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Abstract
The host immune system functions as a guardian against 
tumor development. It has been demonstrated that 
cytotoxic T lymphocyte (CTL)-mediated cytotoxic path-
ways function to inhibit or delay human colorectal cancer 
development. However, the host anti-tumor immune 
responses also 'edit' the tumor and select for more ag-
gressive variants, resulting in immune evasion and tumor 
escape. Fas is a death receptor that mediates one of the 
major cytotoxic effector mechanisms of the CTLs. Fas is 
highly expressed in normal human colon epithelial cells 
but is frequently silenced in colorectal carcinoma, espe-
cially in metastatic colorectal carcinoma, suggesting that 
loss of Fas expression and function may be an immune 
evasion and tumor escape mechanism. In addition, re-
cent studies indicated that Fas also mediates cellular 
proliferation signaling pathways to promote tumor devel-
opment. Therefore, the death receptor Fas may not only 
transduce death signals to suppress tumor development 
but also activate cellular proliferation and the migra-
tion process to promote tumor growth and progression. 
Thus, understanding the mechanisms by which the Fas 
receptor and its associated protein complex transduces 
the death and survival signals may identify molecular 
targets for the development of therapeutic strategy to 
enhance the Fas-mediated death signals to increase the 
efficacy of cancer immunotherapy. 
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INTRODUCTION
Over the past two decades, the notion that the host im-
mune system can recognize and suppress tumor develop-
ment in the absence of  external therapeutic intervention 
has experienced a new resurgence. Thanks to the advances 
in our understanding of  the molecular interactions be-
tween tumor cells and immune cells, immunotherapy 
including monoclonal antibodies, immune adjuvant, vac-
cines and cytotoxic T lymphocyte (CTL) adoptive transfer, 
have now become an effective treatment approach for a 
variety of  cancers[1-6]. Accumulating evidence from studies 
in mouse models and human cancer patients suggests that 
tumorigenesis and progression is not only governed by 
genetic alterations intrinsic to the tumor cells but also by 
epigenetic and tumor microenvironmental factors. It has 
become clear that the host immune system is a microenvi-
ronmental factor that modulates tumor development[7-15]. 
The role of  the host immune system in suppression 
of  colorectal cancer (CRC) development has been well 
documented. Studies with a large cohort of  human CRC 
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patient specimens showed a significant role of  the host 
immune effector mechanisms in suppression of  colorectal 
carcinoma progression and recurrence[16-20]. However, cur-
rent evidence suggests the host immune system might be 
a two-edged sword. On the one hand, the immune effec-
tor mechanism can suppress tumor development. On the 
other hand, the immune system can “edit” the tumors and 
select for variants that exhibit more aggressive and often 
apoptosis-resistant phenotype, resulting in immune eva-
sion[20-23].

ANTI-TUMOR CYTOTOXICITY 
PATHWAYS 
CTLs are the primary immune cells that directly attack 
tumor cells[24,25]. The perforin exocytosis pathway and the 
Fas-mediated apoptosis pathway were the first identified 
cytotoxic effector mechanisms of  CTLs[26] (Figure 1). The 
perforin pathway depends on the polarized secretion of  
perforin and granzymes and utilizes perforin to traffic 
granzymes to the target cells where they cleave functional 
proteins to cause DNA fragmentation and subsequent 
apoptosis. The Fas/FasL system was originally thought 
to be essential for activation-induced cell death during an 
immune response and for normal homeostasis of  the im-
mune system. However, it has recently become clear that 
the Fas/FasL effector mechanism also plays an important 
role in suppressing tumor growth and progression[27-29]. 
Despite the fact that the perforin pathway is the dominant 
anti-tumor cytotoxic mechanism[9,30-32], recent studies have 
begun to shed light on the importance of  other cytotoxic 
mechanisms of  tumor-specific CTLs in suppression of  
tumor growth[33-37]. For example, it was reported that the 
perforin pathway of  tumor-specific CTLs mediates potent 
anti-tumor effects in a minimal disease setting but were 
overwhelmed and became significantly less effective under 
conditions of  an extensive tumor burden and that the 
FasL-dependent CTL cytotoxic mechanism was essen-
tial for optimal tumor regression under extensive tumor 
burden[11]. It was also observed that, although perforin-
mediated killing is of  paramount importance for CTL-
mediated lysis in vitro, some in vivo cytotoxic mechanisms 
clearly are independent of  perforin, as illustrated in a 
Renca pulmonary metastases model[38]. Furthermore, it is 
known that therapeutic effects of  CTL-based immuno-
therapy were dependent, in part, on cytotoxic cell-derived 
LTα in a B16 lung metastasis model[39]. It has also been 
demonstrated that TNF and Lymphotoxin are involved 
in anticancer cytotoxicity exerted by NK cells and mono-
cytes[40-42] and both D122 Lewis lung carcinoma and mela-
noma were rejected by tumor-specific CTLs through a 
cytolytic mechanism that is independent of  both perforin 
and Fas pathways in vivo[43,44]. These observations suggest 
that perforin- and Fas-independent cytotoxic pathways, 
including IFN-γ and LTα/LTβ, also play significant roles 
in inhibition of  tumor growth (Figure 1). Nevertheless, 
perforin and Fas/FasL pathways are the two primary anti-
tumor effector mechanisms of  CTLs.

ANTI-TUMOR IMMUNITY AND 
COLORECTAL CANCER 
Several prominent studies in large cohorts of  human 
CRC patients have pointed to a significant role of  the 
anti-tumor effector mechanisms of  the host immune 
system in suppression of  CRC growth, progression and 
recurrence[16-20,45,46]. Analysis of  tumor-infiltrating immune 
cells and immune effector molecules in more than 400 
colorectal carcinoma patients revealed an inverse correla-
tion between the expression of  a cluster of  genes related 
to the Th1 adaptive immunity and tumor recurrence[16]. 
Furthermore, it seems that the immune cell (CD3, CD8) 
densities in the tumor microenvironment is inversely 
correlated with recurrence and positively correlated with 
overall disease-free survival[16]. The host immune cells, 
particularly the T cells, also play an effective role in sup-
pressing or delaying CRC metastasis. A study of  959 CRC 
specimens indicated that increased level of  infiltrating 
cytotoxic T cells is associated with the absence of  signs 
of  early metastasis, a less advanced pathological stage and 
increased survival[17]. Consistent with these observations, 
adoptive transfer immunotherapy of  tumor-reactive T 
cells significantly increased CRC patient survival[19]. In a 
study with 16 CRC patients, T cells were isolated from 
sentinel nodes, expanded in vitro and administered to the 
patients. In 4 out of  the 9 stage IV patients, complete tu-
mor regression occurred and medium survival time in the 
stage IV patients increased from 0.8 to 2.6 years[19].

LOSS OF FAS EXPRESSION AND 
FUNCTION CONTRIBUTES TO 
COLORECTAL CANCER PROGRESSION
As discussed above, the Fas-mediated apoptosis pathway 
is one of  the major cytotoxic effector mechanisms of  
CTLs and was originally identified to function in deple-
tion of  self-reactive lymphocytes and thus is essential for 
shutdown of  chronic immune responses and prevention 
of  autoimmunity[47-51]. However, the Fas-mediated apopto-
sis pathway is also directly involved in elimination of  un-
wanted or diseased cells and thus functions as a guardian 
to suppress tumor development[52-55]. The tumor-specific 
CTLs use FasL on their surface to engage the Fas recep-
tor on the tumor cell surface to initiate the Fas-mediated 
apoptosis and thereby playing a key role in immune cell-
mediated suppression of  tumor development[11,20,38,56]. 
An overwhelming amount of  data from animal models, 
together with compelling data from human patients, indi-
cate that Fas function as a tumor suppressor. It has been 
shown that deficiency of  the Fas-mediated apoptosis 
pathway directly leads to increased spontaneous tumor 
metastasis in FasL knock out mice[53]. In human CRC 
patients, loss of  Fas expression and acquisition of  resis-
tance to Fas-mediated apoptosis is a common phenom-
enon[20,57,58]. Fas is constitutively expressed at high level in 
normal human colon tissues. In human primary colorectal 
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carcinoma, however, Fas expression is often diminished 
and complete loss of  Fas expression is frequently ob-
served in human metastatic colorectal carcinoma[57,58]. In 
our earlier studies, we have also observed an inverse cor-
relation between Fas expression/function and tumor pro-
gression[59].

The above observations raised the possibility that 
metastatic colorectal carcinoma cells use loss of  Fas 
expression and/or function to gain a metastatic phe-
notype. To determine the role of  Fas-FasL interactions 
in CRC progression, we conducted several studies in 
the past decade to elucidate the molecular mechanisms 
underlying loss of  Fas expression/function and the 
metastatic potential in colon carcinoma. A matched pair 
of  human primary and metastatic colon carcinoma cell 
lines, termed SW480 and SW620, was used as a model 
system. The SW480 and SW620 tumor cell lines have 
been previously characterized as primary and metastatic 
colon adenocarcinoma cell lines respectively, established 
from the same patient. The SW620 cell line was derived 
as a lymph node-metastasis identified 6 mo later dur-
ing disease recurrence[60]. Furthermore, both cell lines 
were isolated from the patient without any prior chemo-
therapy[60]. SW620 cells are essentially resistant to FasL-
induced apoptosis whereas SW480 cells are sensitive to 
FasL-induced apoptosis[61-63]. To determine whether the 
decreased Fas expression and function in the metastatic 
colon carcinoma cells contribute to the metastatic capa-
bility, SW620 and SW480 cells were injected s.c. to nude 
mice. An RT-PCR assay of  human keratin 18 for detec-
tion of  human tumor cells of  epithelial origin in mouse 

lymphoid tissue was developed for analysis of  spontane-
ous distal metastasis. The detection sensitivity of  such an 
assay is approximately 102-103 cells per mouse spleen. We 
detected tumor cells in spleens from 7 of  the 8 mice that 
received SW620 cells. In contrast, no tumor cells were 
detected in spleens from mice that received SW480 cells. 
Using this sensitive assay and the SW480 and SW620 cell 
system, we next tested the hypothesis that the metastatic 
cells might pre-exist in the primary tumor population and 
anti-Fas selection leads to enrichment and emergence of  
the Fas-resistant subsets of  metastatic tumor cells. One 
approach taken was to select for Fas-resistant sublines 
from the primary SW480 cells using an agonistic anti-
Fas stimulus to deplete the Fas-sensitive subpopulations 
in vitro. Thus, any functional difference observed with 
these SW480-derived sublines could be compared with 
the naturally occurring metastatic SW620 cells. Overall, 
our data revealed that SW480-derived and Fas-resistant 
sublines morphologically, biologically and molecularly re-
sembled the naturally occurring metastatic SW620 cells[23]. 
Our data thus supported the notion that subsets of  meta-
static colon carcinoma cells pre-exist in the primary colon 
carcinoma population and interactions between Fas (tu-
mor cells) and FasL (immune cells) leads to selection and 
emergence of  Fas-resistant subsets of  tumor cells with 
metastatic potential[21,22,64,65] (Figure 2). 

The anti-tumor immune response, once viewed as 
always favorable for suppressing cancer development, is 
potentially a two-edged sword. While immune cells can 
eliminate cancer cells, they can also edit them and select 
for resistant variants. These variants are very aggressive; 
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Figure 1  Anti-tumor cytotoxicity pathways. Tumor-specific cytotoxic T lymphocytes (CTLs) recognize tumor cells through TCR and Ag-bound MHC class Ⅰ. 
Interactions between the CTL and the tumor cell involve direct cell-cell physical contact and release of modulator molecules (i.e. IFN-γ and other molecules). CTLs 
primarily use the perforin exocytosis pathway and the Fas-mediated apoptosis pathways to destruct the tumor cells. However, other effector mechanisms, such as the 
LTβR-mediated apoptosis pathway, also play a role in tumor cell destruction.



that is, they can resist apoptosis and possess metastatic po-
tential. This notion is in line with observations in human 
colorectal patients that Fas-mediated apoptosis exerted by 
the tumor infiltrating CTLs contributes to CRC recurrence 
and regression[20]. In addition, therapeutic approaches to 
sensitize colon carcinoma cells to Fas-mediated apoptosis 
has enhanced efficacy of  colon cancer therapy[66,67]. There-
fore, CTL-induced and Fas-mediated anti-tumor cytotoxic-
ity can have both positive and negative consequences. The 
positive outcome is Fas-mediated tumor cell apoptosis and 
tumor suppression and the negative consequence is im-
mune selection of  Fas-resistant tumor variants that possess 
metastatic potential (Figure 2)[22,64,65].

It should be noted that although loss of  Fas expres-
sion and function is associated with enhanced metastatic 
potential of  colon carcinoma cells, it is apparent that loss 
of  Fas expression and/or function alone is insufficient to 
confer non-metastatic tumor cell with full metastatic ca-
pability. Rather, the ability of  Fas-resistant tumor cells to 
achieve metastatic competence requires co-possession of  
additional metastatic characteristics[68]. In mutant mice a 
point mutation in the cytoplasmic domain of  Fas abolish-
es the Fas-mediated signal transduction[69-71]. As expected, 
mice homozygous for this mutated allele develop lymph-
adenopathy and a lupus-like autoimmune disease[69-71]. 
However, spontaneous carcinoma formation is rare in 
these Fas mutant mice[69-71]. Therefore, it is likely that loss 
of  Fas expression and function acts as an “enhancer” not 
an “initiator” of  tumor initiation and/or progression[68].

FAS COUNTERATTACK AND TUMOR 
IMMUNE EVASION THEORY 
Although FasL is primarily expressed in activated im-
mune cells (i.e. CTLs), it has been reported that FasL 
is also expressed in human cancers of  diverse origin, 
including CRC[72-76]. Because activated CTLs express Fas 
and are sensitive to Fas-mediated apoptosis[49], the expres-
sion of  FasL in tumor cells raise the possibility that FasL 
might mediate immune privilege by inducing apoptosis 
of  anti-tumor immune cells in the tumor microenviron-
ment. Indeed, it has been shown that tumor-expressed 
FasL induces apoptosis of  tumor-infiltrating lympho-
cytes[73,77,78]. In addition, inhibition of  FasL expression 
in colon carcinoma cells led to increased lymphocyte 
infiltration and decreased tumor development[72,79]. How-
ever, on the other hand, the Fas counterattack theory has 
been a controversial one ever since it was proposed[80]. In 
contrast to the observations that tumor-expressing FasL 
induces tumor-infiltrating T lymphocytes apoptosis, FasL 
expression by tumor cells led to neutrophil infiltration, 
proinflammatory response and tumor rejection[28,74]. Of  
notice is a recent finding that only the membrane-bound 
FasL is essential for cytotoxic activity and constitutes 
the guardian against disease, lymphadenopathy, autoim-
munity and cancer, whereas excess sFasL might promote 
autoimmunity and tumorigenesis through non-apoptotic 
activities[55]. In most of  the Fas counterattack reports, it 

is not clear whether the membrane FasL or the sFasL 
is involved. In summary, the majority of  the in vivo data 
suggest FasL expressed in tumor cells is unfavorable for 
tumors. Therefore, it is not entirely clear whether Fas 
counterattack really is a relevant immune evasion and tu-
mor escape mechanism[28,80].

FAS IS ALSO A TUMOR PROMOTER
Fas is undoubtedly a death receptor and, when it is en-
gaged by its ligand, mediates apoptosis in a wide variety 
of  cells, including CRC cells. Some new evidence sug-
gest, however, that Fas mediates not only apoptosis but 
also non-apoptotic signaling pathways including cellular 
activation, proliferation, differentiation and migration, 
all of  which promote tumor development[50,81-84]. Under 
conditions of  low receptor stimulation or under condi-
tions where apoptosis is blocked, Fas signaling switches 
to proliferative signaling, leading to activation of  ERK1/2 
and consequently NF-κB activation in gastric mucosal 
cells[82,85]. Furthermore, it was observed that co-expression 
of  FasL with apoptosis inhibitor FLIP increased Fas-
mediated proliferation and enabled colon carcinoma 
cells to metastasize to the liver[83]. Therefore, loss of  Fas 
expression and acquisition of  apoptosis resistance might 
alter the Fas-exerted signal from pro-apoptosis to pro-
proliferation, resulting in promotion of  spontaneous 
colon carcinoma liver metastasis[83]. Although NF-κB and 
MAP kinase signaling pathways have be implicated and it 
is known that the Fas DISC components such as caspase 
8, FADD and FLIP are involved in the Fas-mediated 
non-apoptotic signaling transduction, the molecular links 
that connect Fas receptor DISC components (Caspase 
8, FADD and FLIP) to the ERK and NF-κB signaling 
pathways is largely undefined. Nevertheless, it has firmly 
established that Fas not only mediates apoptosis but also 
exerts non-apoptotic signals to activate the cellular sur-
vival signaling pathway, an opposing cellular process of  
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system. Thus, the anti-tumor immune response can be a two-edged sword and 
can result in both positive and negative consequences.



apoptosis, in a broad range of  cells including colon cancer 
cells (Figure 3). 

CONCLUSION
The Fas-mediated apoptosis pathway is an important ef-
fector mechanism that the cytotoxic T lymphocytes use 
to suppress tumor development. It has been firmly estab-
lished that engagement of  Fas receptor by its ligand FasL 
induces tumor cell apoptosis and tumor growth inhibi-
tion. Fas-FasL interaction, however, also leads to immune 
selection and generation of  apoptosis-resistant tumor es-
cape variant which might explain the phenomenon of  the 
frequent loss of  Fas expression and function in metastatic 
colorectal carcinoma. In addition, recent studies revealed 
that Fas also mediates non-apoptotic signals that activate 
cellular survival process, resulting in promotion of  tumor 
development. Thus, Fas functions as a multi-faced “death” 
receptor that mediates both pro- and anti-apoptotic sig-
naling pathways. Next, we need to identify the molecular 
switchers inside the Fas death receptor DISC complex 
that dictate the signaling transduction pathways because 
they may provide new molecular targets for targeting 

apoptosis resistance to enhance the efficacy of  cancer 
therapy/immunotherapy.
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