&TT (39%)
TNF-A G-308A 5'UTR rs1800629 1327 Venezuelan[106] GG, AG+AA: 1.27
MCP1 G-2518A 5'UTR rs1024611 1311 Venezuelan[94] AA, AG: 1.02, GG: 1.18
PTPN11 G/A at intron3 Intron rs2301756 248 Japanese[46] GG, GA: 0.70, AA: 0.09 aGG (59%),GA (49%),AA (11%)
PTPN11 G/A at intron3 Intron rs2301756 979 Japanese[47]b GG, GA+AA: 0.62c aGG (22%),GA+AA (15%)c

NOD1 G796A Non-synonymous (Glu266Lys) rs2075820 150 Turks[48]e GG, GA: 13.35a, AA: 34.2a

TLR4 A+896G Non-synonymous (Asp299Gly) rs4986790 103 Caucasians[49] AA, AG: 11.0* AA (36%), AG (87%)d

TLR4 A+896G Non-synonymous (Asp299Gly) rs4986790 717 Venezuelan[94] GlyGly/AspGly, AspAsp: 1.53
TLR4 G+3725C 3'UTR rs11536889 980 Japanese[50]b GG, GC+CC: 1.33 GG( 18%), GC+CC (22%)c

CD14 C-159T(C-260T) 5'UTR rs2569190 717 Venezuelan[94] CC, CT+TT: 1.06
PRKCH rs3783799 G/A Intron rs3783799 1638 Japanese[54] GG, GA: 0.99, AA: 2.37a

iNOS C150T Non-synonymous (Ser608Leu) rs2297518 250 Japanese[55] CC, CT+TT: 0.75
RUNX3 T/A at intron3 Intron rs760805 938 Japanese[56]b TT, TA: 1.51a, AA:1.59a TT(46%), TA (56%), AA (56%)
HSP70-2 A/B (A1267G) Synonymous (Gln351Gln) rs1061581 137 Japanese[57] BB (45%), AA+AB (67%)c

FAS G-1377A 5'UTR rs2234767 109 Taiwanese[85] No association
FAS A-670G 5'UTR rs1800682 109 Taiwanese[85] No association
FASL T-844C 5'UTR rs763110 109 Taiwanese[85] TT, TC+CC: 9.4a

PGC Ins/Del Ins/Del (unknown) 86 Chinese[68] DD (90%), others (50%)a

NQO1 C609T Non-synonymous (Pro187Ser) rs1800682 396 Japanese[95] TT, CT: 1.25, CC: 1.23
GSTM1 Ins/Del (unknown) 396 Japanese[95] Null, Present: 1.35
GSTT1 Ins/Del rs71748309 396 Japanese[95] Null, Present: 0.87
ACE Ins/Del Ins/Del rs1799752 271 Japanese[107] II, ID: 1.12, DD: 0.99
RANTES C-471T 5'UTR rs2107538 344 Germans[108] No association
SDHC JST173800 C/G 3'UTR rs3813632 249 Japanese[109] CC, GC: 1.26, GG: 0.51 CC (53%), GC (59%), GG (38%)
IFNGR1 G-611A 5'UTR rs1327474 805 Portuguese[110] GG, GA: 1.2, AA: 1.2
IFNGR1 C-56T 5'UTR rs2234711 814 Portuguese[110] CC, CT: 1.4, TT: 1.3

aStatistically significant (P < 0.05); bNumber of H. pylori infected subjects (H. pylori seropositive subjects or subjects with gastric atrophy); cOR for/percentages 
of subjects with severe gastric atrophy; dThere was no subject with GG genotype; eCagA-positive subjects, H. pylori: Helicobacter pylori; GA: Gastric atrophy; 
OR: Odds ratio.



are mainly repaired by the base excision repair (BER) sys-
tem; the accumulation of  8-Hydroxy-2’-deoxyguanosine 
(8-OHdG) or 2-hydroxyadenine (2-OH-A) in DNA is 
prevented by the co-operation of  mutT human homolog-1 
(MTH1), 8-hydroxyguanine DNA glycosylase (OGG1) and 
mutY human homolog (MUTYH)[70]. The number of  stud-
ies that investigated the contribution of  these molecules 
involved in the inflammatory response, such as innate im-
mune response, oxygen radical production, oxidative DNA 
damage repair processes, together with cell-cycle regulation 
and/or cell proliferation in the genesis of H. pylori-induced 
gastric precancerous conditions, is also limited, requiring 
further biological investigations in the near future.

TLR4  polymorphisms (+896 A/G, rs4986790; 
+3725G/C, rs11536889): One study in Caucasians 
showed that the TLR4 +896 A/G polymorphism was 
associated with the risk of  GA where the TLR4 +896 G 
carriers had an 11-fold increased risk of  GA with hypo-
chlorhydria[49]. A subsequent Japanese study also clarified 
the possible association between another genetic varia-
tion in TLR4 gene, the TLR4 +3725G/C polymorphism 
(rs11536889) and the risk of  severe GA in Japanese[50], 
suggesting the significance of  genetic variations in host 
innate immunity due to TLR4 polymorphisms also in East 
Asian populations.

CD14 C-159T polymorphism: There is one single nucle-
otide polymorphism in the promoter region of  the CD14 
gene, CD14 C-159T polymorphism, which is critical for 
CD14 expression[71]. A recent study by one Japanese group 

demonstrated that CD14 promoter -159TT and T carrier 
were associated with lower risk of  GA in H. pylori-infected 
subjects who were 61 years or older[51].

IL-2  T-330G and IL-13  C-1111T polymorphisms: 
IL-2 T-330G polymorphism was demonstrated to be a 
functional polymorphism[72] with higher IL-2 production 
in GG genotype than in TT genotype[73]. Those with TT 
genotype were shown to be at a higher risk of  GA[52], less 
frequent in Asians (38% out of  29 individuals) than in 
Caucasians (51% out of  199 individuals)[74].

IL-13 gene in chromosome 5q31 has several polymor-
phisms; at least 3 polymorphisms at the promoter region, 
2 polymorphisms at intron 1, Arg130Gln and 4 polymor-
phisms at 3’ UTR of  exon 4 have been reported[75]. The 
-1111TT genotype was shown to harbor increased binding 
ability of  nuclear proteins and was also reported to be as-
sociated with asthma[75,76]. As for the risk of  GA, -1111TT 
was found to be a low risk genotype[52]. The biological 
mechanism involved was not yet clarified.

IL-4R C-332T (rs1805010) polymorphism: One study 
of  Venezuelan subjects revealed that those with homozy-
gotes with the low activity allele (GG) of  the A398G poly-
morphism in the IL-4R gene (rs1805010) had a modestly 
increased risk of  GA (OR = 1.52, 95%CI: 1.05-2.21)[53], 
suggesting the role of  genetic variability in the anti-
inflammatory mediators in the genesis of  H. pylori-induced 
gastric precancerous conditions.

Inducible nitric oxide synthase  C150T (rs2297518) 
and PRKCH rs3783799 G/A polymorphisms: PRKCH 
is shown to be involved in oxidative stress by activating 
iNOS and nitric oxide production[67]. The associations 
of  the polymorphisms in these two genes [iNOS C150T 
(rs2297518) and PRKCH rs3783799 G/A polymorphisms] 
with the risk of  GA were investigated in the Japanese pop-
ulation which revealed that those with PRKCH rs3783799 
AA genotype were at significantly higher risk of  severe 
GA (OR = 2.37, 95%CI: 1.11-5.05)[54] while there were no 
significant association between the iNOS C150T polymor-
phism and risk of  GA[55].

Other miscellaneous genes and their polymorphisms
Recently, it was reported that the loss expression of  sonic 
hedgehog (Shh), a regulatory gene essential for develop-
mental patterning, and aberrant expressions of  caudal-type 
homeobox transcription factor 2 (CDX2), a master regulatory 
gene of  intestinal development and differentiation, in H. 
pylori-induced atrophic gastritis are the early events cor-
related with the occurrence of  IM which can be reversible 
by the eradication of  H. pylori. In accordance with these 
findings, CDX2 expression has been demonstrated to be 
associated with intestinal phenotypes in gastric cancers[77].

Another important tumor suppressor gene in intesti-
nal-type gastric cancer is runt-related gene 3 (RUNX3) en-
coding a subunit of  polyomavirus enhancer binding pro-
tein 2[78], since expression of  RUNX3 is greatly reduced in 
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Figure 3  Signal pathways from Helicobacter pylori to cytokine gene expr-
ession through innate immunity. H. pylori: Helicobacter pylori; IKK: Inhibitory 
κB kinase; iE-DAP: γ-D-glutamyl-meso-diaminopimelic acid; IRAK: Interleukin 
1 receptor-associated kinase; MyD88: Myeloid differentiation factor 88; NF-κB, 
Nuclear factor κB; NOD1: Nucleotide-binding oligomerization domain protein 1; 
SOCS: Suppressor of cytokine signaling; TOLLIP: Toll-interacting protein; TIRAP: 
TIR domain-containing adaptor protein. 
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IMs in human stomachs[79] and RUNX3-/- mouse gastric 
epithelial cells have a potential to differentiate into CDX-2 
positive intestinal type cells[80]. Li et al[78] and Levanon et 
al[81] reported that the gastric mucosa of  RUNX3 null mice 
showed hyperplasia, indicating that loss of  RUNX3 leads 
to gastric carcinogenesis in humans. Consistent with this, 
an analysis of  RUNX3 in human stomach cancer cell lines 
and primary human tumors revealed hemizygosity in 40% 
of  the tumors examined and silencing by promoter hyper-
methylation in 60% of  the tumors; this figure increased up 
to 90% in the advanced stage tumors. It is shown that the 
RUNX3-/- mouse gastric mucosa exhibits hyperplasias due 
to the stimulated proliferation and suppressed apoptosis in 
the cells, suggesting that RUNX3 is an attractive candidate 
as a tumor suppressor of  gastric cancer. The CpG island 
of  RUNX3 P2 promoter is hypermethylated in human 
and mouse gastric cancer cell lines and in primary human 
tumors[78,82], also suggesting the tumor suppressor function 
of  RUNX3 in the etiology of  stomach cancer.

Heat-shock protein (HSP) 70 plays essential roles in 
cellular response to a variety of  environmental stresses by 
acting as molecular chaperons in the folding of  newly syn-
thesized proteins in cells and assist in the folding of  dam-
aged proteins[83]. HSP expression in the gastric mucosa is 
shown to be attenuated by H. pylori infection and aspirin 
intake and one HSP inducer geranylgeranylacetone (GGA) 
reportedly protects gastric mucosa from iNOS induced by 
H. pylori infection[84], suggesting that HSP has important 
roles in protecting gastric mucosa against H. pylori or as-
pirin induced injuries. Gastric carcinogenesis can also be 
regarded as a multistep process that initiates with the dis-
regulation of  normal controls of  apoptosis and cell prolif-
eration in which FAS receptor-ligand system is shown to 
be a key regulator of  apoptosis[85].

Pepsinogen C (PGC), alternatively called pepsino-
gen Ⅱ or gastricsin, an inactive precursor of  pepsin C, is 
an aspartic protease specifically produced by the gastric 
chief  cells, cardiac cells, pylori cells and Brunner’s glands 
from late infant stages to the adulthood period. PGC is 
considered to be a differentiation marker of  gastric epithe-
lium whose changes in expression may reflect the severity 
of  gastric mucosal damage[60].

Runt-related gene 3  T/A polymorphism at intron 
3 (rs760805): Among H. pylori seropositive subjects, we 
found a significant association between RUNX3 rs760805 
polymorphism and the risk of  GA with the age- and sex-
adjusted OR of  1.51 (95%CI: 1.11-2.05, P = 0.008) in TA, 
1.59 (95%CI: 1.08-2.33, P = 0.019) in AA and 1.53 (95%CI: 
1.14-2.05, P = 0.004) in TA+AA compared with TT 
genotype[56]. This finding was in accordance with the recent 
biological report that RUNX3 expression correlated with 
chief  cell differentiation in human gastric cancers[86].

Heat-shock protein 70-2  A/B (A1267G) polymor-
phism: It is shown that the AA genotype of  HSP 70-2 
A/B polymorphism (PsiI polymorphism, corresponding to 
A1267G polymorphism) had the highest level of  mRNA 
expression compared with the other genotypes (AB or 

BB). Recently one Japanese group reported that the BB 
genotype of  HSP 70-2 gene is significantly associated with 
the reduced risk of  severe GA in H. pylori infected older 
subjects[57], indicating the importance of  this HSP poly-
morphism in the genesis of  H. pylori-induced gastric pre-
cancerous conditions. In a recent study, polymorphisms 
in HSP 70 genes along with TNF polymorphisms showed 
a significant severity-dose-response as risk markers from 
precancerous lesions to gastric cancer in Mexican popula-
tion, presumably because of  their association with the 
intense and sustained inflammatory response[87].

FASL T-844C polymorphism: Lately, one study group in 
Taiwan investigated the relationship between precancerous 
gastric lesions and polymorphisms in the promoter regions 
of  the death pathway genes FAS and FASL (FAS G-1377A, 
FAS A-670G and FASL T-844C) in 109 H. pylori-infected 
Taiwanese individuals and found that FASL -844 C allele 
significantly increased the risk of  atrophy in the gastric cor-
pus, with an adjusted OR of  5.0 (95%CI: 1.5-6.8)[85].

Pepsinogen C ins/del polymorphism: A recent study 
among Chinese demonstrated that subjects with PGC 
del/del genotype were at significantly higher risk of  atro-
phic gastritis (OR = 3.11; 95%CI: 1.44-6.71) and H. pylori-
seropositive subjects with PGC del/del genotype had sig-
nificantly elevated risk of  atrophic gastritis (OR = 11.16; 
95%CI: 1.37-90.84) with the interaction of  6.48[58], sug-
gesting the positive link between PGC gene polymorphism 
and H. pylori-induced GA. 

Genes and polymorphisms for advanced precancerous 
conditions
Advanced precancerous conditions like IM or dysplasia 
develops in some part of  H. pylori infected subjects. One 
Chinese study demonstrated no significant differences 
in genotype frequencies of  CYP2E1, GSTM1, GSTP1, 
GSTT1, ALDH2 and ODC between those with mild 
chronic atrophic gastritis including 29.7% H. pylori nega-
tive subjects and those with deep IM or dysplasia with 
20.2% of  H. pylori negative subjects, but found significant 
interaction between CYP2E1 DraI genotypes and smok-
ing[88]. Another study in Germany revealed that carriers of  
both of  IL-1B -511T and IL-1RN 2rpt alleles relative to 
subjects lacking IL-1B -511T or/and IL-1RN 2rpt alleles 
had significantly increased risk for the development of  
atrophic gastritis, IM and severe inflammation[89].

Recently, one Japanese study group investigated exten-
sively into the genetic polymorphisms associated with the 
risk of  gastric advanced precancerous conditions. They 
reported that the risk of  IM among H. pylori seropositive 
individuals was significantly associated with the poly-
morphisms of  COMT Val158Met[90], cyclin D1 (CCND1) 
G870A[91], p22PHOX C242T[92], VEGF G1612A at 
3’-UTR[93] and HSP70-2 A1267G[57] while it was not associ-
ated with VEGF C936T at 3’-UTR[93]. A recent report by 
a Turkish group also revealed the significant association of  
risk of  antral IM with G796A (E266K) polymorphism in 
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the NOD1 gene encoding a cytosolic receptor to peptido-
glycan delivered by cagPAI; the risk was strikingly increased 
in those with AA genotype (OR = 39.76) and also signifi-
cantly increased in those with GA genotype (OR = 2.71)[48]. 
One group in the US investigated the associations of  risk 
for H. pylori-induced gastric precancerous conditions with 
the polymorphisms in the genes involved in host-bacterial 
interaction, (IL-1B C-31T, IL-6 G-174C, IL-8 T-251A, 
MCP-1 G-2518A and TNF G-308A), bacterial LPS signal-
ing (CD14 C-260T, TLR4 Asp299Gly, NOD2 del 3020 ins 
C and NOD2 Gly908Arg) and anti-inflammatory cytokine 
signaling (IL-10 G-1082A, IL-4 T-590C, IL-4R C-3223T 
and IL-4R A398G) among Venezuelan subjects[53,94,95], in 
which they found the associations between risk of  dyspla-
sia and IL-8 T-251A polymorphism (OR = 2.00 for AA, 
1.33 for AT; P for trend = 0.02) or between that of  IM 
and CD14 C-260T (OR = 1.45 for CT, 1.45 for TT; P for 
trend = 0.025) or IL-10 G-1082A (OR = 1.34 for AG, 1.50 
for AA; P for trend = 0.055) polymorphisms. Another 
group in Taiwan investigated the associations of  the risk 
of  precancerous gastric lesions and polymorphisms in the 
promoter regions of  the death pathway genes FAS and 
FASL (FAS G-1377A, FAS A-670G and FASL T-844C) 
in 109 H. pylori-infected Taiwanese individuals where they 
found significantly increased risk of  IM in the antrum for 
those with FAS -1377 A allele with the adjusted OR of  0.3 
(95%CI: 0.1-0.9)[85].

FUTURE PROSPECTS
Intriguing genes for future investigation
Although the G allele of  PTPN11 may be a part of  the 
genetic traits to develop GA via signal transduction from 
CagA, there seems to be other genetic traits involved in 
this process. CagA binds several molecules, Grb2 which 
transduces the signal to Ras-MAP kinase pathway causing 
cell proliferation, c-Met hepatocyte growth factor (HGF) 
receptor which have a role of  cell proliferation and motil-
ity, zona occludens-1 (ZO-1), a tight-junction protein, and 
PAR1/MARK kinase which has an essential role in epi-
thelial cell polarity[30,96-99]. Although no studies have been 
conducted, functional polymorphisms of  these molecules 
might also be possible candidates for the genetic traits of  
GA.

There seem to be other intriguing candidate molecules 
as possible susceptible factors. A recent study that exam-
ined the associations of  75 haplotype-tagging SNPs in 
genes in the TLR signaling pathway with pertussis toxin 
(PT)-IgG titers demonstrated that antibody response to 
pertussis vaccination was significantly associated with the 
polymorphisms in CD14, TLR4, toll-interacting protein 
(TOLLIP), TIR domain-containing adaptor protein (TI-
RAP), interleukin 1 receptor-associated kinase 3 (IRAK3), in-
terleukin 1 receptor-associated kinase 4 (IRAK4), TIR do-
main-containing adaptor molecule 1 (TICAM1), and tumor 
necrosis factor ligand superfamily, member 4 (TNFSF4)[100]. 
Considering the crucial role of  TLR4 pathways in the 
genesis of  H. pylori-induced gastric cancer, it would be 

of  interest to investigate the involvement of  these poly-
morphisms in the three steps of  H. pylori-induced gastric 
carcinogenesis. Meanwhile, although some previous stud-
ies have shown the essential roles of  the polymorphisms 
of  DNA BER genes (OGG1, MUTYH and MTH1) in 
H. pylori-related gastric carcinogenesis[101,102], few studies 
have investigated their roles in the genesis of  H. pylori-
induced gastric precancerous conditions. There are several 
other genes reported to be underlying the genesis of  H. 
pylori-induced gastric precancerous conditions. Ornithine 
decarboxylase (ODC), the first and rate-limiting enzyme, is 
shown to be up-regulated by H. pylori with strong expres-
sion in atrophic and IM areas. In a recent Japanese study, 
CDX2 expression was observed in patients with chronic 
gastritis closely associated with IM while some other genes 
like mucin 1 (MUC1), p27 or p53 are also shown to be im-
plicated in the genesis of  IM[103]. The associations of  these 
gene polymorphisms with the risk of H. pylori-induced 
gastric premalignant lesions have also not yet been exam-
ined. Further investigations are expected to investigate the 
significance of  the polymorphisms of  these genes in H. 
pylori-induced gastric precancerous conditions. Further-
more, haplotype analyses as a gene-specific approach to 
find novel functional polymorphisms in the genes involved 
or genome-wide association studies (GWAS) as a compre-
hensive approach to detect novel candidate gene polymor-
phisms strongly associated with disease risk should also be 
conducted to provide useful evidence for the individual-
ized prevention of  H. pylori-induced gastric precancerous 
conditions. By identifying the full genetic risk profile for H. 
pylori-induced gastric precancerous conditions, we will be 
able to target the population at risk and subsequently direct 
eradication therapy and closer follow-up to the affected 
individuals.

Recommendation for stepwise risk evaluation
Although a large number of  studies have been reported 
concerning genetic traits associated with gastric cancer 
risk, few studies investigated which step of  H. pylori-
related gastric carcinogenesis (H. pylori infection, GA and 
gastric cancer) the genetic traits examined has effects on[9]. 
These stepwise evaluations of  H. pylori-related gastric 
carcinogenesis provide us with more precise and detailed 
information about the genes involved in each step of  H. 
pylori related gastric carcinogenesis which would help us 
establish the effective way of  the individualized preven-
tion against H. pylori-induced gastric cancer in the near fu-
ture. We have already conducted this stepwise evaluation 
in previous reports[46,47,50,59] and expect that forthcoming 
studies by other groups would also be conducted in this 
way to improve the quality of  the studies so that we can 
put the obtained results into practice for effective gastric 
cancer prevention.

It would also be relevant to claim that H. pylori-
induced gastric precancerous conditions can be histologi-
cally subdivided into two lesions, GA and more advanced 
precancerous conditions of  IM; thus the stepwise evalua-
tion should be conducted with four steps, i.e. dividing the 
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third step of  gastric carcinogenesis from GA into more 
precise categories of  IM/dysplasia from GA and gastric 
carcinogenesis from IM/dysplasia as implicated in Figure 
1. In addition, the investigation of  the interaction between 
host genetic factors and dietary factors like salty food 
intake, low light-colored vegetable intake, low vitamin C 
and starch intake on the risk of  H. pylori-induced gastric 
precancerous condition might provide clues for effective 
ways of  individualized gastric cancer prevention. We think 
this is our future assignment and more profound collabo-
rations between epidemiologists, pathologists, gastroenter-
ologists and nutritionists would be required to accomplish 
these idealistic goals.

Other remaining questions
In addition to the points raised above, the roles of  the 
candidate genes in the genesis of  gastric precancerous 
conditions in each histological subtype of  gastric cancer 
(diffuse type or intestinal type) need to be investigated. 
Also, as the underlying molecular biological mechanisms 
are largely unclear as mentioned earlier, molecular epide-
miological studies should keep up with the advance of  
the biological research in the field of  gastric precancerous 
conditions in the future.

CONCLUSION
While recent epidemiological studies revealed the impor-
tant roles of  polymorphisms in the cagPAI-related genes 
and genes involved in immune response or development/
differentiation of  gastric epithelial cells in the genesis of  H. 
pylori-induced gastric precancerous conditions as discussed 
in this editorial review (Figure 1), the fields of  genetic epi-
demiological study regarding H. pylori-induced gastric pre-
cancerous conditions are still left relatively uninvestigated 
in spite of  its substantial significance for the prevention 
of  gastric cancer. Association studies between the risk 
of  H. pylori-induced gastric precancerous conditions and 
polymorphisms of  other genes in cagPAI-related path-
ways, innate immunity or oxidative DNA damage repair 
pathways would potentially provide useful evidence for 
the individualized prevention of  these H. pylori-induced 
gastric precancerous conditions.

Further investigation of  the association of  these 
polymorphisms with risk of  H. pylori-induced gastric pre-
cancerous conditions together with the elucidation of  the 
biological roles of  these molecules would be required for 
the confirmation of  recent evidence and realization of  
practical individualized prevention of  H. pylori-induced 
gastric cancer in the near future.
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