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Purpose: Intensity-modulated radiation therapy �IMRT� is the state of the art technique for head
and neck cancer treatment. It requires precise delineation of the target to be treated and structures
to be spared, which is currently done manually. The process is a time-consuming task of which the
delineation of lymph node regions is often the longest step. Atlas-based delineation has been
proposed as an alternative, but, in the authors’ experience, this approach is not accurate enough for
routine clinical use. Here, the authors improve atlas-based segmentation results obtained for level
II–IV lymph node regions using an active shape model �ASM� approach.
Methods: An average image volume was first created from a set of head and neck patient images
with minimally enlarged nodes. The average image volume was then registered using affine, global,
and local nonrigid transformations to the other volumes to establish a correspondence between
surface points in the atlas and surface points in each of the other volumes. Once the correspondence
was established, the ASMs were created for each node level. The models were then used to first
constrain the results obtained with an atlas-based approach and then to iteratively refine the solu-
tion.
Results: The method was evaluated through a leave-one-out experiment. The ASM- and atlas-based
segmentations were compared to manual delineations via the Dice similarity coefficient �DSC� for
volume overlap and the Euclidean distance between manual and automatic 3D surfaces. The mean
DSC value obtained with the ASM-based approach is 10.7% higher than with the atlas-based
approach; the mean and median surface errors were decreased by 13.6% and 12.0%, respectively.
Conclusions: The ASM approach is effective in reducing segmentation errors in areas of low CT
contrast where purely atlas-based methods are challenged. Statistical analysis shows that the im-
provements brought by this approach are significant. © 2010 American Association of Physicists
in Medicine. �DOI: 10.1118/1.3515459�
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I. INTRODUCTION

As one of the state of the art techniques for head and neck
cancer treatment, intensity-modulated radiation therapy
�IMRT� requires a precise delineation of both the target vol-
ume and the structures to be spared. Manually delineating
contours in CT images, which is the standard of care, is a
lengthy process even for an experienced physician. One of
the most time-consuming tasks is the delineation of the cer-
vical lymph node chain and the surrounding normal anatomi-
cal structures of the head and neck. The process of bilateral
lymph node definitions for the entire neck can typically take
between 20 and 45 min, depending on the patient’s level of
complexity. In contrast, delineation of the gross tumor vol-

ume typically requires on the order of 5 min or less. Further-
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more, for many cancers of the head and neck, there is almost
always some risk of spread of cancer to the cervical �neck�
lymph nodes. In many cases, the lymph nodes have micro-
scopic disease even when they appear completely normal on
CT, PET, or MRI. Instead of having a patient undergo a
surgical sampling of all the lymph nodes of the neck, it is a
standard practice to deliver radiation prophylactically to
these regions even when there is no radiological evidence of
enlargement. An automatic technique capable of segmenting
normal-looking lymph nodes could thus have a significant
impact on the daily clinical load.

Atlas-based segmentation has been proposed as an ap-
proach to segment the lymph nodes. In this approach, struc-
tures of interest are delineated manually in one reference

volume commonly called the atlas. This reference volume is
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then registered to other volumes to be segmented using rigid
and nonrigid registration methods. The transformation that
registers the reference volume to the other volumes can then
be used to project contours from the atlas to the patient vol-
umes. This approach is commonly used to segment brain
structures in well-contrasted high resolution MR images,
while only some have used it for segmenting head and neck
structures in CT images. Chao et al.1 used an enhanced De-
mons algorithm to register a template image to patient im-
ages and used the transformations to delineate the lymph
nodes, the left and right parotid glands, the spinal cord, and
the brainstem. Instead of using these automatically generated
contours directly, they presented contours to physicians for
modification and then compared these edited contours to
manual delineations. In another study, Commowick et al.2

projected lymph node contours from an average image vol-
ume to patient CT images using global affine and local non-
rigid transformations. Although the volume-based error mea-
sure showed that, overall, the atlas-based delineations were
acceptable, oversegmentations of the lymph node regions
were observed. In a follow up study, Commowick et al.3

proposed a scheme to select the most locally similar images
to the patient image from a series of reference images, thus
using several atlas volumes to segment the structures of in-
terest. The quantitative validation performed in this study
showed an improvement in specificity compared to a stan-
dard atlas-based method as well as a reduction in sensitivity.
Gorthi et al.4 also used an atlas-based approach, but the de-
formation was computed with structures easily visible in the
images �bones, trachea, and skin� and then applied to the rest
of the image. This led to relatively large �14.52–21.81 mm�
segmentation errors for the average Hausdorff distance for
node levels II–IV.

Although comparison between techniques is difficult
without testing them on the same image volumes, our expe-
rience indicates that lymph node segmentation is a challenge
for purely intensity-based atlas-based methods because typi-
cal CT images for head and neck IMRT generally do not
have particularly high resolution and because the contrast
between lymph node regions and their surrounding regions is
often poor. In this study, we complement an atlas-based ap-
proach with an active shape model �ASM� approach5 to bring
a priori information about the shapes of the structures in the
segmentation process and constrain the deformation. The
work we present herein initializes the ASM method with the
result of an atlas-based, registration-driven approach. The
ASM is constructed using a technique based on the method
proposed by Frangi et al.,6 and the search algorithm for
adapting the ASM is a variation in the local gray-level model
proposed by Cootes et al.7 In the remainder of this article, we
describe our segmentation method and compare it to a purely
atlas-based technique.

II. MATERIALS AND METHODS

II.A. Data description

The CT images used in this study with Institutional Re-

view Board �IRB� approval are deidentified images from pa-
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tients who underwent IMRT treatment for larynx and base of
tongue cancers. We selected 15 volumes with no or mini-
mally enlarged lymph nodes. They have a voxel size of
around 1 mm in the x and y directions and a slice thickness
of 3 mm. The images are acquired with a Philips �Philips
Healthcare, The Netherlands� Brilliance Big Bore CT scan-
ner with the patient injected with 80 ml of Optiray 320, a
68% iversol-based nonionic contrast agent �manufactured by
Mallinckrodt Inc., Hazelwood, MO�. Typically, the images
cover the head, the neck, and the upper chest.

For all 15 volumes, level II–IV lymph node regions on the
right side were delineated following the published
guidelines8 by the first author and reviewed carefully by two
radiation oncologists �K.N. and L.M.�. These manual delin-
eations were saved in the form of binary masks as well as
contours and were used to construct the ASM and validate
the results of the experiments.

II.B. Construction of ASM through registration

A prerequisite for creating active shape models is to es-
tablish a correspondence between points on the training
shapes. Since it is difficult to manually localize correspond-
ing points on a set of 3D surfaces, we used a method inspired
by the work of Frangi et al.,6 who used both affine and
nonrigid registrations for model building. The transforma-
tions produced by the registration process are used to relate
points representing the shapes in different training images.

II.B.1. Construction of an average image
volume

For the construction of the reference shape onto which all
training shapes are aligned, an average image volume repre-
senting the centroid of the images is first constructed using
the procedure proposed by Guimond et al.9 In this procedure,
one volume in the set of images is chosen as a target. All the
other volumes are subsequently registered to this target by a
standard intensity-based affine registration algorithm that
uses the normalized mutual information �NMI� �Ref. 10� as
similarity measure and then further registered by an
intensity-based nonrigid registration technique. The nonrigid
registration is performed by the adaptive basis algorithm11

we proposed in the past. This algorithm also uses the NMI as
similarity measure and models the deformation fields as a
linear combination of radial basis functions with finite sup-
port,

v��x�� = �
i=1

N

c�i · ��x� − x�i� , �1�

where � is one of Wu’s compactly supported positive radial
basis functions,12 c�i’s are the coefficients to be optimized,
and N is the number of basis functions �more details on this
algorithm can be found in Ref. 11�. The major adjustable
parameters determining the performance of the algorithm in-
clude the number of basis functions to be placed, a parameter
controlling the difference between the coefficients of the ad-

jacent basis functions, which is used to adjust the stiffness of
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the transformation �small values for this parameter lead to
transformations that are more regularized than transforma-
tions obtained with large values�, and the range of intensities
used to compute the intensity histograms from which the
NMI between images is estimated �adjusting this range per-
mits to compute transformations that are driven, for instance,
by soft tissue regions, by bony structures, or both�. The al-
gorithm produces transformations between a source and a
target volume and between the target and the source volume
that are constrained to be inverses of each other. To create
the average volume, the forward transformations �from T1 to
Tk� registering the source images �i.e., the set of available
image volumes� to the current average and their inverses
�from T1

−1 to Tk
−1� are computed. The forward transformations

are applied to the source images and the resulting images are
intensity-averaged. The inverse transformations are averaged
and the resulting transformation is applied to the current in-
tensity average to produce a volume that is both an intensity
and a shape average of all the volumes, and the process is
repeated until convergence. It has been shown in Ref. 9 that
the final image volume is not dependent on the volume cho-
sen to initiate the process, thus reducing the potential bias
introduced by selecting a particular volume as the initial ref-
erence. Note that the nonrigid registrations are performed on
the full scale images, with an isotropic density of basis func-
tions at 16 mm per basis function, an experimentally deter-
mined stiffness value of 0.3, and the full intensity range. This
parameter setting produces adequately regularized transfor-
mations with which the bones, body boundaries, and soft
tissue regions are registered.

II.B.2. Establishing point correspondence for the
creation of the ASM

Once the average volume is created, registrations are per-
formed to acquire the transformations needed to find point
correspondence. As shown in Fig. 1, the process starts with
an affine registration �Fig. 1�a�� to align the images with the
average volume, which produces transformations from Ta1 to
Tak. Even though after affine registration the images are
aligned in the same space, the head and neck areas are not
aligned accurately because the neck is much more flexible
than some other structures such as the head. Large discrep-
ancies in this area also exist between patients, including neck
thickness, length and bending of the cervical vertebrae, and
large anatomical differences in the surrounding soft tissues.
A two-step nonrigid registration process is applied to com-
pensate for these differences. First, a registration is per-
formed on the full scale images to align mainly the bones
and the body boundaries in each image and in the average
volume. The same parameter setting as the one used for con-
structing the average volume is used, except that the value of
the stiffness parameters is reduced to 0.2 such that highly
regularized transformations from Tn1 to Tnk are obtained.
Second, a bounding box surrounding the lymph node regions
and extending from the inferior part of the skull to the bot-
tom of the clavicle is defined on the average volume and then

copied onto the other images that are registered after the first
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step. When registering the images in the bounding boxes, as
shown in Fig. 1�b�, the density of the basis functions is in-
creased to 8 mm per basis function, the stiffness value is set
at 0.3, and the intensity range is set to cover soft tissues such
that transformations that are less regularized and driven
mainly by soft tissue regions are obtained. This permits to
register the lymph node regions and their peripheral areas
more accurately. The transformations from Tnb1 to Tnbk are
obtained as well as their inverses.

With all the transformations computed, the ASM is cre-
ated following the steps shown in Fig. 2. First, as shown in
Fig. 2�a�, the manually segmented structures from each of
the volumes in the form of binary masks are projected onto
the average volume by applying the affine transformations
from Ta1 to Tak and then the nonrigid transformations from
Tn1 to Tnk. The projections are then averaged and thresholded
to form a single binary mask representing the lymph node
regions in the average volume. Several anatomical land-
marks are subsequently identified manually in the average
volume to separate this binary mask into three parts. These
include the lower border of the hyoid, which separates levels
II and III, and the lower margin of the cricoid cartilage,
which divides levels III and IV. The landmarks define two
flat surfaces separating the mask into three sections, repre-
senting level II–IV lymph node regions. As shown in Fig.
2�b�, surfaces are extracted from the binary objects in the
bounding box using the ITK implementation of the marching
cube algorithm.13 This defines meshes in the space of the
average volume in the bounding box for the three node lev-
els. Correspondence between these points and points in each
of the other images is established in two steps. First, the
inverses of the transformations obtained from the nonrigid
registrations in the bounding boxes, which are denoted as
Tnb1

−1 to Tnbk
−1, are applied to these points. Next, the in-

verses of the transformations computed in the global non-
−1 −1
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FIG. 1. Flow charts illustrating the process used to register the training
images and the average image volume. Panel �a�: Full scale image. Panel
�b�: Registration in the bounding box containing the nodes.
rigid registration step, which are denoted as Tn1 to Tnk ,
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are applied. For each vertex X, this produces a point X�,
which is mapped back into the space where all the images
are affinely registered. Second, the correspondence is refined
for points X� that do not belong to the separating surfaces by
finding the closest point X� to X� on the manually segmented
surfaces projected into the affinely aligned image space. This
compensates for the inaccuracy in the registration process.
The X� points are then used to compute the modes of varia-
tions or the structures of interest following the method de-
scribed by Cootes et al.5 The x, y, and z coordinates of the
landmarks are concatenated into k vectors x�i’s, for which a
principal component analysis is performed to obtain a linear
model of shapes for each node level in the form of

x� = x̄� + �b� , �2�

where x̄� is the mean shape, �= ��� 1 ,�� 2 , . . . ,�� t� is the matrix
of the first t eigenvectors associated with the highest eigen-

values of the covariance matrix, and b� = �b1 ,b2 , . . . ,bt�T is the
vector of model parameters. Notice that the models are built
in the space where all images are aligned using affine regis-
trations; this is because the ASM should focus on describing
shape variations while excluding discrepancies due to large
differences in the patient orientation.

II.C. Segmentation of new images

A new image is segmented as follows. First, the image is
registered to the average volume using an affine and then a

Avera

Ta1ºTn1

TakºTnk

………

On the Patient Images

Extract
Mesh

Tnb1-1ºTn1

Tnbk-1ºTnk
Mesh Points X

On the Average Image Volum

FIG. 2. Flow charts illustrating the process used for the construction of the A
mask in the average volume. Panel �b�: Establishing point correspondence t
nonrigid global transformation computed as described ear-
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lier. The bounding boxes are extracted and nonrigid registra-
tion is performed again locally on these regions. The two
nonrigid registrations produce displacement vectors for all
the vertices on the structure of interest and map them from
the average volume onto the affinely aligned image, forming
a new shape. The active shape model is used to constrain the
new shapes to conform to a shape compatible with the train-
ing set. This is accomplished by computing the linear com-
bination of the modes of variation that best captures the new
shape. Suppose the new shape is denoted as x�new, the goal is

to find the transformation T and model parameters b� such
that the new shape can be estimated as

x�̃new = T�x̄� + �b�� , �3�

which is solved as a least-squares estimation problem.
The resulting first segmentation is subsequently refined.

For each vertex, a search vector is computed in the direction
of the structure’s surface normal, and possible boundary
points are localized along this surface normal. A local gray-
level model is then applied to determine which one of these
candidate points can be selected as the best boundary point.

The local gray-level model is built based on that proposed
by Cootes et al.7 For each point sitting on the manually de-
lineated surface of a training image, the surface normal is
calculated, and the intensity profile along the normal direc-
tion is sampled. For the corresponding points over the k
training images, a total of k profiles is computed. The pro-
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n the Average Image Volume

… …

Mesh Points X’ Mesh points X’’

Finding
Closest Points
on Manual
Segmentations

n the Patient Images

Finding
Closest Points
on Manual
Segmentations

using transformations obtained from registrations. Panel �a�: Creation of the
ate the ASM.
ge

O

-1

-1

(a)

(b)
Oe
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o cre
files can be built using a number of image properties such as
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the intensity or the intensity gradient. We explored several
options, including the image intensity, gradient, and normal-
ized gradient which is calculated as

g� iN =
g� i

�gxi
2 + gyi

2 + gzi
2

, �4�

where g� i is the original gradient vector for point i with values
gxi, gyi, and gzi on each direction, and g� iN is the normalized
gradient vector. We opted to use the normalized gradient of
the training images because of its relative insensitivity to
intensity variations caused by contrast agent washout in dif-
ferent patient images.

Figure 3 illustrates how the best boundary point is chosen
from a set of M candidate points along the surface normal
search vector. At each point along the search vector, we ex-
tract a profile of length N for the candidate point and points
on either side. We then compare this profile to the k profiles
in the gray-level model. The cost is computed for each pro-
file and the lowest cost is stored as the cost of the candidate
point in question. The cost Cj for the jth candidate point is
computed as the Euclidean distance between the profile of
the candidate point, p� j, and the profiles in the model, p� l,

Cj = arg min
1�l�k

d�p� j,p� l� , �5�

where d�p� j , p� l� is the Euclidean distance between two vec-
tors. The candidate point along the search vector with the
lowest cost is chosen as the new boundary. After all vertices
are updated through this process, the displacements are con-
strained by the ASM, generating the shape for the next itera-
tion. The process is repeated until successive iterations con-
verge on a shape or a maximum number of iterations is

Search vector length M

Profile
length N

Profile
length NM profiles

Profiles on the patient image for the candidate points on the
search vector

Compare

M1 2

cost

Profile
Length N

p1

pl

pk

Profiles for the corresponding
boundary points on the k
training images on the surface
normal directions

j

FIG. 3. Search for the point on the search vector with the best fit to the
gray-level model. The entire search vector consists of M candidates points.
At each candidate point on the search vector, a profile of length N is calcu-
lated. These profiles are compared to analogous profiles in the training
images.
reached. After the meshes for the three levels of lymph node
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regions are obtained, they are converted into binary masks
and combined into one mask as the union of the three.

II.D. Running time

The affine and nonrigid registration algorithms used in
this study are implemented in C and C��. Typical running
time on a computer with a 2.93 GHz Intel Xeon quad-core
PC with the 64-bit Windows OS and 16 GB of memory is 2
min for the global affine component, 10 min for the global
nonrigid component, and 3 min for the local nonrigid com-
ponent. The model-fitting component is still implemented in
MATLAB and takes on the order of 6 min.

III. RESULTS

All 15 volumes were used to create the average volume
because the final volume is not sensitive to the volume cho-
sen to initialize the process and to generate the average node
mask in the average volume. Then, a leave-one-out strategy
was used to create the ASMs and the intensity models and to
evaluate these. For each run, one volume was eliminated
from the image set, and the model was created using the
remaining 14 volumes. This model was used to segment the
15th volume and the process was repeated 15 times. Valida-
tion was performed by comparing the automatic segmenta-
tion to a manual delineation used as the reference standard
for comparison. The Dice similarity coefficient �DSC� �Ref.
14� was used to evaluate the volumetric overlap between the
manual and the automatic segmentations. DSC is defined in
Eq. �6� as the overlap of two volumes normalized to their
mean volume, where A and B represent the two binary seg-
mentations and the notation N�A� represents the number of
voxels contained in segmentation A,

DSC =
N�A � B�

1/2�N�A� + N�B��
. �6�

The DSC is defined on �0, 1�, where 0 indicates no overlap
and 1 indicates identical segmentations with exact overlap.
Volumetric measures such as the DSC can be insensitive to
boundary displacements that are small compared to the struc-
ture’s size. To provide additional information, we calculated
the Euclidean distance between the surfaces of the ASM-
based and manual segmentations. To gauge the effect of the
model on the segmentation, we also compared the results
obtained with the method we proposed and the results ob-
tained solely with an atlas-based approach.

Table I shows that in all 15 cases the ASM-based segmen-
tations have a higher DSC than those obtained with a purely
atlas-based method; the improvement brought by the method
we proposed ranges from 4.1% to 20.4% with an overall
improvement of 10.7%.

The mean, median, and maximum distances to the manual
surface are shown in Table II. In this table, Mean_atlas, Me-
dian_atlas, and Max_atlas refer to the results obtained with
atlas-based segmentation alone. Mean_ASM, Median_ASM,
and Max_ASM are the results obtained with the method we
propose. For these three measures, Table II also presents the

percent improvements brought by the model-based approach.
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These range from 0% to 26.3% for the means, from �3.7%
to 24.0% for the medians, and from 2.3% to 53.6% for the
max errors. The only case for which no improvement has
been observed is case 11. This is a special case because a
tumor located in the trachea pushed the thyroid to where
vessels are normally located in level IV lymph node region.
Because of this, the registration step was inaccurate. The
model was thus also initialized incorrectly and converged to
the wrong solution. One-sided t-tests were performed to test
the statistical significance of the differences observed for the
DSC, mean, median, and max values. In all cases, these dif-
ferences were significant �p�0.01�. Figure 4, which shows
cumulative distributions for the surface error for each vol-
ume �i.e., the x axis is a distance error and the y axis is the
percentage of points for which the error is smaller than this
distance�, illustrates the effect of the model on the segmen-

TABLE I. DSC comparing atlas-based and manual segmentations, and ASM-
based and manual segmentations.

Patient DSC_atlas DSC_ASM Improvement in %

1 0.563 0.678 20.43
2 0.528 0.599 13.45
3 0.689 0.723 4.93
4 0.696 0.731 5.03
5 0.663 0.717 8.14
6 0.603 0.689 14.26
7 0.642 0.705 9.81
8 0.632 0.711 12.50
9 0.657 0.684 4.11
10 0.667 0.764 14.54
11 0.524 0.546 4.20
12 0.689 0.748 8.56
13 0.651 0.760 16.74
14 0.612 0.728 18.95
15 0.646 0.680 5.26

Mean 0.631 0.698 10.73

TABLE II. Mean, median, and max error values for the atlas-based �Mean_a
�Mean_ASM, Median_ASM, and Max_ASM� in mm.

Patient Mean_atlas Mean_ASM Improvement In % Median_atlas M

1 2.87 2.29 20.20 2.48
2 3.10 2.95 4.89 2.56
3 1.96 1.82 7.27 1.78
4 2.18 2.03 6.73 1.99
5 2.17 1.80 16.94 1.93
6 2.51 1.85 26.29 2.02
7 3.00 2.56 14.55 2.61
8 2.50 1.84 26.52 2.02
9 2.22 2.02 9.18 1.97

10 2.82 2.33 17.34 2.48
11 4.22 4.22 �0.09 2.70
12 2.40 2.12 11.60 2.13
13 2.05 1.77 13.64 1.78
14 2.04 1.72 15.58 1.66
15 3.02 2.64 12.60 2.64

Mean 2.60 2.26 13.55 2.18
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tation error. In all cases except for patient 11, the cumulative
distribution curve for the model-based approach is above the
curve for the atlas-based approach.

The slice thickness in the volumes used in this study is 3
mm. One observes that the model-based approach leads to
results with more than 90% of the surface points having a
distance error less than 4 mm, which is on the order of one
voxel in the axial direction, for all cases except cases 2, 7,
11, and 15. The model-based approach leads to substantial
improvements for cases 1, 5, 6, 8, 10, 12, 13, and 14. For
cases 3, 4, and 9, the 90% threshold was reached with the
atlas-based approach alone. A closer look at patient 2 �see
Fig. 5� shows errors at levels II–IV. At level II, the manual
contour was drawn smaller than the contour produced by our
algorithm. Retrospective discussions with the radiation on-
cologists determined that the observed difference was within
the inter-rater variability. At level III, a reactive but not
pathological enlarged node occupies the place normally oc-
cupied by interstitial fat, which has a lower intensity than
other tissues in CT images. The automatic contour includes
the node when it is excluded in the manual contour. Again,
retrospective discussion with the radiation oncologists deter-
mined that both were acceptable and a function of the phy-
sician’s preferences. The error at level IV is caused by the
size of the thyroid, which is smaller than usual. The main
segmentation error for patient 7 occurred at level IV. This
subject has a thyroid that is much larger than usual and the
contrast between the thyroid and the surrounding tissues is
low. As a consequence, the registration was inaccurate, the
model was initialized incorrectly, and the ASM component
of the system became trapped in a local minimum.

In patient 15 �see Fig. 5�, the largest error was at the end
of level II toward level III. At this place, a large node infil-
trated by metastatic cancer was visible. This also produced
registration and initialization errors that could not be recov-
ered. Retrospective discussion with the radiation oncologists
established that this area should have been treated with a

Median_atlas, and Max_atlas� and for the ASM-based method we propose

_ASM Improvement in % Max_atlas Max_ASM Improvement in %

13 13.96 11.53 10.02 13.10
25 12.09 17.10 11.95 30.09
65 7.07 6.94 6.49 6.46
86 6.78 7.72 6.37 17.51
67 13.70 9.24 6.59 28.67
63 19.28 15.10 7.01 53.56
10 19.72 16.10 12.92 19.75
54 24.00 10.32 7.92 23.22
79 9.05 12.64 9.91 21.59
21 11.07 10.29 7.84 23.77
80 �3.67 19.88 18.40 7.46
96 7.86 9.07 8.86 2.37
57 11.92 8.65 8.38 3.09
45 12.78 10.79 8.35 22.66
28 13.69 15.93 12.79 19.70
92 11.95 12.09 9.59 19.53
tlas,

edian

2.
2.
1.
1.
1.
1.
2.
1.
1.
2.
2.
1.
1.
1.
2.
1.
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higher dose and not part of a prophylactic regimen. A sub-
stantial error was also visible at level IV because of an en-

FIG. 4. Cumulative distributions for the surface errors for each volume, wi
points for which the error is smaller than this distance.
larged thyroid.
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Figure 5 shows contours superimposed on the images for
five subjects. In each case, one representative slice per level

x axis showing a distance error and the y axis showing the percentage of
th the
has been chosen. The green, yellow, and red contours are the
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manual, atlas-based, and model-based contours, respectively.
This figure confirms what is shown in Fig. 5. Subjects 5, 8,
and 10 are cases for which the cumulative distributions show
a clear improvement. For these three subjects, the red con-
tours are indeed closer to the green contours than the yellow
ones. For subjects 2 and 15, the cumulative distributions do
not show a substantial difference between the two ap-
proaches. In these two cases, the model could not compen-
sate for registration errors caused by abnormal anatomy.

IV. DISCUSSION AND CONCLUSIONS

We have developed a method for the segmentation of
normal-looking lymph nodes in clinically acquired head and
neck CT scans that improves upon atlas-based approaches,
which have been proposed to solve this problem. As dis-
cussed in the background section, prophylactic treatment of
normal-looking lymph nodes is within the standard practice
for many head and neck cancers, and their delineation is a
time-consuming process. Reliable methods designed for their
automatic segmentation may thus have a substantial impact
on the daily clinical load. Previously, we had used a single
model for all three node levels �see Ref. 15�. This approach

Patient 2

Patient 5

Patient 8

Patient 10

Patient 15

Level II Level III Level IV

FIG. 5. 2D contours for the manual, atlas-based, and ASM-based segmenta-
tions for patients 2, 5, 8, 10, and 15. Shown from the left to the right are
contours in level II–IV regions; the manual contour is in green, the atlas-
based in yellow, and the ASM-based in red.
led to mixed results, i.e., in some cases the model-based
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approach led to better results, while in others it did not.
Separating the model into three models, one for each level,
improved the results. As reported in this study, the model-
based approach now leads to better results than a purely
atlas-based method in all cases with normal-looking
anatomy. In all these cases, more than 90% of the surface
points have a distance error of less than 4 mm, which is on
the order of one voxel in the axial direction.

Comparison to other studies is difficult not only because
the data sets are different but also the evaluation methods
vary among studies. In the work of Gorthi et al.4 CT images
are of similar size �0.9375 mm�0.9375 mm�3 mm� and
the sensitivity, DSC, and Hausdorff distance are reported. In
their leave-one-out experiment, the mean DSC reported for
levels IIA, IIB, III, and IV are 0.53, 0.46, 0.43, and 0.36,
respectively, while the mean DSC for our ASM-based seg-
mentation is 0.698 for levels II–IV segmented as a single
structure. The mean Hausdorff distances that are reported are
14.52, 15.06, 18.68, and 21.81 mm for levels IIA, IIB, III,
and IV. The comparable average maximum distance error is
9.59 mm for our ASM-based approach. In a similar work,
Commowick et al.3 reported a mean sensitivity of 0.692, a
specificity of 0.813, and a combined error of 0.360. How-
ever, sensitivity and specificity numbers are difficult to inter-
pret for segmentation tasks. Indeed, sensitivity is defined as
TP / �TP+FN� and specificity as TN / �TN+FP�, where true
positive �TP� is the number of voxels included in both the
manual and the automatic contours, true negative �TN� is the
number of voxels excluded by both methods, false positive
�FP� is the number of voxels in the automatic segmentation
but not in the manual segmentation, and false negative �FN�
is the number of voxels in the manual segmentation but not
in the automatic segmentation. Sensitivity and specificity
need to be reported together because the former does not
measure oversegmentation and the latter does not measure
undersegmentation. In addition, the definition of the specific-
ity involves TN, which for segmentation tasks is the inter-
section of the manual and automatic background regions.
These can be made arbitrarily large, thus leading to large
specificity values and requiring heuristic criteria to define
TN, as discussed in Ref. 16.

The results we have presented also show shortcomings of
the current approach. Abnormal anatomy and/or pathology
�cases 2, 7, 11, and 15� lead to poorer results mainly because
inaccuracy in the registration results in poor initialization of
the model. While one may expect increased robustness to
anatomical variations with larger training sets, segmenting
volumes with large pathologies is more challenging and will,
in all likelihood, require different strategies. One possibility
is to use a mixed approach in which the pathology is delin-
eated by hand first and then used as constraint to guide the
segmentation process. Based on our observation, the thyroid
region remains challenging because of large variations in the
shape and size of this organ. Reducing the sensitivity of our
approach to initialization errors may be possible by modify-
ing the algorithm that is used to update the boundary points.

17
For instance, Van Ginneken et al. proposed a technique in
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which optimal features are selected for each landmark using
a kNN-classifier. Toth et al.18 also proposed a method in
which an optimal weighted average of texture features is
used to establish correspondence. Using neighborhood infor-
mation, as proposed by these authors, instead of line infor-
mation may permit the algorithm to escape from local
minima. Whether or not these improvements are able to com-
pensate for inaccuracy in the registration process caused by
anatomical variations will need to be determined.
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