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Abstract
Mood disorders such as bipolar disorder and major depressive disorder are common, chronic, and
recurrent conditions affecting millions of individuals worldwide. Existing antidepressants and
mood stabilizers used to treat these disorders are insufficient for many. Patients continue to have
low remission rates, delayed onset of action, residual subsyndromal symptoms, and relapses. New
therapeutic agents able to exert faster and sustained antidepressant or mood-stabilizing effects are
urgently needed to treat these disorders. In this context, the glutamatergic system has been
implicated in the pathophysiology of mood disorders in unique clinical and neurobiological ways.
In addition to evidence confirming the role of the glutamatergic modulators riluzole and ketamine
as proof-of-concept agents in this system, trials with diverse glutamatergic modulators are under
way. Overall, this system holds considerable promise for developing the next generation of novel
therapeutics for the treatment of bipolar disorder and major depressive disorder.
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INTRODUCTION
Mood disorders such as bipolar disorder (BPD) and major depressive disorder (MDD) are
chronic, disabling psychiatric disorders generally associated with unfavorable outcome and
impairment in diverse areas.1 Indeed, the World Health Organization's (WHO) Global
Burden of Disease projects that mood disorders will be the leading cause of disability
worldwide within the next decade.2 Furthermore, available therapeutic options for the
treatment of mood disorders are often insufficient for effectively managing the acute
episodes, relapses, and recurrences that are the hallmarks of these disorders, or for restoring
premorbid functioning.3,4 Consequently, increased rates of recurrences and persistent
subsyndromal depressive symptoms, functional impairment, cognitive deficits, and disability
are commonly present.5–7 It is estimated that less than one-third of patients with MDD
achieve remission with an adequate trial of a standard antidepressant after 10–14 weeks of
treatment.6,8 The situation is similarly sobering for BPD, where a sizable proportion of
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patients fail to respond to or tolerate currently available therapeutics, especially for the
treatment and maintenance of bipolar depression.6,9 The presence of unpleasant side effects
may also limit adherence in subjects with mood disorders.10

There is consequently a critical, unmet need to both identify and test novel drug targets for
mood disorders in order to develop more effective treatments. It is a critical public health
concern that the next generation of treatments for mood disorders be more effective, better
tolerated, and more rapidly acting than currently available medications, which have
predominantly targeted the monoaminergic system.4 This article reviews the diverse
findings implicating the glutamatergic system in the pathophysiology of mood disorders,
and examines that system's promise for developing the next generation of novel therapeutics.

THE FUNCTIONAL AND DYSFUNCTIONAL GLUTAMATERGIC SYSTEM IN
MOOD DISORDERS

Glutamate is the most abundant excitatory neurotransmitter in the brain. It acts on three
different cell compartments—presynaptic neurons, postsynaptic neurons, and glia—that
characterize the “tripartite glutamatergic synapse”11 (see Figure 1). This integrated,
neuronal-glial synapse is complex and directly involves the release, up-take, and inactivation
of glutamate by different glutamate receptors (see text box) and other targets with potential
clinical relevance, such as voltage-dependent ion channels and amino acid transporters.

Since the initial identification of glutamate as a neuro-transmitter in 1959, many studies
have provided important insights into the role of the glutamatergic system in the
pathophysiology and therapeutics of psychiatric disorders. The involvement of the
glutamatergic system in mood disorders was first proposed based on preclinical data with N-
methyl-D-aspartate (NMDA) antagonists.12 Early studies showed altered glutamate levels in
serum and cerebrospinal fluid from patients with mood disorders (reviewed in Machado-
Vieira R et al.).13

In the last decade, accumulating evidence from diverse studies suggests that the
glutamatergic system plays a critical role in both MDD and BPD. Postmortem studies
describe altered glutamate levels in diverse brain areas in individuals with mood disorders.
14,15 In addition, elevated glutamate levels in the occipital cortex and decreased levels in the
anterior cingulate cortex appear to be the most consistent findings in nuclear magnetic
resonance spectroscopy studies of individuals with mood disorders.16–18 It is important to
note that dysfunctions in glutamate levels and regulation are more complex than the
simplistic view of either increased or decreased levels associated with mood disorders;
indeed, both higher and lower levels have been described in different brain areas by imaging
studies.16,17 Recently, magnetic resonance spectroscopy data evaluating gluta-mate/
glutamine levels—which indirectly assess activity of the neuronal-glial cycle—have also
provided important new insights into its dynamic regulation in mood disorders. Notably, the
glutamate-glutamine cycle plays a critical role in the regulation of synaptic plasticity,
learning, and memory.19

Broadly, synaptic plasticity refers to the cellular process that results in lasting changes in the
efficacy of neuro-transmission. More specifically, it refers to the variability of the strength
of a signal transmitted through a synapse.20 Neuroplasticity is a broader term that includes
changes in intracellular signaling cascades and gene regulation,21 modifications of synaptic
number and strength, variations in neurotransmitter release, modeling of axonal and
dendritic architecture, and, in some areas of the central nervous system, the generation of
new neurons. In recent years, research has linked mood disorders with structural and
functional impairments related to neuroplasticity in various regions of the central nervous
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system.22 Thus, agents capable of increasing cellular resilience within the complex and
interconnected dynamics between glutamate release and uptake in the tripartite
glutamatergic synapse, while concomitantly targeting downstream signaling pathways
involved in neuroplasticity, are promising novel therapeutics for the treatment of mood
disorders. Here, we describe recent findings regarding glutamatergic-based novel
therapeutics for mood disorders; these treatments target glutamate receptors, ionic channels,
transporters, and postsynaptic proteins that regulate intra- and intercellular glutamate
dynamics (Figure 1).

Excitatory Amino Acid Transporters and Vesicular Glutamate Transporters
Glutamate clearance from the extracellular space takes place mostly through the high-
affinity excitatory amino acid transporters (EAATs). Decreased expression of diverse
EAATs has been observed in postmortem studies of subjects with mood disorders (Figure
1),23,24 and increased expression of these transporters (e.g., as induced by ß-lactam
antibiotics) has been found to induce antidepressant-like effects.25–27 Mood stabilizers such
as valproate and lamotrigine also similarly upregulate EAAT activity,28,29 albeit through a
potentially different mechanism. In contrast, EAAT antagonism induced depressive effects
and altered circadian activity in preclinical models.26,30

Regarding the role of vesicular glutamate transporters (VGLUTs) in mood disorders, a
recent postmortem study noted significantly decreased VGLUT1 mRNA expression in both
MDD and BPD patients.31 Similarly, reduced VGLUT1 expression has been associated with
increased anxiety, depressive-like behaviors, and impaired long-term memory.32 Preclinical
studies have found that diverse antidepressants increase VGLUT expression in the limbic
system,32,33 and a similar effect was observed after lithium treatment34—a mechanism that
may be involved in lithium's protective effects against glutamate-induced excitotoxicity.35

Diverse compounds that target VGLUTs are now in development.36 This novel class of
compounds is expected to induce therapeutic effects by buffering increased glutamatergic
release.

Ionotropic Glutamate Receptors
Several studies have shown that ionotropic glutamate receptors play an important role in
mood regulation. The NMDA receptors (NMDARs) have a slower and more prolonged
postsynaptic current than the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate
(AMPA)/kainate receptors, but all ionotropic glutamate receptors exhibit fast receptor
deactivation and dissociation of glutamate. These cellular effects may underlie the specific
therapeutic profile of AMPA and NMDA modulators, mostly characterized by their rapid
antidepressant effects.4 It has recently been proposed that both NMDA antagonism and
AMPA receptor (AMPAR) activation are involved in ketamine's rapid antidepressant effects
(see below for a more detailed discussion). Given the ability of AMPARs to induce a more
rapid dissociation of glutamate, the proper balance in this dynamic and complex turnover
may account for ketamine's unique therapeutic effects.

With regard to dysregulation of AMPARs, decreased levels of AMPAR subunits (glutamate
receptor [GluR] 1, GluR2, and GluR3; see text box) have been reported in the prefrontal
cortex and striatum of subjects with mood disorders.14,15,37,38 Also, abnormal
metabotropic (m) GluR3 expression has been reported in suicidal subjects with BPD—a
finding that was not replicated in a subsequent study.39,40 In line with these results,
transgenic animals with lower GluR1 expression exhibit increased depressive-like
behaviors.41
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Therapeutically, AMPAR potentiators have been tested in various neuropsychiatric
disorders and are a promising new class of agents for the treatment of mood disorders.42

AMPAR potentiators include benzothiazides (e.g., cyclothiazide), benzoylpiperidines (e.g.,
CX-516), and birylpropylsulfonamides (e.g., LY392098).43,44 These agents play a key role
in modulating activity-dependent synaptic strength and behavioral plasticity.45 Furthermore,
several preclinical studies found that the antidepressant-like effects of some AMPAR
potentiators were also associated with improved cognitive functioning (reviewed in Miu et
al.,43 Black,46 Lynch,47 and O'Neill et al.).48 In contrast to the antidepressant-like
properties seen with AMPAR potentiators, AMPAR antagonists (e.g., the anticonvulsant
talam-panel) are believed to have antimanic properties. To date, no placebo-controlled
clinical trials with AMPAR potentiators for the treatment of depression or AMPA
antagonists for the treatment of mania have been published.

Regarding the role of NMDARs in mood disorders, a series of elegant studies conducted
over a decade ago used tricyclic antidepressants to demonstrate that NMDARs may
represent a final common pathway of antidepressant action, one that is particularly
associated with faster onset.49,50 Building on these findings, studies have described altered
NMDAR binding and expression in individuals with MDD and BPD.23,24,37,51–53 Also,
polymorphisms of GRIN1, GRIN2A, and GRIN2B (see text box) have been shown to confer
susceptibility to BPD,54–56 further supporting a role for these targets in the pathophysiology
of this disorder.

Diverse preclinical and clinical studies have found that NMDA antagonists produce rapid
antidepressant effects.57–61 For instance, one preclinical study observed antidepressant-like
effects with a selective NMDAR-2B antagonist,57 and other brain-penetrant NMDAR-2B
antagonists are currently in development.62,63 These pre-clinical findings are supported by a
recent, double-blind, randomized, placebo-controlled clinical trial evaluating the
NMDAR-2B subunit−selective antagonist CP-101,606, which induced significant and
relatively rapid antidepressant effects (by day 5) in patients with treatment-resistant MDD,
but with evidence of psychomimetic properties.64 Additional clinical studies with
NMDR-2A and -2B antagonists in MDD are under way.

It is important to mention that while dramatic clinical therapeutic effects were observed with
the high-affinity NMDA antagonist ketamine in MDD (see below), a placebo-controlled
study of the low-to-moderate affinity, noncompetitive NMDA antagonist memantine (oral
dosing) found no antidepressant effects.65 These findings suggest that high affinity and IV
administration may be key factors for achieving rapid antidepressant effects with this class
of agents.

Kainate receptors activate postsynaptic inhibitory neurotransmission. These effects play a
crucial role in calcium metabolism, synaptic strength, and oxidative stress, all of which are
associated with the pathophysiology of MDD and BPD.11,66 A recent, large, family-based
association study evaluating the kainate GRIK3 gene described linkage disequilibrium in
MDD.67 Likewise, elevated GRIK3 DNA-copy number was observed in individuals with
BPD;68 relatedly, a common variant in the 3'UTR GRIK4 gene was found to protect against
BPD.69 Interestingly, the Sequenced Treatment Alternatives to Relieve Depression
(STAR*D) and Munich Antidepressant Response Signature (MARS) projects described an
association between treatment-emergent suicidal ideation and the glutamate system via the
involvement of the GRIA3 and GRIK2 genes.70,71 A recent study also found that individuals
with MDD who had a GRIK4 gene polymorphism (rs1954787) were more likely to respond
to treatment with the antidepressant citalopram.72 In preclinical studies, GluR6 knockout
mice displayed increased risk-taking and aggressive behaviors, as well as hyperactivity, in
response to amphetamine—manic-like behaviors that decreased after chronic lithium
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treatment.73 These promising findings have led to increased interest in developing kainite
receptor modulators, but, to date, no such compounds have been evaluated in the treatment
of mood disorders.

Metabotropic Glutamate Receptors
Genetically-induced decreases in expression of mGluRs and agents that target mGluRs—
especially Group II and III mGluR modulators—have consistently been found to induce
anxiolytic, antidepressant, and neuroprotective effects in preclinical models.74–80 In
particular, Group I and II mGluR antagonists such as MPEP (2-methyl-6-[phenylethynyl]-
pyridine) and MGS-0039 had antidepressant-like and neuroprotective effects in animal
models.81–84 Similar effects were observed with selective Group III mGluR agonists.
77,79,85 Several compounds that modulate mGluRs are currently under development for
treating MDD.

Postsynaptic Density Proteins
Other potentially relevant targets involving the glutamatergic synapse include the
postsynaptic density (PSD) proteins. These proteins (PSD95, SAP102, and others), which
interact with ionotropic glutamate receptors at the synaptic membrane, modulate receptor
activity and signal transduction. For instance, NMDAR activation interacts directly with
PSD95, thereby playing a critical role in the regulation of membrane trafficking, clustering,
and downstream signaling events. In mood disorders, decreased PSD95 levels were
observed in the dentate gyrus of individuals with BPD.53 In individuals with MDD, PSD95
levels were found to be significantly increased in the limbic system.86 SAP102, which
interacts primarily with the NMDAR-2B subunit, has been shown to decrease NMDAR-2B
subunit expression in individuals with mood disorders, a finding that was correlated with
decreased expression of NMDAR subunits in the limbic system.24,87,88 While these
findings suggest that PSD proteins may interact with NMDARs in the pathophysiology of
mood disorders, currently no compounds specifically targeting PSD proteins have been
developed.

RILUZOLE AND KETAMINE: PROTOTYPES FOR NEW, IMPROVED
GLUTAMATERGIC MODULATORS FOR TREATING MOOD DISORDERS
Riluzole

The glutamatergic modulator riluzole is currently approved by the U.S. Food and Drug
Administration for treating amyotrophic lateral sclerosis. It has both neuroprotective and
anticonvulsant properties due to its ability to inhibit glutamate release and enhance both
glutamate reuptake and AMPA trafficking.89 Studies have also shown that it protects glial
cells against glutamate excitotoxicity.90

Riluzole's antidepressant effects have been investigated in open-label studies. In the first
study, 19 patients (68%) with treatment-resistant MDD completed the trial, and all showed
significant improvement at week 6.91 In the second study, 14 patients with bipolar
depression received riluzole adjunctively with lithium; they experienced a 60% overall
decrease in Montgomery-Åsberg Depression Rating Scale scores across the eight weeks of
treatment and a significant improvement on that scale by week 5.92 In another study,
riluzole (50mg/twice daily) was tested as add-on therapy in individuals with MDD;
significant antidepressant effects were noted after one week of treatment, with a
considerable decrease (36%) in Hamilton Depression Rating Scale scores observed among
completers.93 Open-label trials also suggest that riluzole may be effective in treating
generalized anxiety disorder and obsessive-compulsive disorder.94,95 Double-blind,
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placebo-controlled clinical trials are necessary to confirm the promising findings of these
open-label studies.

In addition to the clinical evidence, animal studies have shown that long-term use of riluzole
induces antidepressant- and antimanic-like behaviors in rodents.96,97 It is important to note,
however, that despite its efficacy, no evidence suggests that riluzole acts more rapidly than
existing antidepressants, though it may be a reasonable therapeutic option in treatment-
resistant cases.

Ketamine
The noncompetitive, high-affinity NMDA antagonist ketamine is a phencyclidine derivative
that prevents excess calcium influx and cellular damage by antagonizing NMDARs. In vitro,
ketamine increases the firing rate of glutamatergic neurons and the presynaptic release of
glutamate.98 Some of these properties are believed to be involved in the compound's
antidepressant effects. AMPAR activation has also been shown to mediate ketamine's
antidepressant-like effects.57 See Figure 2.

Similar to other NMDAR antagonists,99 ketamine induced antidepressant and anxiolytic
effects in diverse pre-clinical studies.57,100–103 An initial clinical study found that seven
subjects with treatment-resistant MDD had improved depressive symptoms within 72 hours
of ketamine infusion.104 Subsequently, a double-blind, placebo-controlled, crossover study
showed a fast (first two hours after infusion) and relatively sustained antidepressant effect
(one to two weeks) after a single ketamine infusion in treatment-resistant patients with
MDD.61 More than 70% of patients responded within 24 hours after infusion, and 35%
maintained a sustained response at the end of week 1. Notably, the response rates obtained
with ketamine after 24 hours (71%) were similar to those described after six to eight weeks
of treatment with traditional monoaminergic-based antidepressants (65%).105,106 These
findings were subsequently replicated in a different cohort of 26 subjects with treatment-
resistant MDD.107

A recent study found that ketamine was also associated with robust and rapid antisuicidal
effects.108 Thirty-three subjects with treatment-resistant MDD received a single open-label
infusion of ketamine (0.5 mg/kg). Patients were rated at baseline, 40, 80, 120, and 230
minutes post-infusion using the Scale for Suicide Ideation. Scores significantly decreased
within 40 minutes of ketamine infusion and remained improved for up to four hours post-
infusion. In another study, early antisuicidal effects (within one day) were found with
ketamine, and these effects remained significant for several weeks.109 Due to the public
health implications of this finding, future studies evaluating ketamine's effect on suicidal
ideation are warranted. Interestingly, ketamine infusion has also been associated with rapid
antidepressant effects during pre- and postoperative states110,111 in patients with
depression comorbid with pain syndrome or alcohol dependence,112,113 as well as during a
course of electroconvulsive therapy.114 Despite these intriguing findings, its sedative and
psychotomimetic side effects may limit its clinical use.115 Although misuse and abuse of
therapeutically relevant agents in psychiatry are not new phenomena (e.g., as has occurred
with benzodiazepines, anticholinergic drugs, and stimulants), an additional limitation of
ketamine as a therapeutic agent is that it is one of several abusable “club drugs.”

Alcohol dependence increases NMDAR expression and induces cross-tolerance with
NMDAR antagonists. Previous clinical studies found that, compared to healthy controls,
subjects with alcohol dependence had fewer perceptual alterations and decreased dysphoric
mood during ketamine infusion.116 This attenuation of ketamine-induced perceptual
alterations was also observed in healthy individuals with a positive family history of alcohol
dependence.117 In line with these findings, a recent study from our laboratory found that
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patients with MDD who had a family history of alcohol dependence had a better short-term
outcome (greater and faster improvement in depressive symptoms) after ketamine infusion
than subjects with no family history of alcohol dependence.107 It is also interesting to note
that a recent study found that genetic variations in the NMDAR-2A gene are directly
associated with alcohol dependence.118 Thus, the potential mechanisms underlying this
different antidepressant response to ketamine in individuals with alcoholism may involve
genetic differences in NMDA subunits, particularly NMDAR-2A binding, which is affected
by chronic ethanol exposure.119,120

Other predictors of ketamine response have also been assessed. One recent study tested the
hypothesis that magnetoencephalography recordings could provide a neurophysiological
biomarker associated with ketamine's rapid antidepressant effects. Indeed, increased
pretreatment rostral anterior cingulate cortex activity was found to be positively correlated
with rapid antidepressant response to ketamine infusion in 11 MDD patients versus healthy
controls.121 Other studies have shown that anterior cingulate cortex activation predicts
improved antidepressant response to electroconvulsive therapy, repetitive transcranial
magnetic stimulation, deep brain stimulation, and sleep deprivation.122–126 Another study
investigating the putative link between brain-derived neurotrophic factor (BDNF) and
ketamine found no association between ketamine's rapid antidepressant effects and plasma
BDNF levels, which showed no change from baseline to 230 minutes post-infusion, a time
point when antidepressant response is usually present.127

Finally, at the cellular level, ketamine's antidepressant-like effects were found to be
selectively abolished using an AMPA antagonist (NBQX) prior to infusion—an effect not
observed with imipramine.57 Thus, in humans, it is possible that ketamine's antidepressant
effects are mediated via AMPAR activation and not critically through NMDAR antagonism.
In contrast, the delayed effects induced by standard monoaminergic antidepressants occur
via intracellular signaling changes,45 which might explain their differing time of onset.

FINAL REMARKS
Because monoaminergic antidepressants take weeks to achieve their full effect, patients
receiving these medications remain vulnerable to impaired global functioning and are at
high risk of self-harm. This long, risky period of latency in MDD, as well as the persistent
residual symptoms, low rates of remission, and frequent relapses associated with currently
available therapeutics, is a challenge that needs to be better addressed by the next generation
of medications to treat this disorder. Available therapeutics for BPD are similarly not always
well tolerated or effective—particularly in the treatment of bipolar depression.

While glutamatergic system abnormalities have been associated with mood disorders, the
magnitude and extent of these abnormalities require further clarification. An improved
understanding of the function, anatomy, and localization of different glutamatergic receptors
in the brain would help to develop the subunit-selective agents necessary for producing
improved therapeutics. Studies assessing the impact of novel glutamatergic treatments for
mood disorders are under way; at least some of these agents are expected to work more
quickly, and to be more effective and better tolerated, than current medications. An
increasing number of proof-of-principle studies have also attempted to identify relevant
therapeutic targets; riluzole and ketamine, for instance, are both being used in such research.

Despite the recent advances in our knowledge, future studies investigating the efficacy,
safety, and potential mechanisms involved in the faster and potentially sustained
antidepressant actions of new glutamatergic modulators are necessary. The development of
such new, safe, and effective agents for the treatment of mood disorders would have an
enormous and significant impact on public health worldwide.
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Figure 1.
The tripartite glutamatergic synapse in mood disorders. The glutamate-glutamine cycle plays
a key role in the regulation of pre- and postsynaptic ionic and metabotropic glutamate
receptors that have been implicated in the pathophysiology of mood disorders. Glutamate is
transformed into glutamine in glial cells and returns to the presynaptic neuron, where it is
reconverted to glutamate. There, it induces several biological effects, mostly by activating
ionic channels (especially calcium and sodium) and metabotropic mGluR2/3. In the
postsynaptic glutamate neuron, AMPA receptor insertion and trafficking directly regulate
plasticity and neurotransmission. Similarly, kainate receptors have been shown to critically
regulate neuromodulation. Group II mGluRs are present in the pre- and postsynaptic neuron,
interacting with glial cells. These receptors decrease NMDA receptor activity and the risk of
cellular excitotoxicity. Also potentially relevant to the pathophysiology and therapeutics of
mood disorders are the vesicular Glu transporters, voltage-dependent ionic channels, and
SNARE proteins that directly control both glutamate levels in the synaptic cleft and the
activation of glutamatergic receptors. Moreover, high-affinity, excitatory amino acid
transporters, present mainly in glial cells, control synaptic levels of glutamate and the
activation of ionotropic receptors, which regulate the activity of PSD proteins. AMPA, -
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; EAATs, excitatory amino acid
transporters; mGluRs, metabotropic Glu receptors; NMDA, N-methyl-D-aspartate; PSD,
postsynaptic density; PSVR, presynaptic voltage-operated release; SNARE, soluble N-
ethylmaleimide–sensitive factor attachment receptor; VGLUT, vesicular glutamate
transporter; VOCC, voltage-operated/dependent calcium channel.
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Figure 2.
Biological correlates of ketamine's antidepressant effects. BDNF does not appear to be
involved in ketamine's rapid antidepressant effects; however, AMPA relative to NMDA
throughput and its potential effects targeting at the PSD may represent a relevant mechanism
by which ketamine induces these therapeutic effects. In particular, NR2A and NR2B
receptors are believed to mediate these rapid antidepressant effects. Rostral anterior
cingulate cortex activity has been implicated in rapid antidepressant response to ketamine
infusion. Family history of alcohol dependence in MDD subjects was associated with better
short-term outcome after ketamine infusion. ACC, anterior cingulate cortex; AMPA, α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BDNF, brain-derived neurotrophic
factor; MDD, major depressive disorder; NMDA, N-methyl-D-aspartate; NR, NMDA
receptor; PSD, postsynaptic density.
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Glutamate Receptors and Genes

Ionotropic Glutamate Receptors

    AMPA: GluR1, GluR2, GluR3, GluR4 (GRIA1, GRIA2, GRIA3, GRIA4)

    NMDA: NR1, NR2 A-D, NR3 A-B (GRIN1, GRIN2A, GRIN2B, GRIN2C, GRIN2D, GRIN3A)

    Kainate: GluR5, GluR6, GluR7, KA1, KA2 (GRIK1, GRIK2, GRIK3, GRIK4, GRIK5)

Metabotropic Glutamate Receptors

    Group I (excitatory G-protein coupled)

        mGluR1 (A-D) (GRM1)

        mGluR5 (A-B) (GRM5)

    Groups II and III (inhibitory G-protein coupled)

        mGluR2 (GRM2)

        mGluR3 (GRM3)

        mGluR4 (A-B) (GRM4)

        mGluR6 (GRM6)

        mGluR7 (A-B) (GRM7)

        mGluR8 (A-B) (GRM8)

AMPA, -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; Glu, glutamate; NMDA, N-methyl-D-aspartate; m, metabotropic; GluRn,
glutamate receptor no. n; KA, kainate.
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