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Kinetic modeling of metabolic pathways has become a major field of systems biology. It combines structural
information about metabolic pathways with quantitative enzymatic rate laws. Some of the kinetic constants
needed for a model could be collected from ever-growing literature and public web resources, but they are
often incomplete, incompatible, or simply not available. We address this lack of information by parameter
balancing, a method to complete given sets of kinetic constants. Based on Bayesian parameter estimation, it
exploits the thermodynamic dependencies among different biochemical quantities to guess realistic model
parameters from available kinetic data. Our algorithm accounts for varying measurement conditions in the
input data (pH value and temperature). It can process kinetic constants and state-dependent quantities such as
metabolite concentrations or chemical potentials, and uses prior distributions and data augmentation to keep
the estimated quantities within plausible ranges. An online service and free software for parameter balancing
with models provided in SBML format (Systems Biology Markup Language) is accessible at www.seman-
ticsbml.org. We demonstrate its practical use with a small model of the phosphofructokinase reaction and
discuss its possible applications and limitations. In the future, parameter balancing could become an important

routine step in the kinetic modeling of large metabolic networks.

Introduction

The complex, dynamic behavior of cell metabolism can be
simulated by mathematical models. Metabolic pathway models
consist of enzymatic reactions described by their stoichiometry,
the enzymatic rate laws, and their kinetic constants (such as,
for instance, equilibrium constants or catalytic constants). The
more we know about these quantities, the more reliably we can
simulate the metabolic dynamics. Kinetic laws of individual
enzymes have been studied experimentally for about 100 years,'
and metabolic control theory,” a theoretical apparatus for the
analysis of metabolic systems, has been developed since the
1970s. Recently, comprehensive web databases, advances in
high-throughput experiments, and inexpensive computing power
have led to a new interest in metabolic modeling. In particular,
the numerous large-scale metabolic networks reconstructed from
sequenced genomes>™> call for automatic routines that can fill
these networks with enzymatic rate laws and turn them into
dynamic models.

Unfortunately, the enzymatic mechanisms and the rate laws
of most enzymes are unknown, and it is laborious to determine
them exclusively by enzyme assays. A pragmatic solution is to
substitute missing kinetic laws by standard rate laws, such as
mass-action kinetics, generalized mass-action kinetics,® or linlog
kinetics.”® Here, we will use the common modular rate law.’ a
generalized version of the reversible Michaelis—Menten rate
law, suitable for any reaction stoichiometry and accounting for
various types of allosteric regulation. Once a metabolic network
and enzymatic rate laws have been chosen, we need numerical
values for the kinetic constants. This can be a challenge,
especially for large networks. Modelers can find known kinetic
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constants in published models, in the literature, or in public web
resources such as Sabio-RK,!° Brenda,'! and NIST.'>!3 As
pointed out by Alberty,'* varying conditions such as pH or salt
concentrations can be taken into account by describing bio-
chemical reactants and reactions in terms of transformed
thermodynamic quantities. In the future, automated enzyme
assays might provide more kinetic data, but they will still not
reach the speed at which metabolic networks are reconstructed
from newly sequenced genomes. Available kinetic data may
not be suited for a model if they are contradictory or measured
under inappropriate conditions (e.g., pH values and tempera-
tures). Furthermore, data collected from various sources are very
unlikely to represent a thermodynamically consistent set. Since
incompleteness of the kinetic constants remains a major obstacle,
methods for guessing unknown kinetic constants or adjusting
the known values will become increasingly important.

Here, we present parameter balancing, an approach to infer
complete and consistent sets of model parameters from incom-
plete, inconsistent kinetic data. This is only possible due to
mutual dependencies between the kinetic constants and other
model parameters, arising from their definitions or from
thermodynamic laws (Wegscheider conditions' and Haldane
relationships). In a simple approach, incomplete kinetic data
sets could be complemented by inserting all available values
into the model and adding other quantities that can be directly
computed from them. However, this might leave parameters
undetermined and would not eliminate inconsistencies between
the original data values. As a better strategy, we determine
parameter sets that are consistent by construction and resemble
the original data as closely as possible. Since these values may
not be uniquely determined, we have to restrict them to plausible
ranges and quantify the remaining uncertainties by error bars.
We have previously suggested'® implementing this parameter
balancing approach in a Bayesian statistical framework!” and
based on standard rate laws.’ The critical step is to identify a
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set of independent model quantities that can be freely selected
during parameter fitting, sampling, or optimization and from
which all remaining quantities can be easily computed. After
establishing this dependence scheme for a wide range of kinetic
constants and metabolic quantities, we obtain a relatively general
and simple data integration method that can guarantee consistent
parameter sets. Here, we use more general formulas and present
an interactive online workflow for models in SBML format
(Systems Biology Markup Language,'® www.sbml.org), then
illustrate its use with an example case.

Methods

Parameter balancing exploits the fact that kinetic model
parameters often share mutual dependencies, either by their
definition or because of thermodynamic constraints.'® For kinetic
models with modular rate laws® and many other rate laws, the
model parameters can be split into two subsets: a set of
independent basis quantities that can be chosen arbitrarily and
a set of derived quantities that can be computed from linear
combinations of the basis quantities. As a simple example, let
us consider the concentration and the amount of a substance
within a cellular compartment. The amount a can be computed
from the concentration ¢ and the compartment volume V by
the formula a = cV. If we choose (e.g., guess, sample, fit, or
optimize) all three model parameters independently, this de-
pendence will be violated. Of course, this problem is easy to
avoid: we just need to treat a as a derived quantity to be
computed from the basis quantities ¢ and V. On a logarithmic
scale, we obtain the simple linear dependence scheme In a =
In ¢ + In V. In parameter balancing, we do exactly the same
thing, but treat all quantities of a (possibly large) kinetic model
at the same time. In addition, we consider not only dependencies
arising from quantity definitions, as in this simple example, but
also more involved dependencies arising from the laws of
thermodynamics. The resulting dependence scheme consists of
many linear equations, emerging from a thermodynamic and
kinetic analysis of the rate laws. For practical calculations, these
equations are represented by a large, sparse matrix to be
constructed from the metabolic network.

Parameter balancing exploits this partition of the parameter
set into basis and derived quantities. Initially, the basis quantities
are estimated from data by a linear regression model that follows
directly from the dependence scheme. Following this, the
dependence scheme is used again to determine the dependent
model quantities. The estimation is based on Bayesian statistics,
combining the data with prior distributions for all model
parameters, which can be selected to incorporate general
knowledge about plausible values. Accordingly, parameter
balancing yields not only point estimates but also posterior
distributions, from which mean values, variances, correlations,
and even random samples of all relevant quantities can be
obtained. A detailed description is given in the Supporting
Information. On the basis of our practical experience, we have
extended the original parameter balancing approach in three
major ways:

(1) Our model quantities comprise not only kinetic constants,
but possibly also metabolite and enzyme concentrations for one
or more metabolic states. From their values, we can derive other
state-dependent quantities; in particular, the chemical potentials
and reaction affinities. The reaction affinities describe how
strongly chemical reactions deviate from their equilibrium and
predetermine the reaction directions.

(2) In biochemical reactions, individual protonation states of
a molecule (“chemical species”) are usually subsumed in a single
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Figure 1. The PFK reaction as a network model. The model structure
is defined by the sum formula F6P + ATP < FBP + ADP with the
molecular species FO6P (fructose 6-phosphate), FBP (fructose 1,6-
bisphosphate), ATP (adenosine triphosphate), and ADP (adenosine
diphosphate). In our parameter balancing workflow, the stoichiometry
is provided as an SBML file, and kinetic constants (shown in flags)
are read from a separate data file (see Table 1). The constants shown
suffice to define a common modular rate law,” which we use as a
standard rate law.

“reactant” concentration. As pointed out by Alberty,'*!%? these
reactants should be described by transformed thermodynamic
quantities, which effectively depend on the pH value and on
salt concentrations. In our approach, quantities such as equi-
librium constants, Gibbs free energies, and chemical potentials
are given as transformed values, depending both on temperature
and on pH. If experimental values stem from measurements
under incompatible conditions, the discrepancies can be cor-
rected during parameter balancing.

(3) Although prior distributions can help to define plausible
ranges for the basis quantities, they are not applicable to the
derived quantities. As a consequence, whenever few data on
these quantities are available, their large uncertainties lead to
unreasonable balancing results. We address this problem by
augmenting the experimental data set with fictitious pseudo
values, playing a role similar to the prior distributions. They
allow the modeler to control the variance of the independent
values and, thus, the reliability of the whole estimate.

A detailed description of the original method and all new
features is given in the Supporting Information.

For practical use, we have implemented an interactive
workflow for SBML models, allowing the user to balance the
parameters and to replace or complete kinetic rate laws in the
model. Three kinds of information are needed as an input:
the network structure, which is obtained from the SBML file,
the mathematical rate laws, which are chosen from the list
of modular rate laws,” and a table with collected kinetic
constants and other relevant data (for an example, see Figure 1
and Table 1). In the model, enzymes and allosteric activators
and inhibitors need to be listed as reaction modifiers and specified
by SBO terms. The quantity types are defined as in the Systems
Biology Ontology,”' and the names of the reactions and species
refer to IDs in the SBML model. All this helps the process to run
in an almost fully automated manner. For further details, see the
Supporting Information and our online documentation at www.
semanticsbml.org.

At the end of the workflow, kinetic rate laws with a set of
balanced parameters are inserted into the SBML model. As a
result of balancing, most parameters are represented by normal
distributions of their logarithmic values. When converting these
values back to nonlogarithmic scale, we obtain log-normal
distributions and need to carefully distinguish between their
arithmetic and geometric mean values. To insert the most
probable parameter set into a model, we choose the median
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TABLE 1: Extract of the Input Data Table for the Phosphofructokinase Reaction”

Lubitz et al.

quantity type SBML reaction SBML species mean std unit ref
standard chemical potential F6pP —1316.55 kJ/mol Alberty
standard chemical potential FBP —2206.14 kJ/mol Alberty
standard chemical potential ATP —2292.28 kJ/mol Alberty
standard chemical potential ADP —1425.17 kJ/mol Alberty
inhibitory constant PFK ATP 0.396 mM Brenda
concentration FBP 1.94 mM pseudo value
concentration F6P 0.97 mM pseudo value
concentration ATP 1.5 mM Brenda
concentration ADP 0.81 mM Brenda
concentration of enzyme ATP 0.003608 mM yeastGFP
equilibrium constant PFK 0.08 Nissler et al.
Michaelis constant PFK F6P 0.66 mM Brenda
Michaelis constant PFK FBP 12.5 mM Brenda
Michaelis constant PFK ATP 0.1 mM Brenda
Michaelis constant PFK F6P 0.945 mM Brenda
“ For abbreviations, see Figure 1. Data taken from Alberty,” yeastGFP,? Nissler et al.,** NIST,'* Brenda.!!

TABLE 2: Balancing Result for the Phosphofructokinase Reaction
quantity type SBML reaction SBML species mean std median unit

standard chemical potential FBP —2191.919 30.232 —2191.919 kJ/mol
standard chemical potential ATP —2292.069 30.232 —2292.069 kJ/mol
standard chemical potential Fop —1321.474 30.232 —1321.474 kJ/mol
standard chemical potential ADP —1415.064 30.232 —1415.064 kJ/mol
catalytic rate constant geometric mean PFK 13.148 25.602 6.006 1/s
Michaelis constant PFK Fo6P 0.630 0.306 0.567 mM
Michaelis constant PFK FBP 9.956 4.829 8.957 mM
Michaelis constant PFK ATP 0.103 0.050 0.093 mM
Michaelis constant PFK ADP 0.835 0.405 0.752 mM
inhibitory constant PFK ATP 0.389 0.103 0.376 mM
concentration FoP 0.775 1.175 0.427 mM
concentration FBP 1.454 2.204 0.801 mM
concentration ATP 1.478 0.393 1.428 mM
concentration ADP 0.769 0.458 0.660 mM
concentration of enzyme PFK 0.003 0.001 0.003 mM
equilibrium constant PFK 0.080 0.040 0.072
substrate catalytic rate constant PFK 45.309 102.940 18.253 1/s
product catalytic rate constant PFK 4.906 11.146 1.976 1/s
forward maximal velocity PFK 0.016 0.039 0.006 mM/s
reverse maximal velocity PFK 0.150 0.357 0.058 mM/s
chemical potential ATP —2291.18 30.239 —2291.18 kJ/mol
chemical potential Fop —1323.597 30.354 —1323.597 kJ/mol
chemical potential ADP —1416.099 30.263 —1416.099 kJ/mol
chemical potential FBP —2192.472 30.354 —2192.472 kJ/mol
reaction affinity PFK 0.003 0.005 0.003 kJ/mol

values of the nonlogarithmic parameters, which are identical to
the geometric mean. In addition, we can sample additional
logarithmic parameter sets from the normal distribution, convert
them back by applying the exponential function, and insert them
into the model.

In the Supporting Information, we discuss a number of
possible extensions, such as handling of identical species in
different compartments, electrochemical potentials, cell com-
partments with different pH values, forward and reverse reaction
rates, use of correlated priors, use of equilibrium constants as
basis quantities, and prescribed reaction directions. We plan to
include these features in a future version of the workflow.

Results

Implementation As an Interactive Workflow. We have
implemented parameter balancing as an open source software
written in Python. An interactive online version is accessible
at www.semanticsbml.org. The Web site also contains the doc-
umentation and a number of example models, including the
phosphofructokinase reaction discussed below. At the beginning

of the workflow, the user uploads an SBML model,'® defining
the network structure (see Figure 1) as well as a formatted data
table (see Table 1) listing the known kinetic constants and other
quantities relevant for the model. After uploading both files,
the data can be filtered for a specific source organism, and
missing standard errors are completed by default values. Then,
a table of relevant model quantities is produced, with blank rows
where data are missing and averaged values where more than
one data point was available. The standard chemical potentials
or equilibrium constants measured under different temperature
or pH are not averaged, but kept as separate values. As a second
source of information, we use prior distributions, describing our
general expectation about the quantity types. Such priors can
be derived from the typical ranges of kinetic constants found
in the literature.

On the basis of the prior distributions and pseudo values
chosen by the user, a set of model parameters is determined by
parameter balancing (see Table 2). For comparison, the user
can also choose between several simpler methods for data
completion: (i) completing all missing quantities by the prior
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TABLE 3: Comparison of Balancing Results to Literature and Web Resource Results”

Vinax Crop CFBP CATP CADP ke
Rizzi et al.> 2.33 mM/s
Hynne et al.?® 0.76 mM/s 0.49 mM 4.64 mM 2.1 mM 1.5 mM oo
Teusink et al. (measured)?®? 0.68 U/mg Protein™! 0.62 mM 5.51 mM 2.52 mM 1.32 mM oo
Teusink et al. (predicted)®? 3.05 mM/s 0.16 mM 0.98 mM 2.52 mM 1.29 mM 80
Sabio-RK!" 0—5 mM
Brenda'!
before balancing 0.97 mM 1.94 mM 1.5 mM 0.81 mM 0.08
parameter balancing 0.006 mM/s 0.427 mM 0.801 mM 1.428 mM 0.660 mM 0.072

“ Maximal forward velocity, species concentrations, and the equilibrium constant are shown.

TABLE 4: Comparison of Balancing Results to Literature and Web Resource Results: Michaelis Constants and Inhibitory

Constant
k]l\:/IGP klMBP k]/\\/ITP k]\AADP k}\TP
Rizzi et al.’ 0.008 mM 0.25 mM 0.36 mM
Hynne et al.?
Teusink et al. (measured)? 0.1 mM 0.71 mM
Teusink et al. (predicted)*
Sabio-RK!? 19.2 mM 1.09 mM
Brenda!! 0.66 mM 12.5 mM 0.1 mM 0.945 mM
before balancing 0.66 mM 12.5 mM 0.1 mM 0.945 mM 0.396 mM
parameter balancing 0.567 mM 8.957 mM 0.093 mM 0.752 mM 0.376 mM

means and widths (for missing basis quantities) or by pseudo
values and their standard errors (for missing derived quantities),
leading to complete, but inconsistent parameter sets; (ii)
completing all missing basis quantities by prior values and
computing all derived quantities by the dependence scheme;
(ii1) completing all missing derived quantities by pseudo values,
followed by balancing without pseudo values; or (iv) balancing
without pseudo values. Afterward, the user can choose a rate
law from the list of modular rate laws’ that will be inserted
into the SBML file. The parameter values represent either
median values or random samples from the posterior distribution.
Finally, the balanced quantities and the completed model are
exported, respectively, as a data table and as a fully parametrized
SBML file.

Parameter Balancing for the Phosphofructokinase Reac-
tion. We have tested parameter balancing with medium-scale
models of central metabolism: yeast glycolysis models by
Teusink et al.?> and Hynne et al.?* and a model of metabolism
in pancreatic beta cells.?* The original models, the collected data,
and the balancing results for all models can be found at
www.semanticsbml.org in the online documentation. For sim-
plicity, we consider here a small model of the phosphofruc-
tokinase reaction, a key step in upper glycolysis:

p-p-fructose 6-phosphate + ATP <
p-p-fructose 1,6-bisphosphate + ADP

The enzyme phosphofructokinase (PFK), which transfers a
phosphate group from ATP (adenosine triphosphate) to fructose
6-phosphate (see Figure 1), has been studied extensively, but
the databases Brenda,!' NIST,'® and Sabio-RK'? do not contain
a complete kinetic data set for a reversible rate law. Therefore,
we pretend that the kinetic law of PFK is unknown, apply
parameter balancing to the pooled data from several organisms,
and compare the results to parameters from published kinetic
models for the Baker’s yeast Saccharomyces cerevisiae.?**>°

Our SBML model for the PFK reaction, including MIRIAM-
compliant annotations, was automatically constructed from the
KEGG?¥ reaction identifier R04779 with the tool seman-
ticSBML?® (accessible at www.semanticsbml.org). Then, we

collected data from the databases Sabio-RK,!° Brenda,'! NIST,?
and yeastGFP? and from publications by Nissler et al.,* Albe
et al.,’' and Alberty.” The preprocessed data are shown in Table
1. For the concentrations of fructose 6-phosphate and fructose
1,6-bisphosphate, we inserted pseudo values (arithmetic mean
values arising from geometric mean values 0.5 and 1 mM,
respectively, with a broad standard deviation of 0.5 for the
decadic logarithms). Some of the values were obtained by
averaging over several data values measured in different
organisms. The set of balanced parameters, obtained with the
default workflow settings, is shown in Table 2.

A comparison with values from the literature and existing
models is shown in Tables 3 and 4. The maximal velocity of
the phosphofructokinase, mainly determined by a broad prior
on catalytic constants and by an experimentally derived count
number of the enzyme molecules, remains within a sensible
range of the values from the literature (0.006 mM/s). We find
the equilibrium constant to be much lower (0.072) than the one
estimated by Teusink et al.?2(80), which is clearly due to the
small input value (0.08) from Nissler et al.*® Finally, the
balanced inhibition constant for ATP (0.376 mM) lies within a
sensible range of the one found in Sabio-RK'® (1.09 mM), but
is nonetheless a little lower, since the input data value (0.396
mM) is lower, as well.

The equilibrium constants play a central role in parameter
balancing and their numerical values primarily arise from
measured values and from known standard chemical potentials.
To incorporate their dependence on pH values, we reran the
balancing with input data containing equilibrium constants
measured at different temperatures and pH values (see Table
5). Instead of just averaging over them (as for other duplicate
values), parameter balancing can adjust the values to a certain
target temperature and pH value chosen by the user. The aim
is, of course, to describe in vivo conditions considered in the
model. When choosing a target temperature of 300 K and a
target pH value of 7, we obtained a balanced equilibrium
constant k°4 = 0.19397. Since the input measurement conditions
(average pH, 7.7; average temperature, 303.82 K) differ from
the desired conditions (pH, 7; temperature, 300 K), the input
value for the equilibrium constant (k*9 = 0.02923) changes
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Lubitz et al.

TABLE 5: Input Data for Different Measurement Conditions (pH and temperature)

quantity type SBML reaction SBML species mean std unit pH temperature ref
standard chemical potential FBP —2206.14 kJ/mol Alberty
standard chemical potential ATP —2292.28 kJ/mol Alberty
standard chemical potential Fo6P —1316.55 kJ/mol Alberty
standard chemical potential ADP —1425.17 kJ/mol Alberty
equilibrium constant PFK 0.0029 8 303.15 Nissler et al.
equilibrium constant PFK 0.08 7 298.15 Nissler et al.
equilibrium constant PFK 0.0048 8 310.15 Nissler et al.

significantly after parameter balancing. When we choose target
conditions closer to the data measurement conditions (pH, 7.7;
temperature, 304 K), the balanced value £ = 0.19393 moves
slightly closer to the data value.

Finally, we tested what would happen without any direct
information on equilibrium constants. When we remove all data
and pseudo values for the equilibrium constant, we obtain
abnormally high values for the majority of the derived param-
eters. Even though equilibrium constants can in principle be
obtained from standard chemical potentials, this result indicates
that the remaining uncertainty may be extremely large, and
pseudo values are an efficient way to limit the ranges of balanced
values.

Parameter balancing can also be applied to models of bigger
size. Due to the large amounts of data that are produced, the
result tables are not included in this publication. Instead, the
detailed kinetic data for the models of Teusink et al.?> (17
reactions, computing time 0.29 s), Hynne et al.?® (24 reactions,
computing time 0.50 s), and Jiang et al.?* (45 reactions,
computing time 2.32 s) can be found, downloaded, and used
on our Web site www.semanticsbml.org. Nevertheless, the rising
resource demands of bigger models can be a limiting factor. In
the Supporting Information, we discuss several possibilities to
break down the calculations into manageable pieces.

Discussion

The example of the phosphofructokinase reaction shows that
parameter balancing can produce consistent estimates on kinetic
constants in plausible ranges and close to available input data.
In the spirit of Bayesian statistics, we do not estimate the
unknowns by averaging over the data, but by fitting the data
with a statistical model; in our case, produced from the
dependence scheme. One advantage is that such a model can
handle not only uncertainties of individual quantities, but also
correlated uncertainties arising from parameter dependencies.
Of course, this approach strongly depends on the collected input
data and on the chosen prior distributions. In situations when
input data are missing, we found that pseudo constants can
significantly improve the results. As a side effect, balancing
will shift all the values—even if data are available for a certain
quantity—toward the center of the prior distribution and toward
the pseudo values, as can be seen in the example shown in
Tables 3 and 4. If this effect is unwanted, there are two
possibilities to avoid it: on one hand, experimental values can
be fixed by assigning small standard errors to them; on the other
hand, our workflow also provides the possibility to replace
unknown values by prior or pseudo values without further
balancing. This, however, will lead to inconsistent parameter
sets.

The median posterior values obtained from balancing can be
used as point estimates, but we can also sample parameter sets
from the posterior distribution. Studying models with sampled
parameters can be an emergency solution if few data are
available, but it is also a convenient way to explore the dynamics

in metabolic networks for a wide range of kinetic parameters
and to discern the influences of network structure and kinetics
on the dynamic behavior.

Parameter balancing is a general approach that could be
applied to any physical model as long as all parameters fit into
a linear dependence scheme. For kinetic models, we could
establish linear dependencies for most relevant quantities,
considering some of them on logarithmic scale. The choice of
model parameters to be balanced is not fixed, but can depend
on the specific situation (for a variety of possible variants, see
the Supporting Information). In the scheme presented here, the
equilibrium constants are derived from standard chemical
potentials, which allows us to incorporate data or predictions
of Gibbs free energies of formation; a general alternative, with
even fewer parameters, would be to express all equilibrium
constants by a set of independent equilibrium constants (see
the Supporting Information). However, since model identifi-
ability is guaranteed by the usage of prior distributions, keeping
the number of parameters small is usually not crucial.

Some of the constants (for instance, the inhibition constants)
are independent of all other parameters and could therefore be
balanced separately, but as long as the parameter set is not too
large, it turned out to be practical to account for all kinetic
constants and metabolic data in one large dependence matrix.
The reaction rates would be the most important target but do
not fit into the scheme. In the future, their signs and the
individual forward and backward rates could be used as input
data. Once a subset of the flux directions have been predefined,
available data on metabolite levels can directly contribute to
the balancing of kinetic constants and thereby improve the
estimation results.

Arguably, the most critical point in our approach is the use
of heterogeneous data from different sources. Ideally, all kinetic
constants used in a model should stem from measurements under
the same, standardized, nearly in vivo conditions. Since such
data are rarely available, modelers often need to utilize
heterogeneous data collected from literature and databases,
acknowledging that this may cause various problems. First,
kinetic constants measured in vitro and in vivo differ due to
different pH values, temperatures, salt concentrations, or other
factors. Although we attempt to take these conditions into
account, it may be difficult to apply corrections, since the exact
conditions in living cells are not known. Second, most kinetic
models neglect the complexity of the cell (e.g., molecular
crowding, channeling, inhomogeneous localization of enzymes).
Since the kinetic parameters in such models describe an effective
behavior (e.g., averaged over different cell compartments), they
will differ from the values measured in vitro. Third, there are
different conventions for reaction formulas (e.g., H" ions and
H,0 molecules may or may not be listed) and about the standard
concentration ¢® (in our case, 1 mM). Since the definition of
transformed equilibrium constants crucially depends on the
reaction formulas, it is important that model and data sources
use the same, appropriate conventions. Finally, if kinetic
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constants are taken from existing models, their values may
become invalid out of this specific context. Thus, especially
for poorly identifiable parameters, it is important to consider
the uncertainties in the original estimations.

Facing these difficulties, parameter balancing follows a
pragmatic approach: even if data have a low quality, we may
still use them as clues about unknown parameters. This is why
uncertainty ranges play a central role here. If a quantity has
been measured under the wrong conditions, we may account
for this by increasing its standard error. On one hand, this will
decrease the weight of this data point in the balancing process;
on the other hand, the uncertainty of all related balanced
parameters will increase, reflecting our precautionary approach.

In some cases, we may need to assign very small uncertainties
to some of the input data. For instance, if an SBML model
contains kinetic laws and we intend to replace only some of
them, we have to make sure that the new rate laws are
compatible with those pre-existing rate laws that will remain
in the model. As a key precondition, all equilibrium constants
in the resulting model need to satisfy the Wegscheider condi-
tions.”> To ensure this, one can determine the equilibrium
constants of the existing rate laws and use them as input data
(with zero standard error) in parameter balancing.

Due to the large uncertainties in standard chemical potentials
and metabolite concentrations, it is unlikely that models obtained
from parameter balancing will directly show realistic stationary
flux distributions. In the future, this could be enforced by a
subsequent fit to “omics” data'® or by predefining the signs of
reaction affinities. These signs will induce dependencies between
kinetic and metabolic quantities; for instance, between the
standard chemical potentials and the metabolite concentrations.
If several metabolic states are treated within the same depen-
dence scheme, the resulting method would resemble network-
embedded thermodynamic analysis®? and allow to use the results
of previous fluxome and metabolome analysis (by flux-balance
methods including thermodynamic constraints®>~*%) as input data
for parameter balancing.

Conclusions

Parameter balancing yields consistent and complete parameter
sets for kinetic models, as a potential starting point for further
modeling. It can integrate incomplete and contradictory input
data and respects constraints implied by common modeling
assumptions (standard rate laws; reactants in ideal, dilute
solution). If few input data are available, parameter balancing
can help to quantify the remaining uncertainties, whereas with
more and higher-quality data, the predictions become more
trustworthy and precise. The resulting posterior distribution can
be used to define parameter ranges, to sample possible parameter
sets, or to be reused as a prior for following rounds of parameter
balancing.
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