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Abstract

When testing association between rare variants and diseases, an efficient analytical approach involves considering a set of
variants in a genomic region as the unit of analysis. One factor complicating this approach is that the vast majority of rare
variants in practical applications are believed to represent background neutral variation. As a result, analyzing a single set
with all variants may not represent a powerful approach. Here, we propose two alternative strategies. In the first, we analyze
the subsets of rare variants exhaustively. In the second, we categorize variants selectively into two subsets: one in which
variants are overrepresented in cases, and the other in which variants are overrepresented in controls. When the proportion
of neutral variants is moderate to large we show, by simulations, that the both proposed strategies improve the statistical
power over methods analyzing a single set with total variants. When applied to a real sequencing association study, the
proposed methods consistently produce smaller p-values than their competitors. When applied to another real sequencing
dataset to study the difference of rare allele distributions between ethnic populations, the proposed methods detect the
overrepresentation of variants between the CHB (Chinese Han in Beijing) and YRI (Yoruba people of Ibadan) populations
with small p-values. Additional analyses suggest that there is no difference between the CHB and CHD (Chinese Han in
Denver) datasets, as expected. Finally, when applied to the CHB and JPT (Japanese people in Tokyo) populations, existing
methods fail to detect any difference, while it is detected by the proposed methods in several regions.
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Introduction

Genome-wide association studies (GWAS) have become popular

tools for identifying genetic susceptibility variants for complex diseases.

The success of this approach relies on the common disease-common

variant (CDCV) hypothesis, which presumes that phenotypic variation

of common diseases is explained by several common variants, each

with a relatively small effect [1,2,3]. For the purpose of association

mapping, hundreds of thousands of common variants across the

genome are genotyped and examined. In cases where causative

variants are not directly genotyped, association analysis can still be

achieved through indirect linkage disequilibrium (LD) mapping.

Despite the fruitful findings of recent GWAS [4], it is still

disappointing that only a small portion of phenotypic variation has

been attributed to common, identified genotypic variants for the

traits studied. Increasing sample size and/or genotyping greater

numbers of SNPs may help identify additional genetic suscepti-

bility variants. However, the potential additional yield of this

approach remains to be seen. Extensive studies have provided an

alternative to the CDCV hypothesis, termed the common disease-

rare variant (CDRV) hypothesis, that may also be important to the

etiology of complex diseases [5,6,7]. In the CDRV hypothesis,

phenotypic variation is assumed to be caused by multiple rare

variants [8,9,10,11,12,13,14]. Though individual mutation has a

low frequency, their gene-wise or pathway-wise aggregate

frequency could be substantially large, which makes it possible

for rare variants to be the cause of common diseases. It seems that

either the CDCV or CDRV hypotheses hold under certain

conditions, and that the etiology of complex disease reflects a

mixture of both hypotheses along with effects from other factors,

e.g., gene by gene interactions and environments.

When analyzing rare variants for association with phenotypes,

ordinary variant by variant methods have insufficient statistical

power due to allelic heterogeneity as well as the extreme rarity of

individual variants [15]. Alternatively, an efficient strategy has been

proposed that considers a set of rare variants in a genomic region as

the unit of analysis [15,16,17,18,19,20,21]. One complication that

arises in this group-wise strategy, however, is that not all rare

variants are potentially disease-causing; rather, a large proportion

are believed to represent background neutral variation. Obviously,

including rare variants that are irrelevant to phenotype into sets

would lead to a reduced signal to noise ratio, with a consequent

reduction in statistical power. Recent studies have suggested

focusing on non-synonymous variants in gene coding regions

[14,16]. Nonetheless, a remarkable proportion of non-synonymous

variants may still represent background population variation [8,22].

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e14288



When neutral variants make up a relatively large proportion,

analyzing the set with total variants may not represent an optimal

approach to performing powerful association tests.

In this study, aiming to improve statistical power of association

tests in the presence of neutral rare variants, we propose two

alternative strategies. We utilize simulations to investigate and

compare the performance of tests with different strategies under a

variety of conditions. Finally, we apply the proposed methods to

two real sequencing datasets to demonstrate their utilities.

Materials and Methods

Assume that there are nc affected individuals and nu normal

individuals, so that the total number of individuals is n = nc+nu.

Assume that a genomic region containing L rare variants

(MAF,0.01) is to be examined for association with the disease,

and genotype data gil (i = 1,…, n, l = 1,…, L) are available at all

variants for each individual. Here, the unit of analysis is the set of

variants rather than individual variants. Given the set of L

variants, a variety of grouping strategies exist. In the simplest way,

a single set, termed GT, is formed by including all variants. This

grouping strategy, referred to as total grouping, is widely adopted

by existing methods. We here describe two alternative grouping

strategies. In the first one (selective grouping), two sets are

selectively formed: one in which each variant has a greater

frequency in cases than in controls, and the other in which each

variant has a greater frequency in controls. We term the two

formed sets as GC and GU. In the second one (exhaustive grouping),

a total number of R = 2L-1 subsets (G1,…, GR) are formed

exhaustively. Below we outline two popular association tests and

their implementations with various grouping strategies.

Collapsing
Given a set of variants, the collapsing method [15] defines an

indicator variable for each individual i:

Xi~
1 rare variants present
0 otherwise

�
:

Association is then examined on X between case and control

populations. The authors also proposed a combined multivariate

collapsing (CMC) method for analyzing rare and common variants

jointly. Since all variants to be investigated in this study are rare,

the CMC method is thus not applicable.

In the total grouping strategy, X is defined on the set GT. The

Fisher exact test (FET) is used to test the association and a two-

sided p-value is reported.

In the selective grouping strategy, X is defined and examined on the

two sets GC and GU separately. To compare with the total grouping

method fairly, we perform a two-sided test by examining whether rare

variants distribute differently between cases and controls. In order to

implement this test, the FET is applied to GC and GU separately, and

two one-sided p-values, termed pc and pu, are obtained. Note that the

FET here is merely a device measuring the strength of evidence against

the null hypothesis. A provisional index of significance, q, is calculated

as the minimum of the two nominal p-values obtained

q~min pc,puð Þ:

The significance of q is determined by Monte Carlo permutation

testing [17]. Specifically, we perform k replicates. In each replicate,

we permute the case/control status and perform the FET on the

permuted sample, from which the provisional index for the

replicate is obtained. A permutation p-value will be reported,

which is defined as k0/k, where k0 is the number of replicates that

have the indexes equal to or smaller than q.

In the exhaustive grouping strategy, X is defined on each of the

R formed subsets. The FET is applied to each subset separately,

and the smallest two-sided p-value over the R tests is taken as the

statistic.

Identifying the subset of variants that renders the smallest p-

value by testing subsets exhaustively, however, is computationally

demanding. When the number of variants involved is large, e.g.,

several dozens to hundreds, the exhaustive grouping strategy may

become computationally prohibitive. We note that some subsets

do not need to test. Taking a particular set G as an example, if one

of its subsets G-r, formed by removing a variant r from G, renders a

smaller p-value than that attained with G, then none of subsets of

G containing the variant r are likely to yield a smaller p-value than

attained with G-r, and consequently do not need to test. This

observation is driven by the fact that all variants in a set act

additively. We thus propose a simple and efficient algorithm to

reduce the number of tests. The algorithm is outlined below:

1) Set a candidate global set of variants G, which is specified by

the rare variants it contains, and is initialized to include all

variants. Set a global variable P for the minimal p-value,

which is initialized to be equal to the p-value rendered by

the initialized set G.

2) For each variant in G, remove it from G to form a subset

G21. Collapsing test is then examined on G21 and a two-

sided p-value is obtained. For m rare variants in G, there will

be m subsets each consisting of m-1 rare variants. Of the m

calculated p-values, the minimal one and the corresponding

subset are denoted as P ’ and Gmin, respectively.

3) Set G = Gmin, and set P = P ’ if P ’,P.

4) Repeat steps 2) and 3) until the set G contains no variant.

The value P will be the p-value sought. Here, we adopt a step-

wise approach and exclude one variant in each repetition. In this

way, the number of subsets that need to be tested is reduced from

2L-1 to L(L+1)/2 and the computation cost is reduced accordingly.

By running 100 simulated datasets each with 10 or 20 variants, we

observed that the algorithm found the correct minimal p-values in

all cases. Nonetheless, there is no guarantee for the accuracy, so we

will call this test the approximately optimal collapsing (AOC).

The significance of the test is again evaluated by Monte Carlo

permutation testing. Specifically, the case/control status is

permuted k times, and for each replicate the approximately

smallest p-value is calculated by the algorithm. A permutation p-

value is estimated and reported.

Group-wise weighted sum test (GWWS)
GWWS performs a one-sided test of whether there is an excess

of rare variants in a particular population, i.e., cases. In the total

grouping strategy, the GWWS method [17] is comprised of the

following steps for testing association:

1) For each variant l, calculate a weight ŵwl~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n:ql 1{qlð Þ

p
,

where ql~
mU

l z1

2nuz2
, where mU

l is the number of mutant

allele observed in the control population.

2) For each individual i, calculate a genetic score Xi~
XL

l~1

Iil

ŵwl

,

where Iil is the number of mutant allele at the lth variant.

Test Rare Variants for Disease
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3) All individuals are ranked according to genetic scores

calculated in 2).

4) The sum of rank of case individuals, termed S, is taken as the

statistic.

The significance of the test is again evaluated by permutation

testing. Specifically, in each of k replicates, case/control status is

permuted and the statistic is calculated. A normality approxima-

tion is used to estimate p-value. Denote the mean and standard

deviation of S over the k replicates as m̂ms and ŝss. A normalized

statistic is given by

zs~
S{m̂ms

ŝss

:

The statistic zs approximately follows a standard normal

distribution under the null hypothesis of no association, from

which a two-sided p-value will be evaluated and reported.

In the selective grouping strategy, GWWS is applied to GC and

GU separately, and two normality approximated p-values, p1 and

p2, are obtained. The final p-value ps is taken as the minimal of the

two p-values adjusted by the Bonferroni correction

ps~min 1, 2:min p1,p2ð Þð Þ:

The exhaustive grouping strategy is applied to GWWS as well in

principle. However, the computation will be expensive since for

each of the R subsets, a series of permutations are required to

evaluate the significance. We thus do not implement the

exhaustive grouping strategy for GWWS.

There also exist several extensive methods that test association

between rare variants and diseases [14,18]. As the purpose of the

current study is to compare different grouping strategies rather

than different tests, we thus do not include these extensive methods

into analysis.

Simulation studies
Simulating allele frequency spectrum. In order to

investigate and compare the performance of various methods,

we conducted a series of simulation studies. We focused on the

European population and simulated sequence data by the use of a

four-parameter demographic model [16,23]. In this model, the

shape of European population history is assumed to start by a

constant ancestral population, followed by a population bottleneck

with a reduction in effective size, and then by an exponentially

expansion of the population until to the present. The four

parameters involved are the constant ancestral population size N1,

the bottleneck population size Nb, the duration of time T after the

bottleneck (measured by generation), and the population growth

rate c after the bottleneck. The detailed inference of the model was

described previously [16,24], and in the appendix S1, we outlined

the process. We formulated the demographic model in a likelihood

framework, and estimated the parameters of the model by

analyzing the real sequencing data produced by the ENCODE3

project [25]. The sequence data simulated from the model fitted

the real data well (Figure S1).

Using the inferred demographic model, we simulated full range

frequencies of sequence data to mimic a sequencing association

study. Specifically, we simulated sequence data for a gene with

1,000 nucleotides. The number of generated variants may vary,

but is approximately proportional to gene length.

Simulating phenotype. Both common and rare variants

may contribute to complex diseases. However, the usual way for

an association study is to analyze these two kinds of variants

separately. As the intention of this study is to analyze rare variants,

we thus use rare variants (MAF,1%) only to generate phenotype

and to test association. Though we focused on a case/control study

design, we simulated a pool of quantitatively phenotyped

individuals, from which we selected individuals with extreme

phenotypes as case/control subjects. This extreme sampling study

design is widely adopted in practical applications [10,14,16], and

its advantage over conventional sampling according to case/

control status is that enlarging the pool of phenotyped individuals

alone can increase statistical power to detect association, without

additional sequencing cost. Specifically, we simulated a pool of

50,000 phenotyped individuals, from which 500 individuals with

the lowest phenotypes and 500 with the highest were selected and

labeled as control and case subjects, respectively.

On simulating phenotype, a specified proportion of variants

were randomly selected as causative, while the remainder were

assumed to be neutral. Unless otherwise specified, we set the

proportion to be equal to 30%. To take into account the

uncertainty of phenotypic model under which multiple rare

variants jointly influence phenotype, we simulated the phenotype

under three phenotypic models.

Model 1: Causative alleles affected the phenotype equally

and in a cumulative way. Specifically, we defined a genetic

score for each individual i

xi~
XLc

l~1

gil ,

where Lc was the number of causative variants. Since

homozygous mutant genotypes are much rarer for rare

variants, we assumed an additive mode of inheritance and

encoded gil as 0, 1, or 2 for homozygous wild type,

heterozygous type, or homozygous mutant genotypes.

Model 2: The presence of one or more causative variants

caused the same shift of phenotypic mean. Specifically, the

genetic score was defined as an indicator

xi~
1 causative variants present
0 otherwise

�
:

This model corresponds to the assumption adopted by the

collapsing method [15].

Model 3: Rarer variants were assumed to render larger

per-allele effects. Correspondingly, the genetic score was

defined as a weighted sum

xi~
XLc

l~1

gil

wl

,

where wl~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pl 1{plð Þ

p
, where pl was the allele frequency

in the population. This model corresponded to the

assumption adopted by GWWS [17].

In table S1, we list the interaction of various phenotypic models

and genotypic encoding schemes by various tests. Note that other

Test Rare Variants for Disease
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intermediate phenotypic models could also be the case for the trait,

which will not be investigated in this study.

Under each model, the phenotype was generated by the

ordinary regression equation

yi~mzbxizei,

where m was the grand mean; ei was assumed to follow a normal

distribution with mean zero. The coefficient b was determined by

the locus heritability h2, which was defined as the proportion of

phenotypic variation explained by x,

h2~
b2var xð Þ

b2var xð Þzvar eð Þ
:

Evaluating performance. We evaluated the performance of

various tests described in this manuscript: collapsing, GWWS,

approximately optimal collapsing (AOC), selective collapsing

(SCollapsing), and selective GWWS (SGWWS). Statistical

properties, including type I error rate and power, of these tests

were investigated by simulation studies. Type I error rate was

evaluated by setting the locus heritability h2 to zero, whereas

power was evaluated by setting it to a specific value. Unless

otherwise specified, the value of h2 was set to 0.5% to simulate a

modest genetic effect. Both type I error rate and power were

estimated on 1,000 replicates, at the significance levels of 0.05 and

1.0E-3, respectively. For each replicate, 10,000 permutations will

be performed when needed. Both type I error rate and power were

defined as the proportion of replicates in which the p-value was

equal to or smaller than the significance threshold.

Simulation results
Type I error rates. While all other tests have correct type I

error rates that are close to the target level, SGWWS has a type I

error rate lower than the target level (table 1). This conservative

performance is caused by the fact that the Bonferroni correction is

used to adjust two dependent tests in SGWWS. We also estimated

type I error rates on naturally occurred sequence data of Chinese

Han in Beijing (CHB) and Yoruba people of Ibadan (YRI)

populations of the ENCODE3 project. To accomplish this, we

permuted all individuals’ population attribute, and then analyzed

the permuted datasets. Again, SGWWS has a conservative

performance while other tests are robust in all studied genomic

regions (table 2).

Power with the proportion of causative variants. In

figure 1, we estimated the power of various tests under different

proportions of causative variants. Obviously, all tests have

improved power with increasing proportion of causative

variants. At low proportion of causative variants, tests that are

Table 1. Type I error rates.

Gene length

Sequenced
size Test 500 1,000 1,500 2,000

500 Collapsing 3.4 4.0 3.8 3.9

SCollapsing 4.8 4.9 4.9 4.6

AOC 5.1 4.9 5.0 5.2

GWWS 5.1 5.1 4.8 4.8

SGWWS 2.6 3.6 3.8 4.2

1,000 Collapsing 3.8 4.7 4.3 4.1

SCollapsing 4.6 4.9 5.2 4.9

AOC 4.7 5.1 5.2 4.9

GWWS 4.9 5.0 5.0 5.5

SGWWS 2.7 3.5 4.1 4.4

2,000 Collapsing 4.3 4.7 4.4 4.0

SCollapsing 4.8 5.3 4.7 5.1

AOC 4.9 5.0 4.8 5.2

GWWS 5.0 5.0 5.1 4.9

SGWWS 2.8 3.7 4.0 4.3

Notes: A total number of 50,000 quantitatively phenotyped individuals were
simulated, of which 500, 1,000, and 2,000 individuals with equally numbers of
highest and lowest phenotypes were selected as case and control subjects. The
gene length varied from 500 to 2,000 nucleotides. Type I error rates were
estimated on 1,000 replicates at the significance level 0.05. For each replicate,
10,000 permutations were performed. Abbreviation: Collapsing, the collapsing
method proposed by Li and Leal [15]; SCollapsing, the collapsing method with
selective grouping strategy; AOC, the approximately optimal collapsing; GWWS,
the group-wise weighted sum method proposed by Madsen and Browning [17];
SGWWS, the GWWS method with selective grouping strategy.
doi:10.1371/journal.pone.0014288.t001

Table 2. Type I error rates on the ENCODE3 datasets.

Test

Region #variants Collapsing SCollapsing AOC GWWS SGWWS

ENr221 90 4.8 5.0 5.1 5.1 3.9

ENm010 152 3.9 4.8 4.9 4.9 4.1

ENr321 141 4.8 5.1 5.0 4.8 4.0

ENr232 127 5.1 4.9 4.8 4.5 4.6

ENr123 76 4.7 4.9 5.2 4.8 4.5

ENr213 126 5.2 5.2 4.6 5.1 3.9

ENr133 102 4.7 4.6 4.8 5.2 4.5

Notes: Seven ENCODE3 regions are available for analysis. In each region, we tested the overrepresentation of rare variants between the CHB (90 individuals) and the YRI
populations (120 individuals). The MAF cutoff 1% was applied. For each dataset, the total number of variants was given. To evaluate the type I error rate, we permuted
each individual’s population attribute and analyzed the permuted datasets. Type I error rates were estimated on 1,000 replicates at the significance level 0.05. See notes
for table 1 for abbreviation detail.
doi:10.1371/journal.pone.0014288.t002
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based on alternative grouping strategies have largely improved

power over tests on grouping all variants. For example, at

proportion 0.1, the power of AOC, SCollapsing and SGWWS

under model 1 are 64.1%, 29.8% and 29.7%, while that of

Collapsing and GWWS are only 7.4% and 10.5%, respectively.

When the proportion increases, the magnitude of power

improvement gets minor. Finally when at high proportion, tests

with grouping all variants instead have higher power. This

simulation clearly shows that when the proportion of causative

variants is low to modest, the proposed alternative grouping

strategies are advantageous.

Power with gene heritability. We then evaluated the power

of various tests under different gene heritabilities. All tests have

improved power with increasing heritability (figure 2). Among

tests, AOC has the highest power, followed by SGWWS,

SCollapsing, GWWS, and Collapsing. Phenotypic model has

limited influence in relative performance of tests, but all tests have

lower power in model 3 than in models 1 and 2. AOC, SGWWS,

and SCollapsing have power around 75%, 70% and 60%

respectively to detect gene with 0.5% heritability in models 1

and 2, while that of GWWS and Collapsing are 45% and 35%.

When the heritability finally increases to 1.0%, tests with

alternative groupings have nearly 100% power in models 1 and

2, and over 80% in model 3. GWWS has approximately 90%

power in models 1 and 2, and in model 3 its power is around 80%.

While the power of Collapsing in models 1 and 2 maintains at

75%, it is only 60% in model 3.

Power with gene length. Fixing the proportion of causative

variants and gene heritability, we then estimated the effect of gene

length on power estimate. As shown in figure 3, all tests have

decreased power with increased gene length in all phenotypic

models. Among tests, tests with alternative grouping strategies

generally have higher power over GWWS and Collapsing.

Power with phenotyped sample size. Table 3 lists the

power of various tests with different numbers of phenotyped

individuals. Obviously, enlarging the pool of phenotyped

individuals alone can substantially improve the power. Again,

tests with alternative groupings are more powerful than that with

grouping all variants.

Computation time. The computation time was determined

by running a dataset containing 500/500 individuals and a gene

with 1,000 nucleotides on a desktop computer with an Intel

2.40 GHz Core 2 Duo CPU E4600. All tests but AOC complete

the computation within seconds for 10,000 permutations; AOC

takes approximately one hour with 1,000 permutations. This is

because the time complexity for AOC is quadratic to the number

of variants while it is linear for other tests.

Application I
As a first application, we re-analyzed the sequence data

produced by Cohen et al. [11]. In their study, in order to examine

the association of the candidate gene NPC1L1 with low density

lipoprotein cholesterol (LDL-C) level, the authors sequenced the

gene in an initial sample with two groups each comprising 128

individuals with lowest and highest ratios of campesterol to

lathosterol (Ca:L ratio) from the Dallas Heart Study (DHS,

Sample 1). A total number of 16 rare non-synonymous variants

were discovered, 13 of which are exclusive in cases and 3 exclusive

in controls.

To validate their findings, the authors sequenced the same gene

in a second sample comprising the same numbers of individuals

again from the DHS with the next lowest and highest Ca:L ratios

(Sample 2). A total number of 12 rare non-synonymous variants

were discovered, 10 of which are exclusive in cases and 2 exclusive

in controls.

In addition to analyzing the two samples separately, we

combined them and analyzed the total rare variants together

(Combined).

Application I results
As shown in table 4, all tests have the ability to detect the

association at the significance level 0.05, but tests with the

proposed grouping strategies produce smaller p-values than those

with grouping all variants. For example, when applied to the

combined sample, AOC, SCollapsing, and SGWWS have p-values

3.90E-5, 3.68E-5, and 5.86E-6, while that of Collapsing and

GWWS are 1.23E-4 and 1.00E-4, respectively.

Application II
As a second application, we analyzed the sequence datasets

produced by the ENCODE3 project [25]. In the ENCODE3

project ten 100 kb genomic regions were sequenced in 11

populations. We selected four populations: CHB, Japanese people

in Tokyo (JPT), Chinese Han in Denver (CHD), and YRI for

analysis, of which 90, 97, 30, and 120 individuals were sequenced

respectively. Data on seven genomic regions were available for

analysis. Genotype data (released on March 14th 2008) were

downloaded from the project ftp site (ftp://ftp.hgsc.bcm.tmc.edu/

pub/data/HapMap3-ENCODE/ENCODE3//ENCODE3v1/).

Variants that failed to be called in all individuals were excluded.

Within each region, we examined the difference of rare allelic

distributions between CHB and each of the other three

populations. This is equivalent to an association study by labeling

individuals from one population as cases and that from the other

population as controls [17]. A number of 10,000,000 permutations

were replicated. Since GWWS, unlike the other encoding

schemes, can only test whether there is an enrichment of rare

variants in a particular population, we perform the test twice and

report the minimal of the two p-values.

Application II results
We first tested the overrepresentation of rare variants between

the CHB and YRI populations. The results from the proposed

tests clearly show that rare allelic distribution between the two

populations is significantly different (table 5). Among the tests,

SCollapsing produces the smallest p-values, followed by AOC and

SGWWS, and GWWS, and at last Collapsing. At some regions, p-

values produced by the proposed tests are extremely small. For

example, when analyzing the region ENr213, SCollapsing, AOC,

and SGWWS have p-values 1.00E-7, 1.00E-7, and 1.22E-7, while

that of GWWS and Collapsing are 3.72E-4 and 1.27E-3. Though

GWWS and Collapsing have the ability to detect the difference in

Figure 1. Power with the proportion of causative variants. A total of 50,000 phenotyped individuals were simulated, of which 500 with lowest
and 500 with highest phenotypes were selected as control and case subjects, respectively. A gene with 1,000 nucleotides was simulated, and the
proportion of causative variants varied from 0.1 to 1.0. The gene was assumed to explain a proportion of 0.5% of phenotypic variation. Three
phenotypic models were simulated. In model 1, causative alleles affected the phenotype equally and in a cumulative way. In model 2, the presence of
one or more causative variants caused the same shift of phenotypic mean. In model 3, rarer causative variants had a larger per-allele effect and
variants contributed to the phenotype in a cumulative way. Power was estimated on 1,000 replicates at the significance level 1.0E-3.
doi:10.1371/journal.pone.0014288.g001
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Figure 2. Power with gene heritability. A total of 50,000 phenotyped individuals were simulated, of which 500 with lowest and 500 with highest
phenotypes were selected as control and case subjects, respectively. A gene with 1,000 nucleotides was simulated, and the proportion of causative
variants was set to 30%. Three phenotypic models were simulated. Under each model, the gene heritability varied from 0.1% to 1.0%. Power was
estimated on 1,000 replicates at the significance level 1.0E-3.
doi:10.1371/journal.pone.0014288.g002
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Figure 3. Power with gene length. A total of 50,000 phenotyped individuals were simulated, of which 500 with lowest and 500 with highest
phenotypes were selected as control and case subjects, respectively. The proportion of causative variants was set to 30%, and the gene heritability
was set to 0.5%. Three phenotypic models were simulated. Under each model, the gene length varied from 500 to 2,000 nucleotides. Power was
estimated on 1,000 replicates at the significance level 1.0E-3.
doi:10.1371/journal.pone.0014288.g003
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some regions, in other regions their p-values are not significant

even at the level 0.05.

We then analyzed the CHB and JPT populations, as listed in

table 6. Collapsing and GWWS report none regions to exhibit

difference at the significance level 0.05. In contrast, SCollapsing

detects four regions that have different distributions between the

two populations. Taking two additional regions reported by

SGWWS into account, of 7 regions there are 6 are detected by the

proposed tests to exhibit difference. These findings clearly

demonstrate the ability of the proposed tests in detecting tiny

effects that the existing methods fail to detect.

Finally, we analyzed the CHB and CHD datasets. As

individuals in these two datasets are from the same population,

it is expected that no difference exists between these two

datasets. As expected, none region except ENr213 shows any

significant difference by any test (table 7). SCollapsing and AOC

detect that rare variants in the region ENr213 may distribute

differently.

Discussion

In this study, in order to improve statistical power of testing

disease-associated rare variants, we proposed two alternative

grouping strategies to the strategy of grouping total variants. When

the proportion of neutral variants is moderate to large we show, by

simulations, that both the proposed grouping strategies improve

power. The applications to two real sequencing studies demon-

strate the utilities of the proposed methods.

Currently, GWAS is the most widely used approach for

identifying genes that are associated with complex diseases. In a

typical GWAS, causative variants are usually not observable;

instead, their effects are detected through nearby SNP markers,

with the power depending on the strength of linkage disequilib-

rium (LD) between them. Thus, the pattern of LD underpins the

validity and success of this indirect association approach. In

sequencing studies, on the other hand, the observed genetic

variants are usually hypothesized to be directly functional and are

of primary interest. Furthermore, the level of LD between rare and

nearby variants is usually extremely low [8]. Thus, direct

association mapping is preferable for analyzing rare variants.

Due to their low coverage, current genotyping platforms are

inefficient for discovering rare variants. Fortunately, advances in

the development of sequencing technologies [26,27], and the

recently launched 1000 genomes project [28], make sequencing

huge numbers of rare variants across the entire genome a reality in

the coming years.

The strategy of grouping rare variants has proven to be a

powerful approach for analyzing rare variants. If potential

causative variants account for the vast majority of variants, the

utility of grouping total variants should be adequate, but this is

unlikely to be the majority of cases in practical applications. A

recent large-scale X chromosome sequencing study suggests that a

large quantity of mis-sense substitutions in candidate genes exist

indistinguishably in both of the case and control populations [8],

indicating that a considerable proportion of mis-sense substitutions

are actually background variation. Under such circumstances, the

issue of distinguishing truly functional variants from background

neutral variations is a major analytical challenge to this approach.

Alternative grouping strategies, e.g., the two proposed in this

manuscript, are warranted. The analyses of real sequencing

datasets verify the superiority of the proposed methods over the

existing methods.

Table 3. Power with phenotyed sample sizes.

Phenotyped Sample Size

Phenotypic
Model Test 25,000 50,000 100,000

Model 1 Collapsing 0.23 0.35 0.45

SCollapsing 0.42 0.57 0.72

AOC 0.64 0.73 0.85

GWWS 0.30 0.45 0.56

SGWWS 0.54 0.69 0.81

Model 2 Collapsing 0.28 0.37 0.46

SCollapsing 0.45 0.61 0.73

AOC 0.56 0.76 0.85

GWWS 0.30 0.43 0.54

SGWWS 0.55 0.69 0.80

Model 3 Collapsing 0.14 0.20 0.29

SCollapsing 0.17 0.25 0.39

AOC 0.34 0.50 0.69

GWWS 0.20 0.31 0.44

SGWWS 0.30 0.41 0.58

Notes: The number of phenotyped individuals varied from 25,000 to 100,000. A
gene with 1,000 nucleotides was simulated, and three phenotypic models were
considered. Thirty percent of the produced variants were assumed to be
causative. The gene was assumed to explain 0.5% of the total phenotypic
variation. Power was estimated on 1,000 replicates at the significance level 1.0E-
3. See notes for table 1 for abbreviation detail.
doi:10.1371/journal.pone.0014288.t003

Table 4. Analyses of the sequence data produced by Cohen et al. [11].

Test

Sample Collapsing SCollapsing AOC GWWS SGWWS

Sample 1 3.16E-3 1.29E-3 1.60E-3 1.96E-3 4.31E-4

Sample 2 0.03 0.01 0.02 0.02 0.02

Combined 1.23E-4 3.68E-5 3.90E-5 1.00E-4 5.86E-6

Notes: The candidate gene NPC1L1 was sequenced in two samples. The first sample (Sample 1) was comprised of 128 individuals with highest ratios of campesterol to
lathosterol (Ca:L ratio) and 128 individuals with lowest ratios from the Dallas Heart Study (DHS). A total number of 16 non-synonymous variants were analyzed, 13 of
which are exclusive in cases and 3 exclusive in controls. The second sample (Sample 2) was comprised of the same number of individuals with the next highest and
lowest Ca:L ratios from the DHS. A total number of 12 non-synonymous variants were analyzed, 10 of which are exclusive in cases and 2 exclusive in controls. The
combined sample was formed by combining the two samples together. See notes for table 1 for abbreviation detail.
doi:10.1371/journal.pone.0014288.t004
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Both of our proposed grouping methods are intuitively

straightforward. In the first strategy of exhaustive grouping, by

testing all subsets, we aim to identify the subset with the clearest

signal. This strategy has been previously adopted in the literature

of haplotype based association [29] and of gene by gene

interaction studies [30]. In the second strategy of selective

grouping, it is intuitive that only those variants that are

overrepresented in one population could be statistically judged

as the risk allele for that population. This strategy, by excluding

non-informative rare variants from grouping, is expected to

improve statistical power when neutral variants comprise a

substantial large proportion of the total variants. We have

demonstrated, through simulations, that our proposed alternative

grouping methods partially solve the problem created by the total

grouping strategy which ignores the noise of background

population variation.

In the selective grouping, two sets Gc and Gu are formed. While

the Gc part may represent potentially causative variants, Gu part is

believed to represent background variation. However, including

Gu part into analysis could provide a two-sided test of whether

variants are associated with the phenotype rather than a one-

sided test of whether variants enrich in a particular population,

i.e., cases. This broader hypothesis makes it comparable to

compare between tests with various grouping strategies. The Gu

part could also be informative in the presence of beneficial

mutations, i.e., those mutations which reduce the risk to the

disease.

For a set of L rare variants, the time complexity for methods

with exhaustive grouping is O(2L), while that for methods without

exhaustive groupings is only O(1). The computation time for

exhaustive grouping increases exponentially with the number of

variants, and is prohibitive for analyzing several dozens to

hundreds of variants. To circumvent this computation issue, we

have developed a step-wise algorithm to search for the minimal p-

value over the set, the time complexity of which is O(L2).

Alternatively, the proposed selective grouping method is compu-

tationally effective, without additional increase in time complexity

compared to total grouping. In practical applications where huge

numbers of rare variants may be involved, e.g., exome studies, the

selective grouping method is thus recommended, and exhaustive

grouping should be regarded as a tool to verify significant results.

Our simulations show that statistical power of testing association

decreases as gene elongates, though the proportion of causative

variants is fixed. To understand this phenomenon, gene

heritability must be taken into consideration, which was always

fixed at 0.5% as gene length varied in our simulations. Longer

gene introduces more noise, which tends to reduce power. Though

meanwhile it introduces a greater number of causative variants as

well, the phenotypic effect of these causative variants, that is, gene

heritability, remains unchanged. In other words, the per-variant

Table 5. Analyses of the ENCODE3 datasets for the CHB and YRI populations.

Test

Region #variants Collapsing SCollapsing AOC GWWS SGWWS

ENr221 90(31/59) 0.11 5.37E-6 9.00E-4 0.02 1.53E-4

ENm010 152(56/96) 0.58 2.21E-6 1.10E-3 0.04 1.22E-3

ENr321 141(53/88) 0.20 2.04E-7 1.00E-7 0.02 6.25E-6

ENr232 127(59/68) 0.89 6.63E-4 0.01 0.34 0.03

ENr123 76(27/49) 1.00 8.10E-4 0.02 0.50 0.03

ENr213 126(35/91) 1.27E-3 1.00E-7 1.00E-7 3.72E-4 1.22E-7

ENr133 102(37/65) 0.03 1.63E-5 8.05E-4 0.03 1.98E-4

Notes: We tested the overrepresentation of rare variants between the CHB (90 individuals) and YRI populations (120 individuals). For each region, the total number of
variants was given, followed by the number of variants that have larger frequencies in the CHB population (the first number in the parenthesis) and the number of
variants that have larger frequencies in the YRI population (the second number in the parenthesis). See notes for table 1 for abbreviation detail.
doi:10.1371/journal.pone.0014288.t005

Table 6. Analyses of the ENCODE3 datasets for the CHB and JPT populations.

Test

Region #variants Collapsing SCollapsing AOC GWWS SGWWS

ENr221 55(33/22) 0.26 0.15 0.07 0.19 0.05

ENm010 122(63/59) 0.76 0.04 0.24 0.34 0.15

ENr321 108(54/54) 0.77 5.73E-3 0.06 0.35 0.12

ENr232 104(69/35) 0.07 0.79 0.04 0.09 0.05

ENr123 63(35/28) 0.43 0.05 0.07 0.42 0.08

ENr213 81(38/43) 1.00 0.02 0.12 0.53 0.14

ENr133 63(33/30) 0.88 0.26 0.43 0.74 0.48

Notes: We tested the overrepresentation of rare variants between the CHB (90 individuals) and JPT populations (97 individuals). For each region, the total number of
variants was given, followed by the number of variants that have larger frequencies in the CHB population (the first number in the parenthesis) and the number of
variants that have larger frequencies in the JPT population (the second number in the parenthesis). See notes for table 1 for abbreviation detail.
doi:10.1371/journal.pone.0014288.t006
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effect gets smaller with longer gene. Consequently, though signal-

to-noise ratio is fixed, the power would still tend to decrease as

gene elongates. This trend of power with gene length (or number

of variants) was also observed in previous studies [16,17].

The problem of population stratification by admixture of

different ethnic populations is a serious concern for association

studies [31,32,33] with both common and rare variants. Strictly

matched case-control pairs, e.g., affected case and its unaffected

sib, provide the most reliable guard against population stratifica-

tion. However, recruiting such samples is costly and difficult. For

association studies with common variants, spurious associations

can be controlled at the population level, towards which a variety

of approaches have been proposed [34,35,36]. For studies with

rare variants, on the other hand, little is known on the magnitude

of the impact of population stratification and on the performance

of existing correction approaches. We therefore restricted our

analyses to homogeneous populations, but the issue of population

stratification deserves further investigation.

In this study, we used a MAF cutoff 0.01 for a rare variant, but

other cutoffs could be used as well. In our simulation studies we

show that our proposed strategies could improve power when the

proportion of causative variants is low to modest, while the power

improvement is little or even negative when the proportion is

large. Thus, the proper test for a particular study should be chosen

according to the knowledge on the distribution of potential

causative variants. In most practical applications where there is no

knowledge on the potential causative variants, cross-validation of

the results from various tests is warranted.

Statistical methods derived not from classical statistical theories,

like the ones proposed in this manuscript, may be biased. The

biasness could be evaluated by simulation studies, which showed

that on one hand, the power rate of the proposed tests was equal to

the significance level under the null hypothesis. On the other

hand, the power rate was an increasing function of locus effect

and/or proportion of causative variants so that it would excess the

significance level under the alternative hypothesis. These two

aspects of power function under the null and alternative hypothesis

together indicated that the proposed tests were unbiased.

Despite the methods proposed in this manuscript, analyzing

associations between rare variants and complex diseases remains

quite challenging. When neutral variants comprise a large

proportion of the total variants, the selective grouping is still

low-powered, and more specialized approaches are expected to

emerge. In the study of Tarpey et al. [8], three new genes were

identified for mental retardation. From a statistical point of view,

however, none of the three genes were statistically significant.

Rather, the authors compared amino acids with their orthologs

from other species, and ranked the importance of amino acids

according to their conservation scores. This approach holds

promise for further methodological development and might

provide another tool for performing powerful association tests by

considering biological or evolutionary information.

Supporting Information

Appendix S1 The appendix that describes the process of

demographic model.

Found at: doi:10.1371/journal.pone.0014288.s001 (0.09 MB

DOC)

Figure S1 Fitness of simulated variants to experimental variants.

Legend: Sequence data of European population from the

ENCODE3 project were used to estimate demographic model.

Data of 119 individuals (238 haplotypes) on 7 genomic regions

were available. After filtering out variants with missing genotypes,

a total of 83 gene-coding variants and 953 non-coding (neutral)

variants were used for analysis, corresponding to 5.3 kb and

66.7 kb sequence sites respectively. A: the fitness of simulated

allele frequencies to experimental data on neutral variants; B: the

fitness of simulated allele frequencies to experimental data on

gene-coding variants.

Found at: doi:10.1371/journal.pone.0014288.s002 (0.27 MB TIF)

Table S1 Phenotypic models versus encoding schemes

Found at: doi:10.1371/journal.pone.0014288.s003 (0.07 MB

DOC)
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Table 7. Analyses of the ENCODE3 datasets for the CHB and CHD populations.

Test

Region #variants Collapsing SCollapsing AOC GWWS SGWWS

ENr221 53(37/16) 1.00 0.92 0.44 0.92 0.99

ENm010 102(67/35) 0.67 0.12 0.11 0.36 0.42

ENr321 101(64/37) 1.00 0.41 0.83 0.32 0.49

ENr232 100(78/22) 0.29 0.59 0.66 0.38 0.43

ENr123 51(39/12) 0.14 0.65 0.68 0.11 0.36

ENr213 88(60/28) 0.29 4.32E-3 0.01 0.19 0.10

ENr133 45(32/13) 0.83 0.78 0.62 0.92 0.88

Notes: We tested the overrepresentation of rare variants between the CHB (90 individuals) and CHD populations (30 individuals). For each dataset, the total number of
variants was given, followed by the number of variants that have larger frequencies in the CHB population (the first number in the parenthesis) and the number of
variants that have larger frequencies in the CHD population (the second number in the parenthesis). See notes for table 1 for abbreviation detail.
doi:10.1371/journal.pone.0014288.t007
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