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Purpose: To investigate the effects and mechanisms of glucosamine (GlcN) on the proliferation of retinal pigment
epithelial cells in response to epidermal growth factor (EGF).
Methods: Cell proliferation was measured in the human retinal pigment epithelial cell line (ARPE-19) cells with the 4-
[3-(4iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) assay and cell counting. The
results were confirmed in human donor cells with the carboxyfluorescein diacetate succinimidyl ester cell proliferation
assay (CFSE) cell proliferation assay. In ARPE-19 cells, cell-cycle progression was determined by flow cytometry; the
protein levels of cell cycle regulators and heat shock protein 90 (Hsp90) were measured by western blotting; the levels
and branching of N-glycans were assessed using the L-Phaseolus vulgaris agglutinin lectin-binding assay; and the
modulation of N-glycans on EGF receptor (EGFR) was examined by western blotting.
Results: GlcN inhibited retinal pigment epithelium (RPE) proliferation in a dose-dependent manner. During cell-cycle
progression induced by EGF, GlcN caused delays at the G1–S and G2–M transitions without affecting cell viability. GlcN
modulated the level and branching of N-glycans on EGFR, suppressed phosphorylation of EGFR, and reduced
phosphorylation of extracellular signal-regulated kinases, erine/threonine protein kinase, and the signal transducer and
activator of transcription 3 (STAT3). GlcN had only minor effects on the expression of Hsp90, Grp78, and transcription
factor CHOP/GADD 153 markers of nonspecific stress in the endoplasmic reticulum.
Conclusions: GlcN effectively suppressed proliferation of RPE cells in vitro. This effect appeared to be achieved through
modification of N-glycans on EGFR. Further research into the role of GlcN as a potential agent for the prevention and
treatment of RPE-mediated ocular proliferative disorders, such as proliferative vitreoretinopathy, and other EGF-
dependent proliferative cell-growth disorders, is warranted.

Proliferative vitreoretinopathy (PVR) is the most
common cause of treatment failure in rhegmatogenous retinal
detachment [1]. The mechanisms underlying the pathogenesis
of PVR are unknown, but are presumed to include either
sustained or discordant growth-factor responses that
accelerate the proliferation, migration, and contraction of the
retinal pigment epithelium (RPE) [2]. Accumulating evidence
indicates that epidermal growth factor (EGF)–EGF receptor
(EGFR) signaling is involved in diverse cellular processes,
including the growth, differentiation, and survival of RPE
cells in vitro [3–9]. Furthermore, the activation of EGF–
EGFR signaling seems to be an important feature of the
pathogenesis of PVR [10–12].

Our previous studies have shown that glucosamine
(GlcN) has an anti-inflammatory effect in ocular

Correspondence to: Jiann-Torng Chen, Department of
Ophthalmology, Tri-Service General Hospital, National Defense
Medical Center. 325, Cheng-Kung Road, section 2, Taipei, Taiwan,
Republic of China; Phone: +886-2-87927163; FAX:
+886-2-87927164; email: jt66chen@ms32.hinet.net

inflammatory disorders [13,14]. In addition, GlcN has been
reported to inhibit the growth of various cell types [15].
Because GlcN is an inhibitor of the biosynthesis and
processing of N-linked oligosaccharides and causes dramatic
and reversible changes in the nature of the lipid-linked
oligosaccharides of glycoproteins [16], we hypothesized that
GlcN might exert an antiproliferative effect on human retinal
pigment epithelial cell line (ARPE)-19 cells and that reduced
branching and levels of N-glycans on surface growth-factor
receptors might be involved in the mechanism. Demonstrating
the validity of this hypothesis could provide support for the
use of GlcN as a potential agent for the prevention and
treatment of RPE-mediated ocular proliferative disorders,
such as PVR. The purpose of the study, therefore, was to
examine the effects and mechanism of action of GlcN on EGF-
induced proliferation, in vitro, in human donor cells and
ARPE-19 cells, respectively.

METHODS
Cell culture: ARPE-19 cells were obtained from the American
Type Culture Collection (Manassas, VA) and maintained in
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Dulbecco’s modified Eagle’s medium (F-12) supplemented
with 4 mM L-glutamine, 10% fetal bovine serum (FBS), 100
U/ml penicillin, and 100 mg/ml streptomycin at 37 °C in 5%
CO2 in air. The culture medium was replaced twice weekly.
Cytotoxicity assay: ARPE-19 cells were seeded into 24-well
plates at a density of 2×104 cells per well in 1 ml Dulbecco’s
modified Eagle’s medium and 10% FBS. The medium was
changed after 24 h, and GlcN was added in concentrations
between 0 mM and 140 mM. After 24 h, ARPE-19 cells were
trypsinized and stained with 2% trypan blue (1:1 vol/vol) for
5 min. Viable (unstained) and dead (stained) cells were
counted from each well by hemocytometer. Experiments were
performed in triplicate and repeated three times. At least 400
cells were counted in each well.
Proliferation assays:

4-[3-(4iodophenyl)-2-(4-nitrophenyl)-2H-5-
tetrazolio]-1,3-benzene disulfonate cell proliferation assay
—The cell proliferation test was based on the ready-to-use cell
proliferation reagent 4-[3-(4iodophenyl)-2-(4-
nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate
(WST-1; Roche Diagnostics, Indianapolis, IN). After
treatment for 48 h with various concentrations of GlcN in
serum-free medium with 10 ng/ml EGF stimulation, 10 μl of
WST-1 reagent were added to the medium in each well. The
cells were incubated in a humidified atmosphere at 37 °C in
5% CO2/95% air for 1 h, the multititer plate was shaken
thoroughly for 1 min, and absorbances were read at 450 nm.
The background absorbance was measured in wells
containing only the dye solution and culture medium. Cell
proliferation data were obtained from at least three
experiments with at least six wells at each concentration in
separate 96-well plates. The mean optical density values
corresponding to the untreated controls were taken as 100%.
The results were expressed as the percentage of the optical
density of treated cells relative to that of untreated controls.

Cell counting—During stimulation with 10% FBS or 10
ng/ml EGF, ARPE-19 cells were treated with 2.5 mM or 5 mM
GlcN for 1–5 days. At the end of the treatment period, the cells
were trypsinized and washed twice with ice-cold phosphate
buffer solution (PBS; 137 mM NaCl, 2.7 mM KCl, 100 mM
Na2HPO4, 2 mM KH2PO4, pH 7.4). For each sample, an
aliquot of cells was counted using a hemocytometer to
determine the cell number.

Carboxyfluorescein diacetate succinimidyl ester cell
proliferation assay—For staining with cell proliferation
assay (CFSE; Invitrogen/Molecular Probes, Eugene, OR),
1×107/ml human donor RPE cells in PBS were incubated at
37 °C for 15 min with 1.0 μM CFSE in 0.1% FBS/PBS. The
human donor RPE cells were obtained from the cryopreserved
cells used in our previous study [11]. Staining was terminated
by the addition of culture medium containing 10% FBS. The
cells were washed once in 10% FBS/PBS and resuspended in
culture medium at 2×106/ml. Stained cells (2×105/well,
100 μl) were cultured overnight in 60 mm dishes with culture

medium containing 20% FBS. The medium was then
exchanged with one containing 10 ng/ml EGF with 2.5 mM,
5.0 mM GlcN, or 30 mM glucose, and incubated for 3 days.
At the end of the treatment period, the cells were trypsinized
and analyzed on a FACScan flow cytometer (Becton,
Dickinson, & Co., Sunnyvale, CA).

The CFSE passively diffuses into cells. It is colorless and
nonfluorescent until the acetate groups are cleaved by
intracellular esterases to yield highly fluorescent
carboxyfluorescein succinimidyl ester. The succinimidyl
ester group reacts with intracellular amines, forming
fluorescent conjugates that are well retained and can be fixed
with aldehyde fixatives. The dye–protein adducts that form in
labeled cells are retained by the cells. The label is inherited
and shared by daughter cells after cell division, and is not
transferred to adjacent cells in a population. Therefore, the
cells undergoing the processes of cell division show gradually
decreasing intensity of fluorescence, and the lower level of
staining indicates a rapidly proliferating cell population.
Cell viability assays:

Detection of apoptosis—Apoptosis-mediated death of
GlcN-treated cells was examined by a double-staining method
with fluorescein isothiocyanate (FITC)-labeled annexin V
(Invitrogen, Carlsbad, CA)/propidium iodide (PI; Sigma-
Aldrich; St. Louis, MO). ARPE-19 cells were starved by
culture in serum-free medium for 24 h and then were
stimulated with EGF (with or without treatment with GlcN for
5 days). We changed the medium each day. After treatment
with 2.5 mM or 5.0 mM GlcN, the cells were trypsinized and
counted. A fraction of the cells (2×105) was collected by
centrifugation, and the pellet was washed twice with PBS. The
cell pellet was resuspended, incubated for 15 min in 100 μl of
labeling solution (5 μl of annexin V in 100 μl of Hepes buffer
[10 mM Hepes/NaOH pH 7.4, 140 mM NaCl, 5 mM CaCl2]),
then collected by centrifugation and washed twice with PBS.
Finally, 400 μl of Hepes buffer containing 2.5 μl of PI
(50 μg/ml) was added, and the samples were analyzed on a
FACScan flow cytometer.
Cell-cycle analysis: ARPE-19 cells were treated with GlcN
for 24 h in serum-free medium, and the cell cycle was arrested
by incubation for 24 h in culture medium containing
aphidicolin (1 μg/ml; Sigma-Aldrich). The cells were then
released from arrest by incubation in drug-free culture
medium containing 10 ng/ml EGF and harvested with trypsin
at various time points, washed twice with PBS, fixed in ice-
cold 70% (v/v) ethanol, and stored at 4 °C until use. Before
flow-cytometric analysis, the cells were washed with PBS and
centrifuged, and the cell pellets were resuspended in RNase
(1 mg/ml) for 30 min. The cells were then stained for 15 min
with PI in PBS (final concentration 40 μg/ml) before analysis
with a FACScan flow cytometer using CellQuest software
(Becton, Dickinson, & Co.)
Western blot analysis: At the end of the treatment period, the
cells were washed twice with PBS and detached by scraping.
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The cells were pelleted at 1000× g, resuspended, and sonicated
in cold lysis buffer (50 mM Tris-HCl [pH 7.5], 2% sodium
dodecyl sulfate [SDS], 1 mM phenylmethylsulfonyl fluoride,
and 10 μl/ml protease inhibitors). The lysates were
centrifuged at 12,000× g for 10 min, and the clear supernatant
was removed into fresh Eppendorf tubes. The total protein was
estimated using the Pierce bicinchoninic acid (BCA; Pierce,
Rockford, IL) protein assay. The samples (20 μg of lysate)
were then boiled for 5 min, loaded onto a sodium dodecyl
sulfate/10% polyacrylamide gel, separated
electrophoretically, and transferred to a polyvinylidene
difluoride (PVDF) membrane (Immobilon; Millipore Corp.,
Bedford, MA). The membranes were blocked with 5% (w/v)
milk in Tris-buffered saline (50 mM Tris.HCl, pH 7.4 and
150 mM NaCl) containing 0.05% Tween-20 (TBST) for 60–
120 min at room temperature on a shaking table. The blots
were incubated for 60 min at room temperature with primary
antibody against the following: cyclin A, cyclin D1, cyclin E,
retinoblastoma protein (Rb), p-RB (Ser 807/811), AKT,
phosphorylated AKT (Ser473), STAT3, phosphorylated
STAT3, and EGFR (all antibodies from BD PharMingen, San
Diego, CA); CDK2 and CDK4 (diluted 1:1,000 in TBST;
Santa Cruz Biotechnology, Santa Cruz, CA); ERK1, ERK2,
and phosphorylated ERK1/2 (diluted 1:2,000 in TBST; BD
PharMingen); Hsp27, Hsp70, and Hsp90 (diluted 1:1,000 in
TBST; Santa Cruz Biotechnology); Grp78 and CHOP-GADD
(diluted 1:1,000 in TBST; Santa Cruz Biotechnology); total
EGFR and active EGFR (diluted 1:1,000 in TBST; BD
PharMingen); β-catenin (diluted 1:2,000 in TBST; Santa Cruz
Biotechnology); or glyceraldehyde-3-phosphate
dehydrogenase (diluted 1:20,000 in TBST; Rockland
Immunochemicals, Gilbertsville, PA). After extensive
washing, the membranes were blotted with horseradish-
peroxidase-conjugated secondary antibody (1:1,000; Jackson
ImmunoResearch Laboratories, West Grove, PA) for 1 h at
room temperature. The peroxidase activity on the membrane
was visualized on X-ray film by a standard enhanced
chemiluminescence procedure.
Flow-cytometric analysis of EGFR activation:
Phosphorylated EGFR (p-EGFR) and total EGFR levels were
quantitatively measured by flow cytometry with BD Phosflow
reagents (BD Biosciences) according to the manufacturer’s
protocol. Briefly, 1×106 cells were cultured in serum-free
medium containing 30 mM glucose, 2.5 mM GlcN, or 5.0 mM
GlcN for 24 h. The cells were then stimulated with 10 ng/ml
EGF at 37 °C for 30 min and harvested with PBS-based
enzyme-free dissociation buffer (Invitrogen). After
centrifugation, the cell pellets were washed twice in PBS and
immediately fixed for 10 min at 37 °C by the addition of an
equal volume of Phosflow Fix Buffer I. After centrifugation,
the cells were permeabilized with 1 ml of BD Phosflow Perm
Buffer III, incubated for 30 min on ice, and washed twice with
stain buffer. The cell pellet was resuspended in 100 μl of stain
buffer containing the primary antibody. The following

primary antibodies were used: phycoerythrin (PE)-conjugated
anti-total-EGFR (cells were not permeabilized for total EGFR
detection) and Alexa-Fluor-647-conjugated anti-p-EGFR
(Y845; BD PharMingen). After incubation for 30 min in the
dark, the cells were washed twice with 1 mL of stain buffer
before analysis performed by FACScan flow cytometer.
Western blot analysis of EGFR activation: ARPE-19 cells
were cultured to 80% confluence. The medium was then
changed, and the cells were cultured with the addition of
2 μg/ml tunicamycin, 30 mM glucose, or 5 mM GlcN in
serum-free medium for a further 24 h. Then the cells were
stimulated with EGF for 5 min. At the final time point,
proteins contained in the whole cell lysates were analyzed by
western blotting.
Western blot analysis of β-catenin expression: ARPE-19 cells
were cultured to 80% confluence. The medium was then
changed, and the cells were cultured with the addition of
2.5 mM or 5 mM GlcN in serum-free medium for a further 24
h. Then the cells were stimulated with EGF for 24 h. At the
final time point, proteins contained in the whole cell lysates
were analyzed by western blotting with probes against β-
catenin.
Lectin-binding analysis: Phytohemagglutinin-L (L-PHA) is a
plant lectin that specifically binds β-1,6-GlcNAc-branched N-
glycans. Flow-cytometric measurement of L-PHA binding to
ARPE-19 cells was used to characterize the branching of N-
linked oligosaccharides on surface proteins. Cells with
increased metabolic flux through the hexosamine pathway
(i.e., treated with 30 mM N-acetyl-glucosamine [GlcNAc] or
30 mM glucose) were used as a positive control. Cells treated
with tunicamycin, an inhibitor of protein N-glycosylation,
were used as the negative control. ARPE-19 cells were
cultured to 80% confluence. The medium was then changed,
and the cells were cultured with the addition of 2 μg/ml
tunicamycin, 30 mM GlcNAc, 30 mM glucose, 2.5 mM GlcN,
or 5 mM GlcN in medium containing 10% FBS for a further
24 h. The cells were then harvested with PBS-based enzyme-
free dissociation buffer (Invitrogen). After centrifugation, the
cell pellets were rinsed, resuspended in PBS, and incubated
with FITC–L-PHA (10 μg/ml; Vector, Burlingame, CA) and
1% BSA (BSA) in PBS on ice for 15 min. After the cells had
been washed once with four volumes of 1% BSA/PBS, they
were analyzed on a FACScan flow cytometer.
Markers of stress in the endoplasmic reticulum: ARPE-19
cells were treated with 30 mM glucose, 5 mM GlcN, or 1 μM
thapsigargin as the positive control. The levels of expression
of Hsp90, Grp78, and CHOP-GADD were determined by
western blotting after treatment for 24 h and 48 h.
Statistical analysis: All data are expressed as mean±standard
deviation (SD). The difference in inhibition of ARPE-19 cell
proliferation after treatment with the various concentrations
of GlcN was compared with one-way ANOVA (ANOVA).
The ARPE-19 cell count observed at each day was also
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examined with one-way ANOVA. When significant results
were revealed by one-way ANOVA, post-hoc analyses were
performed with Tukey’s test. Linear regression analysis was
performed to test the time-trend of the cell count. In addition,
two-way ANOVA was performed to check whether the slopes
of the time-trend curves were different among the control cells
and among those treated with 2.5 mM and 5.0 mM GlcN. Two-

sided comparisons were implemented with SPSS 15.0
software (SPSS Inc., Chicago, IL) and evaluated at the 0.05
level of significance.

RESULTS
Cytotoxicity of glucosamine: The results of the trypan blue
exclusion assay to determine the lethal concentration (LC)50

Figure 1. Viability of human retinal
pigment epithelial cell line (ARPE-19)
cells and determination of the LC50

concentration in the presence of GlcN.
ARPE-19 cells were cultured in
Dulbecco’s modified Eagle’s medium
and 10% fetal bovine serum (FBS). The
medium was changed after 24 h, and
glucosamine (GlcN) was added in
concentrations between 0 mM and 140
mM. After 24 h, viability was
determined with 2% trypan blue. The
LC50 was 39.0 mM. An LC50 value is the
concentration of a material that will kill
50% of the test cells.

Figure 2. Inhibition of human retinal
pigment epithelial cell line (ARPE-19)
cell proliferation by glucosamine
(GlcN), measured with a colorimetric
test (WST-1) and cell counting. A:
ARPE-19 cells were cultured for 48 h at
different concentration of GlcN. The
proliferation results are expressed as a
mean percentage of control
proliferation. B: After 24 h culture, the
ARPE-19 cells were exposed to 2.5 mM
or 5.0 mM GlcN for 3 days. During this
time, the medium was not changed. The
ARPE-19 cells were exposed to 2.5 mM
or 5.0 mM GlcN with either 10% fetal
bovine serum (FBS; C) or 10 ng/ml
endothelial growth factor (EGF; D)
stimulation for 5 days (the medium with
fresh GlcN included was changed
daily). The results are the means±SD of
five independent experiments. The
difference in inhibition of ARPE-19 cell
proliferation among various
concentrations of GlcN was compared
with one-way ANOVA (ANOVA);
Tukey’s test was used for post-hoc
analyses. * p<0.05, ** p<0.01, and ***
p<0.001 versus the control.
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of GlcN are shown in Figure 1. The LC50 concentration was
39.0 mM, and approximately 3% and 6.5% cytotoxicity was
observed with concentrations of 2.5 mM and 5 mM,
respectively.
Suppression of epidermal growth factor-induced
proliferation of RPE cells by GlcN in vitro: As shown in
Figure 2A, cell proliferation was significantly lower in cells
treated with GlcN at concentrations of 1.0 mM or higher (all
p<0.05) than in control cells. The proliferation was reduced
by 3.4%, 14.3%, 26.3%, 34.5%, and 44.6% at 0.5 mM,
1.0 mM, 2.5 mM, 5.0 mM, and 10.0 mM GlcN, respectively.
The IC50 concentration was 13.6 mM (Figure 2A). All further

experiments were conducted with 2.5 mM and 5.0 mM GlcN
because these concentrations had a relatively large effect on
proliferation but were minimally cytotoxic.

To further explore the effects of GlcN on proliferation of
RPE cells, ARPE-19 cells were cultured in medium
containing 0, 2.5, or 5.0 mM GlcN for 3 days. The slope of
the growth curve decreased significantly during the first day
after treatment, but gradually returned to parallel the slope of
the control cells (Figure 2B). The uptake of GlcN by the cells
led to a reduced concentration of GlcN in the medium and a
tapering of the antiproliferative effect. Therefore, we changed
the medium (including fresh GlcN) each day and stimulated

Figure 3. Effects of glucosamine (GlcN)
on human retinal pigment epithelial cell
line (ARPE-19) cell viability shown by
calcein/PI flow cytometric analysis. A:
ARPE-19 cells were treated for 5 days
with 2.5 mM or 5.0 mM GlcN under
serum-free conditions, and apoptotic
cells were measured as the percentage of
annexin V-positive/PI-positive cells. B:
The quantitative data collected from the
fluorescent images are expressed as the
mean percentage±SD from three
individual experiments.

Figure 4. Effects of glucosamine (GlcN)
on epidermal growth factor (EGF)-
induced cell-cycle progression in
human retinal pigment epithelial cell
line (ARPE-19) cells. A: ARPE-19 cells
were deprived of serum for 24 h and then
harvested at the indicated times after
stimulation with 10 ng/ml EGF with or
without the addition of GlcN. B:
ARPE-19 cells were synchronized in
early S phase by serum deprivation and
aphidicolin treatment and harvested at
the indicated times after release from the
aphidicolin block by stimulation with 10
ng/ml EGF with or without the addition
of GlcN. The percentages of cells in the
G0–G1, S, and G2–M phases were
determined. The data are the means±SD
of three independent experiments.
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proliferation with 10% FBS (Figure 2C) or EGF (10 ng/ml,
Figure 2D). Except for the measurement at day 2, significant
differences in the number of cells among the three groups were
found (all p<0.05) after stimulation with EGF (Figure 2D). By
day 5 in the presence of EGF, the cell counts were reduced by
60.5% and 88% with 2.5 mM and 5.0 mM GlcN, respectively.

The antiproliferative effect of glucosamine is not related to
apoptosis: To investigate whether the antiproliferative effect
of GlcN was related to apoptosis, we used annexin V/PI
staining (Figure 3A,B) to measure apoptosis after 24 h of
treatment with 2.5 mM or 5.0 mM GlcN under serum-free
conditions. The results showed that GlcN did not induce
apoptosis in the ARPE-19 cells.

TABLE 1. PERCENTAGE OF HUMAN RETINAL PIGMENT EPITHELIAL CELL LINE (ARPE-19) CELLS IN EACH CELL-CYCLE WITHOUT
APHIDICOLIN TREATMENT (CELLS SYNCHRONIZED IN G0–G1)

Cell cycle phase EGF Mean±SD EGF+GlcN 2.5 mM Mean±SD EGF+GlcN 5.0 mM Mean±SD
G0/G1

0 h 77.57±3.88 81.06±4.05 63.67±3.18
6 h 80.33±4.02 69.13±3.46 65.51±3.28
12 h 75.87±3.79 84.74±4.24 77.89±3.89
18 h 42.86±2.14 62.58±3.13 75.65±3.78
24 h 68.66±3.43 55.18±2.76 64.34±3.22

S
0 h 8.24±0.41 7.2±0.36 21.18±1.06
6 h 6.44±0.32 14.48±0.72 18.22±0.91
12 h 14.52±0.73 9.65±0.48 12.68±0.63
18 h 36.21±1.81 28.75±1.44 16.61±0.83
24 h 11.0±0.55 24.89±1.24 28.46±1.42

G2/M
0 h 14.18±0.71 11.74±0.59 15.14±0.76
6 h 13.23±0.66 16.39±0.82 16.27±0.81
12 h 9.61±0.48 5.61±0.28 9.43±0.47
18 h 20.94±1.05 8.68±0.43 7.75±0.39
24 h 20.34±1.02 19.93±1 7.19±0.36

          Abbreviations: EGF represents epidermal growth factor; SD represents standard deviation.

TABLE 2. PERCENTAGE OF HUMAN RETINAL PIGMENT EPITHELIAL CELL LINE (ARPE-19) CELLS IN EACH CELL-CYCLE AFTER
RELEASE WITH APHIDICOLIN TREATMENT

Cell cycle phase EGF Mean±SD EGF+GlcN 2.5 mM Mean±SD EGF+GlcN 5.0 mM Mean±SD
G0/G1

0 h 79.2±3.96 80.66±4.03 82.01±4.1
4 h 25.5±1.27 22.43±1.12 23.27±1.16
8 h 42.09±2.1 29.05±1.45 25.29±1.26

12 h 77.72±3.89 76.63±3.83 60.99±3.05
S

0 h 15.54±0.78 11.66±0.58 9.13±0.46
4 h 55.95±2.8 67.42±3.37 70.79±3.54
8 h 8.03±0.4 25.57±1.28 30.46±1.52

12 h 12.69±0.63 5.95±0.3 9.41±0.47
G2/M

0 h 5.27±0.26 7.69±0.38 8.87±0.44
4 h 18.55±0.93 10.15±0.51 5.94±0.3
8 h 49.88±2.49 45.38±2.27 44.25±2.21

12 h 9.59±0.48 17.42±0.87 29.6±1.48

           Abbreviations: EGF represents epidermal growth factor; SD represents standard deviation.

Molecular Vision 2010; 16:2559-2571 <http://www.molvis.org/molvis/v16/a273> © 2010 Molecular Vision

2564

http://www.molvis.org/molvis/v16/a273


GlcN delays EGF-induced cell-cycle progression: We next
examined the effects of GlcN on the progression of RPE cells
through the cell cycle after the cells had been synchronized in
G0–G1 phase. At 18 h after stimulation with EGF, ~36% of the
ARPE-19 control cells had entered S phase, whereas ~29% of
the cells treated with 2.5 mM GlcN and only ~17% of the cells
treated with 5.0 mM GlcN had done so (Figure 4A and Table
1). At 24 h, ~20% of the control cells and the cells treated with
2.5 mM GlcN progressed to G2–M phase, although only ~25%
of the cells treated with 2.5 mM GlcN were still in S phase
(Figure 4A). In contrast, ~28% of the cells treated with
5.0 mM GlcN remained in S phase at 24 h, and very few
(<10%) had entered G2–M phase. A similar slowing of cell-

cycle progression was observed when the cells were
synchronized in S phase rather than G0–G1 phase (Figure 4B
and Table 2).

GlcN altered the expression of cyclins and p27: The effects
of GlcN on expression of several cyclins, cyclin-dependent
kinases (CDKs), and CDK inhibitors were detected; the
results are shown in Figure 5. After stimulation with EGF, a
marked immediate increase in the amount of cyclin D1 in the
control cells was noted, whereas expression of cyclin D1 was
delayed in the cells treated with GlcN. Treatment with GlcN
also caused the levels of cyclin E, which increase as cells enter
G1 phase and decline throughout M phase, to decline at a
slower rate than in control cells after stimulation with EGF.

Figure 5. Effects of glucosamine (GlcN)
on the expression of cell-cycle
regulators. Human retinal pigment
epithelial cell line (ARPE-19) cells were
deprived of serum for 24 h, stimulated
with 10 ng/ml epidermal growth factor
(EGF) with or without the addition of
GlcN for the indicated times, lysed, and
subjected to immunoblotting analysis
with antibodies directed against the
indicated proteins. The data are
representative of at least three
independent experiments.

Figure 6. Effects of GlcN on EGF-
stimulated phosphorylation of ERK,
AKT, and STAT3. Human retinal
pigment epithelial cell line (ARPE-19)
cells were pretreated with 2.5 mM or 5.0
mM glucosamine (GlcN) under serum-
free conditions for 24 h and incubated
for a further 30 min in the presence or
absence of 10 ng/ml epidermal growth
factor (EGF). The same blot was probed
with anti-phospho antibody or anti-total
antibodies for ERK, AKT, and STAT3.
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Stimulation with EGF induced expression of cyclin A, and
this was delayed in GlcN-treated cells in parallel with their
delayed entry into S phase. Degradation of the CDK inhibitor
p27 is required for cell progression through G0–G1 phase to S
phase. However, the abundance of this protein remained
higher in GlcN-treated cells than in control cells during their
progression through S and G2–M phases. The levels and time
courses of CDK2 and CDK4 expression were not affected by
treatment with GlcN. During the G1–S transition, the cyclin
D1–CDK4 complex and the cyclin E–CDK2 complex mediate
Rb hyperphosphorylation, which results in E2F release and
the transcription of growth-associated genes. The 807/811
phosphorylation sites of EGFR were examined because they
occur in the region of E2F/pRb binding and may play a key
role in the interaction between these two molecules. A reduced
level of hyperphosphorylated Rb was observed in the GlcN-
treated cells.
GlcN inhibited phosphorylation of ERK1/2, AKT, and STAT3:
As shown in Figure 6, stimulation of the control cells by EGF
resulted in enhanced phosphorylation of ERK1/2, AKT, and
STAT3. Preincubation of the cells with GlcN in the medium
diminished the EGF-dependent phosphorylation of ERK1/2,
AKT, and STAT3 in a dose-dependent manner.
GlcN suppressed EGF-induced increases in β-catenin: We
also performed western blot analysis to examine the effects of
GlcN on the EGF-induced expression in β-catenin (Figure 7).
GlcN had no effect on the expression of β-catenin in the
absence of EGF, but it effectively suppressed the increased
expression of β-catenin induced by EGF.
Inhibition of EGFR phosphorylation in GlcN-treated RPE
cells: Upon stimulation with EGF, the levels of
phosphorylation of EGFR observed on the surface of cells
treated with GlcN were lower than on the control cells (Figure
8A) and on cells that had been treated with 30 mM glucose as
a positive control. There also appeared to be a slightly reduced
level of total EGFR on the surface of the GlcN-treated cells
(Figure 8B). Western blot analysis of the levels of total and
phosphorylated EGFR (Figure 8C) showed a similar reduction
in the total and phosphorylated form of EGFR on the surface
after treatment with GlcN, whereas high levels of glucose

increased the expression and phosphorylation of EGFR.
Tunicamycin, on the other hand, had little effect on the total
EGFR but markedly reduced its phosphorylation.
Inhibition of N-Linked glycosylation in GlcN-treated RPE
cells: Compared with the positive control cells, which had
been treated with GlcNAc or glucose, cells cultured with GlcN
for 24 h showed decreased binding of L-PHA (Figure 9A). A
greater reduction in L-PHA binding was observed in the cells
treated with 5.0 mM GlcN than in those treated with 2.5 mM
GlcN (Figure 9B). Similarly, EGF receptors at 170 kDa (the
molecular mass corresponding to the glycosylated form) were
evident in the control cells as determined by western blotting;
and treatment with 30 mM glucose increased the level of 170-
kDa receptors after incubation for 24 h (Figure 9C). In
contrast, when the medium was changed to one containing
GlcN, a 145-kDa EGFR protein became increasingly apparent
in a dose-dependent manner. Finally, we observed that human
donor RPE cells with higher levels and greater branching of
N-glycans on EGFR proliferated more rapidly than did cells
with lower levels, as determined by staining with CFSE and
flow cytometry (Figure 9D).
Anti-proliferation effect of GlcN not from endoplasmic
reticulum stress: To determine whether the effects of
inhibition of N-Linked glycosylation of EGFR and anti-
proliferation in GlcN-treated RPE cells were due to GlcN-
induced nonspecific stress in the endoplasmic reticulum (ER),
we evaluated the expression of Hsp90, Hsp70, Hsp27, Grp78,
and CHOP-GADD (markers of stress in the ER) in GlcN-
treated ARPE-19 cells. Western blot analyses showed only
minor effects on the expression of Grp78, and CHOP-GADD
when cells were treated with 5 mM GlcN, in contrast to the
marked increases in their expression caused by treatment with
thapsigargin (TG) or 30 mM Glucose (Figure 10). The
expression of Hsp90 increased in the presence of 30 mM
glucose but not GlcN. The expression of Hsp70 and Hsp27
was scarcely affected by the addition of any of the stimulants.
These results indicated that at 5 mM, GlcN did not induce high
levels of ER stress in the RPE cells, which suggested that the
observed effects of GlcN on RPE cells were not nonspecific
effects from ER stress.

Figure 7. Glucosamine (GlcN)
suppressed epidermal growth factor
(EGF)-induced increases in β-catenin.
The human retinal pigment epithelial
cell line (ARPE-19) cells were cultured
to 80% confluence, treated with 2.5 mM
or 5 mM GlcN in serum-free medium for
24 h, then stimulated with EGF for
further 24 h and probed with antibody
against β-catenin.
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DISCUSSION
The purpose of this study was to test the hypothesis that GlcN
inhibits EGF-induced RPE proliferation, in vitro, and to

Figure 8. Effects of glucosamine (GlcN) on transactivation of
epidermal growth factor receptor (EGFR). Human retinal pigment
epithelial cell line (ARPE-19) cells were treated with 2.5 mM or 5.0
mM GlcN, or 30 mM glucose for 24 h, stimulated with 10 ng/ml
EGF, and stained with PE-conjugated anti-total-EGFR antibody and
Alexa-Fluor-647-conjugated anti-p-EGFR antibody (Y845). The
levels of phosphorylated (A) and total EGFR (B) were analyzed by
flow cytometry. The data are representative of at least three
independent experiments. Cells cultured under serum-free
conditions were used as the control. C: western blot analysis of
ARPE-19 cells cultured to 80% confluence; treated with 2 μg/ml
tunicamycin, 30 mM glucose, or 5 mM GlcN in serum-free medium
for a further 24 h; then stimulated with EGF for 5 min.

explore whether the branching and levels of N-glycans on
EGFR were involved in the mechanism. The results of the
present study demonstrated for the first time that treatment
with GlcN at concentrations of 2.5 mM and 5.0 mM
significantly suppressed the EGF-induced proliferation of
ARPE-19 cells in a dose-dependent manner, and slowed the
cell-cycle progression of ARPE-19 cells through the G1–S and
G2–M transitions without affecting cell viability. The
antiproliferative effects of GlcN were confirmed in human
donor cells. This study also provides evidence that GlcN
modulated the level and branching of N-glycans on EGFR,
suppressed EGFR transactivation, and reduced the
phosphorylation of ERK, AKT, and STAT3. Finally, we
demonstrated that GlcN mediated these effects through the
EGF–EGFR signaling pathway.

GlcN suppresses EGF-induced proliferation of ARPE-19
and human donor cells: Our findings with respect to the
activation of RPE cell proliferation are consistent with those
of previous studies, indicating that RPE cells are highly
responsive to EGF [4]. Khaliq et al. [9] showed that EGF could
stimulate the proliferation of RPE in vitro. Sugino et al. [8]
demonstrated that EGF and its signaling pathways are critical
factors that promote the survival, proliferation, adhesion, and
migration of RPE cells in models of age-related macular
degeneration. In addition, Chen et al. have shown that EGF
promoted expression of integrin-alpha(5) and the subsequent
proliferation and migration of ARPE-19 cells [12]. Our data
also show that GlcN effectively suppressed the proliferation
of ARPE-19 cells induced by EGF and added to the list of
cells, the proliferation of which has been shown to be
suppressed by GlcN [15].

GlcN suppresses proliferation of ARPE-19 cells by
delaying the cell cycle progression: The dose-dependent
suppression of EGF-induced proliferation of ARPE-19 cells
by GlcN observed in the present study could be partially
explained by an effect on the cell cycle mediated by EGF–
EGFR signaling. As we know, EGF is required for the G1–S
transition and DNA replication in different cell types [16,
17]. One study also found a novel EGF-sensitive checkpoint
at which EGF-dependent cells undergo delay in the G2–M
phase of the cell cycle before the activation of EGFR [18]. To
determine whether a nonspecific response to stress in the ER
contributed to the delay of cell growth, we examined the
expression of Hsp90, Grp78, and CHO-GADD, both markers
of ER stress. Our data showed that the expression of these
markers was only minimally altered in response to GlcN,
whereas their expression was markedly increased after
exposure of the cells to high concentrations of glucose or
thapsigargin. Although production of stress in the ER by GlcN
cannot be absolutely ruled out by our data, these results
suggest that the effects of GlcN did not produce high levels
of nonspecific effects in the ER.

GlcN delays expression of cyclins associated with
progression of the cell cycle: To gain a better insight into the
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mechanism responsible for the delay of cell-cycle progression
caused by GlcN, we evaluated its effects on several cyclins,
CDKs, and CDK inhibitors. In mammalian cells, mitogens
induce the expression of cyclin D and cyclin E, which are
sequentially assembled and activated with CDKs, and reduce
the amounts of the CDK inhibitor, p27, during G1. Cyclin D-
associated CDKs and the cyclin E–Cdk2 complex then
become active, phosphorylate, and inactivate Rb. After
release from the repression of Rb, E2F and its target genes,
such as those encoding cyclin A and several DNA replication
enzymes, are expressed. These events mediate cell-cycle
progression through G1 into S phase. Other studies have
demonstrated the growth-inhibitory effects of EGFR
inhibitors or anti-EGFR antibody [19]. We observed that
GlcN caused the delayed expression of cyclin A and cyclin E
and the delayed and prolonged expression of cyclin D, leading
to the accumulation of cells in G0–G1 phase, delayed cell-cycle
progression at the G1–S transition, and the reduced
degradation of p27 in ARPE-19 cells. GlcN-treated cells also
exhibited slowed progression through G2–M phase or delayed
mitosis after release from an aphidicolin block. These results

again suggest that GlcN affects EGF–EGFR signaling to
inhibit the proliferation of EGF-dependent cells.

GlcN reduces phosphorylation of EGFR and downstream
signaling molecules: The effects of EGFR signaling on cell
proliferation and survival are mediated by a complex network
of intermediates, including mitogen-activated protein kinase,
AKT, and STATs [20]. The binding of EGF to the
extracellular domain of EGFR induces dimerization of the
receptor and the activation of its intrinsic tyrosine kinase
activity, leading to receptor autophosphorylation and the
phosphorylation of tyrosine residues in various downstream
signaling molecules, including ERK1/2, AKT, STAT3, and
PKC [20]. Previous studies have shown that EGFR signaling
mediated by the MEK/ERK and PI3K/AKT pathways is
essential for RPE cell proliferation and survival [3]. One
molecule downstream from EGFR, STAT3, can trigger the
expression of target genes that are involved in cell-cycle
regulation, including cyclin D, p21, p27, and c-Myc [21].
Here, we have demonstrated that GlcN slightly reduced the
number of EGFR molecules on the surface of ARPE-19 cells
and greatly reduced their phosphorylation at the Y845 residue.
EGF is the most potent mitogen to cause the phosphorylation

Figure 9. Effects of glucosamine (GlcN)
on the expression of β-1,6-GlcNAc-
branched N-glycan in the human retinal
pigment epithelial cell line (ARPE-19)
cells and the regulation of ARPE-19 cell
proliferation by N-glycan branching.
ARPE-19 cells at 80% confluence were
treated with 2 μg/ml tunicamycin, 30
mM GlcNAc, 30 mM glucose, 2.5 mM
GlcN, or 5 mM GlcN for 24 h. The cells
were harvested, incubated with
fluorescein isothiocyanate (FITC)–L-
PHA (10 μg/ml), and L-PHA lectin
binding was analyzed by flow
cytometry. A: Binding of L-PHA lectin
to GlcN-treated cells are compared with
those in the positive (30 mM GlcNAc or
30 mM glucose) and negative
(tunicamycin) control cells. B: The
effect of GlcN on L-PHA lectin binding
is dose-dependent. Cells were cultured
in serum-free medium containing GlcN
(2.5 mM or 5.0 mM) or high glucose
(Glc, 30 mM) for 24 h. C: The
expression of epidermal growth factor
receptor (EGFR) in ARPE-19 cells
treated with 2.5 mM or 5.0 mM GlcN or
30 mM glucose analyzed by western
blot. D: CFSE staining of human donor
retinal pigment epithelium (RPE) with
various levels of N-glycan branching.
The data are representative of at least
three independent experiments.
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of Y845 [22]. Because EGF is the only mitogen we used to
stimulate ARPE-19 cell proliferation, there should be no other
nonEGFR ligands to influence the phosphorylation of the
EGFR Y845 residue. Our results showing that the
phosphorylation of the downstream molecules ERK, AKT,
and STAT3 in EGF-stimulated ARPE-19 cells was also
reduced, providing additional evidence that this EGFR
pathway was involved. The results of our assessment of the
inhibition of phosphorylation of STAT3 by GlcN are in good
agreement with those of Chesnokov et al. in human prostate
carcinoma cells, although GlcN induced apoptosis in that cell
line, an effect that was not observed in the RPE cells in our
study [15]. Our observation that GlcN can suppress the EGF-
induced increase in expression of β-catenin further supports
the conclusion that GlcN can effectively inhibit EGF–EGFR
signaling.

GlcN regulates EGF effects by modifying N-linked
glycosylation on EGFR: N-linked oligosaccharides are crucial
for the surface levels and functions of membrane-bound
receptors for growth factors and cytokines [23]. The number
and complex degree of the branching of N-glycans cooperate
to regulate cell proliferation and differentiation [24]. Human
EGFR contains 12 typical N-glycosylation consensus sites. N-
glycan functions have also been extensively investigated,
showing their involvement in receptor sorting, ligand binding,
and dimerization [18]. Because GlcN is an inhibitor of the
biosynthesis and processing of N-linked oligosaccharides,
and because it causes dramatic and reversible changes in the
nature of the lipid-linked oligosaccharides of glycoproteins
[16], we hypothesized that reduction in the branching and
levels of N-glycans on surface growth-factor receptors is a
possible mechanism of action by which GlcN exerts its
antiproliferative effect on ARPE-19 cells. Therefore, in the

present study, we evaluated the N-glycosylation of EGFR by
determining its binding of L-PHA, a plant lectin that
specifically binds β-1,6-GlcNAc-branched N-glycans, and its
molecular mass, which changes in a manner dependent on
levels of N-glycosylation [21]. We have demonstrated for the
first time that GlcN diminishes β-1,6-GlcNAc-branched N-
glycan expression in a dose-dependent manner and modulates
EGFR transactivation by reducing the level of N-glycans on
EGFR.

Possible mechanisms of action of GlcN: It has been
known for some time that GlcN alters the protein and
nucleotide contents of cells [25], disrupts the structure and
function of the cellular membrane system [26], and modulates
the levels of plasma-membrane gangliosides [27]. However,
the mechanism for the antiproliferative effect of GlcN is
incompletely understood; and the complexity of the pathways
that regulate proliferation and the varying responses of
different cell types to GlcN suggest that more than one
pathway may be involved in its mechanism of action. Our
study extends our knowledge about the mechanisms by which
GlcN exerts its effects by demonstrating that, at least in these
ARPE-19 cells, it modulates the levels and branching of N-
glycans on the EGFR and inhibits EGFR transactivation and
the downstream phosphorylation of STAT3, ERK, and AKT
after stimulation with EGF.

Limitations of the study: We confirmed the
antiproliferative effects of GlcN in human donor cells; but we
used ARPE-19 cells for the other experiments, such as the
protein expression and lectin binding assays, because they are
easier to culture than primary human cells. We should point
out that although this cell line has been widely used for
experiments on RPE cells, several studies have shown that the
properties of ARPE-19 cells vary, depending on culture

Figure 10. Effects of glucosamine
(GlcN) on the expression of
endoplasmic reticulum (ER) stress
markers, Hsp27, Hsp70, Hsp90, Grp78,
and CHOP-GADD. Human retinal
pigment epithelial cell line (ARPE-19)
cells were treated with 5 mM GlcN, 30
mM glucose or 1 μm thapsigargin (TG),
a pharmacological ER stress inducers as
a positive control, for 24 or 48 h. The
expression of ER stress markers in
ARPE-19 cells was analyzed by western
blot.
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conditions [28,29]. This variability extends to the
transcriptome of ARPE-19 cells [30], which is different from
those of native adult, native fetal, and cultured fetal RPE cells,
with 74 of 150 signature genes expressed at lower levels in
ARPE-19 cells than in adult native RPE cells [31,32].
Therefore, our results should be considered provisional until
they can be repeated with cultures of nontransformed human
RPE cells. In addition, because the experiments described in
this report have all been performed in vitro, further
investigation is required to determine whether the results we
have observed are confirmed in vivo.

Conclusions: The results of our study may have bearing
on the pathogenesis and treatment of PVR. Both previous
findings and our own strongly suggest that EGF, which
activates the EGFR signal transduction pathway, plays a key
role in the pathogenesis of PVR. We have shown that GlcN
can suppress the proliferation of RPE cells, the main target
cells for the treatment of PVR. Our data support the hypothesis
that GlcN effectively suppresses the EGF-induced
proliferation of ARPE-19 cells through modulation of the
branching and levels of N-glycans on surface proteins,
including EGFR, and the inhibition of EGFR transactivation.
The results of our in vitro investigation suggest the possibility
that GlcN might play a role in the clinic as an agent for the
treatment or prevention of RPE-mediated ocular proliferative
disorders, such as PVR, and other EGF-dependent
proliferative cell-growth disorders. Further research into this
possible clinical application of GlcN is warranted.
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