²⁹ Schoellmann, G., and E. Shaw, Biochem., 2, 252 (1963).

³⁰ Koshland, D. E., Jr., D. H. Strumeyer, and W. J. Ray, Jr., in Enzyme Models and Enzyme Structure, Brookhaven Symposia in Biology, No. 15 (1962), p. 101.

³¹ Crestfield, A. M., W. H. Stein, and S. Moore, J. Biol. Chem., 238, 2421 (1963).

- ³² Bruice, T. C., and R. M. Topping, *J. Am. Chem. Soc.*, **85,** 1488 (1963).
- 33Cunningham, L. W., Science, 125, 1145 (1957).

³⁴ Westheimer, F. H., these PROCEEDINGS, 43, 969 (1957).

³⁵ Spencer, T., and J. M. Sturtevant, J. Am. Chem. Soc., 81, 1874 (1959).

³⁶ Bruice, T. C., these PROCEEDINGS, 47, 1924 (1961).

CELL-FREE PROTEIN SYNTHESIS: THE NATURE OF THE ACTIVE COMPLEX*

BY R. HASELKORN AND V. A. FRIED

COMMITTEE ON BIOPHYSICS, UNIVERSITY OF CHICAGO

Communicated by Raymond E. Zirkle, December 30, 1963

In a previous communication' we presented evidence indicating that the addition of RNA from turnip yellow mosaic virus (TYMV) to purified E , coli ribosomes results in the formation of a complex containing one 70s ribosome and one molecule of RNA. We shall call such complexes monosomes. Indirect evidence, consisting of a correlation between the number of monosomes formed as a function of the RNA-ribosome ratio, and the extent of amino acid incorporation measured in parallel experiments, suggested that monosomes were the active complexes for protein synthesis in the cell-free system. However, the direct experiments were restricted to the demonstration that before protein synthesis had occurred, viral RNA was to be found only in monosomes. In this paper it will be shown that after protein synthesis has occurred, the newly formed protein appears predominantly in monosomes, and while viral RNA-directed protein synthesis is taking place, the only activity for amino acid incorporation is found in monosomes.2 On the other hand, poly U promotes the formation of polysomes;3-5 these are compared with monosomes with respect to the rate and extent of amino acid incorporation.

Materials and Methods.--Ribosomes and supernatant were obtained by alumina grinding of freshly grown log phase E. coli B, as described previously,⁶ except that the buffer used to prepare the crude extract was changed to 0.014 M Mg⁺⁺, 0.06 M KCl, 0.01 M Tris pH 7.6, 0.006 M mercaptoethanol.7 The crude extract was centrifuged for 20 min at 16,000 rpm, and the supernatant recentrifuged for 30 min at 16,000 rpm. To deplete endogenous messenger RNA, the supernatant thus obtained was supplemented with ATP, GTP, PEP, PK, and cold amino acids, and incubated for 80 min at $36^{\circ}C$.⁸ After incubation the ribosomes were purified by several cycles of centrifugation at 38,000 rpm. The supernatant from the first of these ribosome centrifugations was concentrated by dialysis against polyethylene glycol, and then dialyzed against several changes of 0.01 M Tris, 0.006 M mercaptoethanol, 0.01 M Mg⁺⁺, 0.02 M KCl. P³²-labeled TYMV-RNA was obtained as described previously.¹ The poly U sample was part of a gift from L. Heppel to E. P. Geiduschek; it had $S_{20} = 5.3$ in 0.1 M NaCl. TMV-RNA was prepared by phenol extraction⁹ of TMV (strain U1) purified by differential centrifugation in the presence of 0.01 M EDTA, pH 8.'o

The complete system for amino acid incorporation contained, in 0.5 ml, 25 μ moles Tris pH 7.5, 25 μ moles KCl, 5 μ moles Mg⁺⁺, 5 μ moles mercaptoethanol, 2 μ moles PEP, 0.02 mg PK, 1 μ mole ATP, 0.2 μ moles GTP, 0.25 μ moles of each amino acid except the label, ribosomes, and RNA as indicated, and a saturating amount of supernatant, determined in advance for each preparation of supernatant. Reaction mixtures were worked up as before,¹ except that the final TCA insoluble pellets were taken up in dilute NH4OH, transferred to ringed planchets, dried, and counted in a Nuclear-Chicago thin end-window counter. Labeled amino acids were obtained from New England Nuclear Co.; the C^{14} -proline and the C^{14} -phenylalanine had specific activities of 205 and 369 mC/mmole, respectively. Sucrose gradients were formed and analyzed as before.' Unless otherwise indicated, the gradients contained 0.05 M Tris, 0.05 M KCl, and 0.01 M Mg⁺⁺. We have had considerable trouble with mold and ribonuclease in sucrose; freshly dissolved, autoclaved, or even dialyzed sucrose solutions have at times been found to inhibit amino acid incorporation markedly. Occasionally, when incorporation activity was being assayed following sucrose gradient fractionation, considerable activity was found in the last fraction (corresponding to the meniscus). These fractions contained essentially no ribosomes; the activity was probably due to mold collected at the meniscus, and such experiments were discarded.

Results.—At first glance, it might appear that the most direct way to identify complexes carrying out protein synthesis is to locate complexes containing newly synthesized protein. An experiment illustrating this approach is shown in Figure 1. Here the complete system was incubated for 10 min at 36° C, chilled, and examined on a sucrose gradient. Nascent protein, identified by H3-leucine, is found predominantly in the region of 80-100s, precisely where P³²-labeled TYMV-RNA was found *prior* to amino acid incorporation.¹ This correspondence suggests that these complexes, previously shown to contain one 70s ribosome and one molecule of RNA, are the site of protein synthesis.

However, such experiments leave open the possibility that a larger aggregate of RNA and ribosomes actually incorporates amino acids, the aggregate being broken down before examination on the gradient. This possibility was explored by incorporating cold amino acids in the complete system for five min, fractionating the resulting mixture on a sucrose gradient, and then assaying each fraction for its

FIG. 1.—Sucrose gradient analysis of nascent
protein. A complete reaction mixture contain-A complete reaction mixture containing TYMV-RNA and H³-leucine was incubated 4.0 at 36°C for 10 min, then chilled and examined on a 5-20% linear sucrose gradient. This run was for 200 min at 5°C, in the SW25 Spinco rotor. The dashed line represents TCA-precip-
itable H³-leucine; the solid line absorbancy $\frac{3}{5}$ Itable H³-leucine; the solid line absorbancy ϵ_{33}
at 260 m_H. The dotted line near the bottom of ϵ_{3} itable H³-leucine: the solid line absorbancy the gradient represents P^{32} in whole TYMV $\frac{8}{5}$ ($S_{20} = 116$) added to the gradient as a sedi-
mentation coefficient marker. The 10-min in-
cubation results in about 60% of the incorpor-
ration obtained in 45-min incubation; in both
cases approximately 70% of the proc mentation coefficient marker. The 10-min in-
cubation results in about 60% of the incorpocases approximately 70% of the TCA-precipi-Mg++. In repeats of this experiment the only variations noticed are occasional valleys be-No significant amount of nascent protein has ever been observed in the pellet.

FIG. 2.-Activity gradients with TYMV- $\begin{array}{c|c}\n\hline\n\end{array}$ RNA and poly U. A complete reaction mix- $~$ for 5 min, then chilled in ice. 0.2 ml of this Poly U $\begin{array}{c|c|c|c|c|c|c|c|c} \hline \text{Poly U} & \text{if} & \text{if}$ $\frac{1}{2}$ was for 30 min. A parallel experiment was
 $\frac{1}{2}$ and $\frac{1}{2}$ musing in the initial reaction mixture 80 μ g

poly U and 2 mg ribosomes, and the subsequent incorporation utilized C¹⁴-phenylal-
 $\frac{1}{2}$ 1.0 equivalent aliquots not subjected to the fractionation procedure.

ability to incorporate additional amino acids when supplemented with supernatant and cofactors. An experiment of this type was first performed by Gilbert,³ who found the activity for polyphenylalanine synthesis in the region of 150-200s when poly U was used to direct amino acid incorporation. The result of one of our experiments is shown in Figure 2. With TYMV-RNA as messenger, the activity for incorporating ^C'4-proline is seen to occupy the region of 80-90s. On the other hand, ^a parallel experiment run under identical conditions with poly U as messenger confirms Gilbert's result: the activity for C'4-phenylalanine incorporation is found in the region around 150s. The result with TYMV-RNA supports our previous assertion that the active complex formed with viral RNA in vitro is a monosome. Since the degree of polymerization of the viral RNA is at least ten times greater Frame of the size of the messenger

Frame Gilbert's result: the activity for C¹⁴-phenylalanine incorporation is found

the region around 150s. The result with TYMV-RNA supports our previous

retion that the active compl

to those for Fig. 2, except that the
initial reaction mixture contained was for 5 min; recovery of activity was 63% .

than that of the poly U used $(S_{20} = 5.3)$, clearly
the size of the active complex in the cell-free system is not simply proportional to the degree of polymerization of the messenger.

TYMV-RNA is not unique in forming mono-
somes. A similar activity gradient using TMV-
RNA as messenger is shown in Figure 3. Again
the estimity is found in the positon apple 20,000 $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ = somes. A similar activity gradient using TMV- $\begin{bmatrix} 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & \overline{0} \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & \overline{0} \\ 0 & \overline{0} \end{bmatrix}$ $\begin{bmatrix} 0 & \overline{0} \\ 0 & \overline{0} \end{bmatrix}$ $\begin{bmatrix} 0 & \overline{0} \\ 0 & \overline{0} \end{bmatrix}$ $\begin{bmatrix} 0$ the activity is found in the region around 80-90s. TMV-RNA can, however, be distinguished from TYMV-RNA. In agreement with Barondes and 2.0 $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 50 & 0 \\ 1 & \frac{3}{2} \\ 0 & 0 \end{bmatrix}$ Nirenberg,⁴ we find that TMV-RNA does not attem is assembled, while TYMV-RNA requires only Mg^{++} for attachment.¹¹

 $1.1.0$ 1.0 3.0 5.0 1.0 from poly U with respect to the size of the ribo-FIG. 3.—Activity gradient with somal aggregate that incorporates amino acids, it TMV-RNA. Conditions identical became of interest to compare the kinetics of became of interest to compare the kinetics of initial reaction mixture contained amino acid incorporation in the two systems. For
165 μ g TMV-RNA. Preincubation this nurmose, the dependence of the rate of incorthis purpose, the dependence of the rate of incorporation upon ribosome concentration was investigated. The data for the poly U-dependent in- $_{20}$ corporation of phenylalanine are shown in Figure ... $20 - 1.75$ mg 4. The concentration of poly U is in each case $\sqrt{\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\mathcal{P}}\smash[b]{\$ the same, being chosen to saturate the standard incorporation system (1 mg ribosomes, 30' incor-
poration). Thus, at lower ribosome concentration $\frac{1}{2}$
poly U is in excess; at higher ribosome concentra-
tion poly U is limiting. At the two lowest ri-
bosome concentr poration). Thus, at lower ribosome concentration poly U is in excess; at higher ribosome concentration poly U is limiting. At the two lowest ribosome concentrations, incorporation is linear for $\frac{1}{8}$ ¹⁰ ten min; at the higher concentrations, since the deviation from linearity is not great at ten min, we have assumed the incorporation is linear for $\frac{1}{2}$ // $\sqrt{1-\frac{1}{2}}$ the first five min. Using these slopes to define the initial rate of amino acid incorporation, the rate is plotted as a function of ribosome concentration in Figure 5. The shape of the curve suggests that 15 30 and 15 30 and 15 ribosomes participate in the rate-limiting step of Time, Minutes amino acid incorporation as individuals, and this FIG. 4. - Kinetics of phenylal-

Quite different results were obtained with action mixtures were assembled in TYMV-RNA. Figure 7 shows that approxi- among five tubes, and then trans-Figure 7 shows that approxi-
 $T_{\text{temp}} = \frac{1}{26}$ and then trans-
 $T_{\text{temp}} = 4.26 \text{°C}$ are required before the ferred to a 36°C water bath. At the mately three min at 36° C are required before the ferred to a 36° C water bath. At the indicated times, tubes were with-
maximal rate of amino acid incorporation is at-
tained. This lag is reproducibly observed wi maximal rate of amino acid incorporation is attained. This lag is reproducibly observed with with $\frac{3 \text{ m}}{\text{numbers}}$ refer to the concentration TYMV-RNA as messenger, and is not observed of ribosomes in mg per 0.5 ml, the TYMV-RNA as messenger, and is not observed of ribosomes in mg per 0.
with not usual period per is observed with no standard reaction volume. with poly U. The same lag is observed with pro-

line, alanine, lysine, arginine, or an algal hydrolysate. To examine this $\frac{2}{3}$ ⁷⁵⁰ question more carefully, the follow-
ing experiment was performed: re-
action mixtures, complete except for
amino acids, were assembled in the
cold and then divided in half. One
half received amino acids and was
incubated ing experiment was performed: re- $\frac{2}{3}$ action mixtures, complete except for $\frac{8}{9}$ ⁵⁰⁰ amino acids, were assembled in the cold and then divided in half. One half received amino acids and was $\frac{25}{9}$ 250 incubated at 36°C ; the other half was incubated for three min at 36° C results of this experiment are shown lag is dependent upon the concen-
tration of ribosomes. Secondly, $\frac{1000 \text{ m}}{2}$ from Fig. 4; see text for details. tration of ribosomes.

is seen to be so in the reciprocal plot in Figure 6. anine incorporation. Complete re-
Ouite different results were obtained with action mixtures were assembled in

in Figure 8. First we note that the FIG. 5.—Dependence of the rate of phenylalanine
lag is dependent upon the concen-
incorporation upon ribosome concentration. Data

preincubation eliminates most, but not all, of the lag. We interpret these results to mean that the lag is comprised of two steps: one is the association of RNA and ribosomes, which proceeds in the absence of protein synthesis; the second requires amino acids, and could be peptide chain initiation.

Another kind of comparison between monosomes and polysomes may be made by examining the extent of amino acid incorporation per ribosome as a function of

75 mg

 1.75 mg
 1.25 $C.$ P.M. C^{14} Proline Incorporated , x 10^{-2} 1.00 10 $\sum_{i=1}^{n}$ and $\sum_{i=1}^{n}$ and $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$ (1) $\sum_{i=1}^{n}$ (0.75 $\sum_{i=1}^{n}$ 0 \circ 50 \mathbb{Z} 0.25 015 O 15 ٦C 45 T im

51

FIG. 6.-Reciprocal plot of data in Fig. 5.

ribosome concentration, using a single messenger. If the ribosomes are functioning independently, as the kinetic data suggest, then the extent of incorporation per
ribosome should be a constant as long as messenger is in excess. This is seen to be ribosome should be a constant as long as messenger is in excess. essentially so in the monosome case; the data for the TYMV-RNA-directed reaction are shown in Figure 9A. On the other hand, the higher the concentration of

FIG. 8.—Kinetics of proline incorporation. This sRNA.¹² Our observation that ri-
is an expanded view of the lag period in Fig. 7. See text for experimental procedure, which differs from bosomes, whether single or in clus-that in Fig. 7. Solid lines indicate no preincubation; ters enter the rate-limiting step in that in Fig. 7. Solid lines indicate no preincubation; ters, enter the rate-limiting step in dashed lines preincubation for 3 min. Δ , \Box = 1.5 , 1.0, 0.5 mg ribosomes per 0.5 ml. respectively. protein synthesis as i 1.5, 1.0, 0.5 mg ribosomes per 0.5 ml, respectively.

2
1/Ribssome Concentration
poration. Procedure the same as indi-
poration. Procedure the same as indiporation. Procedure the same as indicated in Fig. 4.

incorporates on the average (see tion of polypeptide chains, or a limare being read less efficiently than

 $Discussion. -It$ has been widely growth of one polypeptide chain at $\begin{array}{c|c|c|c|c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \hline \begin{array}{c} \hline \hline \hline \end{array} & \hline \end{array} & \begin{array}{c} \hline \text{sees} \\ \hline \end{array} & \begin{array}{c} \hline \text{assumed that ribosomes support the} \\ \text{assumed that ribosomes support the} \\ \text{growth of one polypeptide chain at} \\ \hline \end{array} & \begin{array}{c} \hline \text{growth of one polypeptide chain at} \\ \hline \text{at time. The strongest single fact$ favoring this view is Cannon, Krug, 2 3 $\frac{4}{5}$ 10 15 and Gilbert's finding that ribosomes contain a single site for binding consistent with this view. Our $\frac{1}{e}$ A I $\frac{1}{30}$ data are also compatible with a mumber of peptide chains per ribo-
some greater than one, provided the
number of chains per ribosome is
independent of the ribosome con-
centration and the poly U/ribosome
ratio.
The over-all kinetics in the reacsome greater than one, provided the number of chains per ribosome is independent of the ribosome conratio.

centration and the poly U/ribosome $\frac{1}{2}$
ratio.
The over-all kinetics in the reactions directed by RNA and by poly The over-all kinetics in the reactions directed by RNA and by poly U can be accounted for in the follow-
ing scheme: $\begin{array}{c|c} \n\hline\n& 1 & 1 \\
\hline\n& 0.5 & 1.0\n\end{array}$ and the poly expression.

r-all kinetics in the reacted by RNA and by poly

ccounted for in the follow-
 $\sum_{k=1}^{k} M R_{n} \stackrel{k_1}{\underset{k_1}{\rightleftharpoons}} M R'_{n} \stackrel{k_2}{\underset{n_3}{\rightleftharpoons}} M R'_{n} \stackrel{k_3}{\underset{n_4}{\rightleftharpoons}} N R'_{n}$

$$
M + nR \underset{k_1}{\overset{k_1}{\rightleftharpoons}} MR_n \underset{k_1}{\overset{k_2}{\rightleftharpoons}} MR_n' \underset{n_1}{\overset{k_2}{\rightleftharpoons}} X
$$

in which $M =$ messenger, $R =$ ribosome, $aa = \text{amino acids}$ and/or their activated intermediates, and $P = \frac{3}{6}$
protein. k_1 is the forward rate of $\frac{3}{6}$
association of messenger with riboprotein. k_1 is the forward rate of ϵ 30 some, aa = amino acids and/or their
activated intermediates, and P = $\frac{2}{5}$
protein. k_1 is the forward rate of
association of messenger with ribo-
somes; for poly U k_1 is at least five somes; for poly U k_1 is at least five somes; for poly U k_1 is at least five
times greater than for TYMV-RNA.
In preliminary experiments it ap-
pears that the binding constant for
poly U is also greater than for In preliminary experiments it ap- $\frac{8}{5}$ 20 pears that the binding constant for poly U is also greater than for < TYMV-RNA. The reaction MR $\frac{1}{\epsilon}$ to \Rightarrow MR' could be the reversible at- \rightleftharpoons MR' could be the reversible atpeptide bond. FIG. 9.-Extent of amino acid incorporation per

age chain length of polyphenylalanine increases only slightly between

 $\overline{0}$ 0.5 1.0 1.5 1.5 1.0 1.5 and $\overline{0}$ 0.5 1.0 1.5 Pribosome Concentration $Ribosomes, x 10⁻³$ X40- E45 tachment of the first amino-acyl 0 0.5 1.0 1.5 sRNA or the formation of the first Ribosome Concentration

Gilbert has shown that the aver-
 (A) TYMV-RNA, data from plateaus in Fig. 7.

(B) Poly U, data from Fig. 4.

the fifth and twentieth minute of amino acid incorporation.3 This means that most of the incorporation beyond the fifth minute represents the initiation of new peptide chains, and for ^a given sample of poly U the plateau level of incorporation is a measure of the number of chains initiated. The lower extent of incorporation per ribosome we observe at high ribosome concentration is then probably due to the blocking of poly U sites which would otherwise be available for chain initiation. It is not due to ^a more efficient use of the poly U at low ribosome concentration, since the level of poly U was chosen to be saturating at high ribosome concentration.

The TYMV-RNA which, as we have seen, forms only monosomes in vitro has a molecular weight of 2×10^{6} .¹³ Poliovirus RNA, which has a similar molecular weight, forms 400s polysomes in vivo, containing at least 50 ribosomes.¹⁴ Bacterial ribosomes are certainly capable of forming polysomes with messenger RNA in $vivo.$ ¹⁵⁻¹⁸ Failure to observe polysome formation with RNA *in vitro* could be due solely to the loss of some essential orienting surface, such as a membrane,16 but we are strongly persuaded that our observations are due at least in part to the equilibrium conformation of RNA in solution. We can distinguish the following kinds of interaction between polyribonucleotides and ribosomes in vitro: poly U forms polysomes; TYMV-RNA forms monosomes with Mg^{++} the only additional requirement; TMV-RNA forms monosomes, requiring Mg^{++} , energy, and E. coli supernatant; E. coli ribosomal RNA does not associate with ribosomes under any conditions we have been able to devise, including partial reaction with formaldehyde, dialysis from low Mg^{++} into high Mg^{++} , and centrifugation of ribosomes onto a pad of ribosomal RNA. Recently, however, Okamoto and Takanami have used ^a more extensive reaction with formaldehyde to permit ribosomal RNA to bind to E. coli ribosomes.¹⁹ Poly U is known to be devoid of secondary structure above room temperature,²⁰ while the RNA's are listed above in order of increasing secondary structure, as determined by the fraction of groups available for reaction with formaldehyde.^{21, 22} Thus, the equilibrium conformation of messenger RNA in solution is considerably different from the extended one found in polysomes, and it is the former that governs the interaction with ribosomes in vitro. It appears to be impossible at present to reconstruct ^a polysome from purified RNA in its equilibrium conformation and single ribosomes. If this argument is correct, it follows that the cell contains specific structures capable of extending messenger RNA to facilitate polysome formation, and we are currently testing the hypothesis that such ^a structure might be DNA itself.

One less important corollary of the importance of RNA secondary structure in protein synthesis in vitro is the possibility that nonrepresentative nucleotide sequences may be found in the open regions that are predominantly "read" in vitro. This may well be the explanation for the inordinately high proportion of coat protein synthesis directed by f2 RNA,²³ and the low proportion of coat protein synthesis directed by TMV-RNA.²⁴

In this connection, the specific effect of polynucleotide conformation on the coding properties of such polymers was pointed out some time ago by Singer $et al.,²⁵ who found that a G-rich copolymer of U and G, which was highly ordered,$ exhibited sharply diminished priming activity for several amino acids compared to U-rich copolymers.

 $Summary. \nightharpoonup TYMV-RNA$ and TMV-RNA associate with E. coli ribosomes in vitro to form complexes (monosomes) containing single ribosomes. In a complete reaction mixture, such monosomes contain all the activity for amino acid incorporation. Poly U associates with ribosomes to form polysomes, but the ribosomes in such polysomes participate in the rate-limiting step of polyphenylalanine synthesis as individuals. The efficiency with which ribosomes incorporate amino acids in poly U polysomes varies inversely with the number of ribosomes per unit volume of reaction mixture. The ability of polynucleotides to form monosomes or polysomes in vitro appears to be correlated with the secondary structure of the polynucleotide.

We should like to thank L. Johnson for technical assistance, and E. P. Geiduschek for many helpful discussions.

* Supported by grant AI-04448 and a Research Career Development Award to R. H. from the USPHS.

¹ Haselkorn, R., V. Fried, and J. Dahlberg, these Proceedings, 49, 511 (1963).

² In this paper we use the term *activity* to indicate the ability of ribosomal complexes to incorporate radioactive amino acids when incubated in a complete reaction mixture.

³ Gilbert, W., J. Mol. Biol., 6, 389 (1963).

⁴ Barondes, S. and M. Nirenberg, Science, 138, 813 (1962).

⁵ Spyrides, G., and F. Lipmann, these PROCEEDINGS, 48, 1977 (1962).

⁶ Ofengand, J., and R. Haselkorn, Biochem. Biophys. Res. Comm., 6, 469 (1962).

⁷ Nirenberg, M., in *Methods in Enzymology*, in press.

8The following abbreviations have been used: ATP, adenosine triphosphate; GTP, guanosine triphosphate; PEP, phosphoenolpyruvate; PK, pyruvate kinase; poly U, polyuridylic acid.

⁹ Gierer, A., and G. Schramm, Nature, 177, 702 (1956).

¹⁰ Boedtker, H. and Simmons, N., J. Am. Chem. Soc., 80, 2550 (1958).

¹¹ In ref. ¹ we stated that viral RNA did not require energy to attach to ribosomes, based upon our observations with TYMV-RNA. Subsequent work with P³²-labeled TMV-RNA, however, confirmed Barondes and Nirenberg's finding that incubation in the complete system was required for this RNA to attach. Moreover, incubation of TMV-RNA and ribosomes alone at 37°C is not sufficient to allow binding (cf. ref. 19).

¹² Cannon, M., R. Krug, and W. Gilbert, J. Mol. Biol., 7, 360 (1963).

¹³ Haselkorn, R., J. Mol. Biol., 4, 357 (1962).

¹⁴ Penman, S., K. Scherrer, Y. Becker, and J. Darnell, these PROCEEDINGS, 49, 654 (1963).

¹⁵ Schaechter, M., J. Mol. Biol., in press.

¹⁶ Schlessinger, D., J. Mol. Biol., in press.

17Staehelin, T., C. Brinton, F. Wettstein, and H. Noll, Nature, 199, 865 (1963).

¹⁸ Haselkorn, R., and A. Hanoch, in preparation.

¹⁹ Okamoto, T., and M. Takanami, Biochim. Biophys. Acta, 76, 266 (1963).

 20 Lipsett, M., these PROCEEDINGS, 46, 445 (1960).

²¹ Haselkorn, R., and P. Doty, J. Biol. Chem., 236, 2738 (1961).

²² Haselkorn, R., and L. Johnson, unpublished results.

²³ Nathans, D., G. Notani, J. Schwartz, and N. Zinder, these PROCEEDINGS, 48, 1424 (1962). ²⁴ Tsugita, A., H. Fraenkel-Conrat, M. Nirenberg, and J. Matthaei, these PROCEEDINGS, 48, 846 (1962).

25Singer, M., 0. Jones, and M. Nirenberg, these PROCEEDINGS, 49, 392 (1963).

ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID, XVI. OLIGONUCLEOTIDES AS TEMPLATES AND THE MECHANISM OF THEIR REPLICATION*

BY ARTHUR KORNBERG, LEROY L. BERTSCH, JOHN F. JACKSON,[†] AND H. G. KHORANA

DEPARTMENT OF BIOCHEMISTRY, STANFORD UNIVERSITY SCHOOL OF MEDICINE, PALO ALTO, CALIFORNIA; INSTITUTE FOR ENZYME RESEARCH, UNIVERSITY OF WISCONSIN, MADISON

Communicated December 30, 1963

DNA' in the molecular weight range of a million or more serves as a primer for replication by DNA polymerase but the minimal size of ^a DNA molecule that will function has not been determined. Extensive digestion with pancreatic deoxyribonuclease destroys the priming capacity of a DNA preparation,² and the use of partial digests has failed to establish the range and relative effectiveness of molecules of intermediate size. With the availability of synthetic deoxyribopolynu-