
TLR-Based Immune Adjuvants

Folkert Steinhagen, Takeshi Kinjo, Christian Bode, and Dennis M. Klinman
Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702

Abstract
This work describes the nature and strength of the immune response induced by various Toll-like
receptor ligands and their ability to act as vaccine adjuvants. It reviews the various ligands capable
of triggering individual TLRs, and then focuses on the efficacy and safety of those agents for
which clinical results are available.

Introduction
The innate immune system provides the host with a rapid mechanism for detecting infection
by viral, microbial and fungal pathogens. Cells of the innate immune system express pattern-
recognition receptors, including Toll-like receptors, that bind conserved molecules
expressed by a wide variety of infectious agents. Triggering via TLR stimulates the
production of pro-inflammatory cytokines/chemokines and type I IFNs that increase the
host's ability to eliminate the pathogen [1-4]. This innate immune response also supports the
subsequent development of adaptive immunity, and thus can be harnessed to accelerate and
enhance the induction of vaccine-specific responses [5]. This review examines the types of
response elicited by various TLR ligands, focusing on the efficacy and safety of those agents
currently in clinical trial.

TLR 2 (and associated TLR dimers)
General overview

TLR2 interacts with a broad and structurally diverse range of ligands, including molecules
expressed by microbes and fungi. Multiple TLR2 agonists have been identified, including
natural and synthetic lipopeptides (e.g. Mycoplasma fermentas macrophage-activating
lipopeptide (MALP-2)), peptidoglycans (PG such as those from S. aureus),
lipopolysaccharides from various bacterial strains (LPS), polysaccharides (e.g. zymosan),
glycosylphosphatidyl-inositol-anchored structures from gram positive bacteria (e.g.
lipoteichoic acid (LTA) and lipo-arabinomannan from mycobacteria and lipomannas from
M. tuberculosis) [6]. Certain viral determinants may also trigger via TLR2 [7]. Yet
uncertainty exists concerning the mechanism(s) by which TLR2 recognizes such a wide
array of ligands, leading some to suggest that contamination with lipopeptides (which trigger
TLR2 at picomolar levels [6]) may underlie some of the reported activity. In this context,
several groups report that highly purified/synthetic peptidogylcans are unable to trigger via
TLR2 (in contrast to previous claims) yet retain their ability to stimulate via Nod1/2 [8-10].
In recognition of these concerns, this review will focus on the use of lipopeptides as vaccine
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adjuvants, as available data suggest they represent the most relevant of the TLR2 agonists
being evaluated for that purpose.

TLR2 ligands
Since TLR2 is expressed on many different cell types (including dendritic cells,
macrophages and lymphocytes) the mechanisms by which bacterial lipopeptides manifest
their adjuvant properties are diverse. Preclinical testing indicates that lipopeptides co-
administered with or physically linked to Ag can i) induce DC maturation leading to the up-
regulation of co-stimulatory signals and Ag-presenting molecules (e.g. MHC class II, CD80,
CD83, IFNg, IL-12) [11-13], ii) stimulate macrophages to release cytokines (e.g. TNF, IL-1,
IL-6) [14;15], iii) promote the maturation and activation of B cells leading to increased
production of Ag-specific IgG and IgM Abs [16;17] and iv) boost the generation of antigen
specific CD8+ T cell (CTL) responses [18-20].

Two strategies are commonly utilized to generate TLR2-dependant lipopeptide vaccines: i)
conjugating bacterial lipopetides or their synthetic analogues to peptide and ii) covalently
linking palmitic acid to peptide antigens. Bacterial lipopeptides are structural components of
cell walls. They consist of an acylated s-glycerylcysteine moiety to which a peptide can be
conjugated via the cysteine residue. The bacterial lipopeptides most frequently used as
vaccine adjuvants are MALP-2 and it's synthetic analogue di-palmitoyl-S-glyceryl cysteine
(Pam2Cys) or tri-palmitoyl-S-glyceryl cysteine (Pam3Cys).

The alternative approach to generating TLR2-dependant lipopeptide vaccines involves
modifying the antigenic peptide with Nε-palmitoyl-lysine [21]. Pre-clinical studies of these
lipidated Ag constructs show that they i) induce the maturation of DCs, increasing the
production of pro-inflammatory cytokines (e.g. IL-12, TNFα, IFNg) [21;22], ii) activate B
cells to increase production of IgG Abs [21;23;24] and iii) enhance the generation of Ag
specific CTL responses [21;25-28]. Thus, preclinical data support the conclusion that the
immunogenicity of peptide-based vaccines is significantly improved by conjugating them to
either bacterial lipopetides or palmitic acid moieties.

Clinical activity
Multiple TLR2 ligands have undergone clinical testing (see Table 1). The most extensively
studied was Pam3Cys linked to outer surface protein A (OspA) of B. burgdorferi (the
spirochete that causes Lyme disease). This Lyme disease vaccine (LYMErix™) was tested
in over 20,000 volunteers [29;30]. The induction of protective immunity correlated with the
development of Abs against an epitope on the C-terminus of OspA (protective IgG titer
>1,400 EIA units/ml). Three doses of the vaccine induced protective immunity in >75% of
subjects, and was licensed by the FDA in 1998 for general use. The manufacturer
voluntarily withdrew this product 3 years later amidst media coverage of possible
autoimmune side effects which led to a decline in sales [31;32]. Of note, neither the FDA
nor the CDC found a connection between the vaccine and the development of autoimmunity
[31].

Pam3Cys was also tested as an adjuvant in combination with a peptide vaccine targeting
malaria. The vaccine contained multiple B cell epitopes plus a universal T cell epitope
derived from the Plasmodium falciparum circumsporozoite protein (CSP) [33]. Following
three immunizations, all volunteers (N = 10) developed detectable levels of peptide specific
IgG Abs with titers ranging from 160 to 20,240 (2,750 GMT). The addition of Pam3Cys
resulted in the production of epitope-specific IgG1, IgG3 and IgG4 Abs, while an earlier
study using alum and QS21 as adjuvants induced only IgG1 and IgG3 isotypes [34]. The
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peptide-specific IgG titers and the CSP responses induced by the vaccine formulated with
Pam3Cys or alum/QS21 were similar.

A palmitic acid conjugated vaccine was recently tested in subjects with chronic Hepatitis B
infection. That vaccine (Theradigm-HBV) consisted of a CTL peptide from the HBV core
antigen plus a helper T lymphocyte (HTL) peptide which was palmitoylated at the N-
terminus [35]. The addition of palmitic acid significantly improved the immunogenicity of
the CTL and HTL epitopes which were otherwise poorly immunogenic. In a phase I trial
involving 26 healthy volunteers, four doses of this vaccine induced a dose-dependent HBV-
specific CTL response that persisted for more than 9 months [36]. However CTL responses
were not induced in patients chronically infected with HBV [37].

Vaccines targeting HIV using palmitic acid extended peptide antigens were also evaluated in
phase I and II trials [38]. Those vaccines contained a mixture of up to six different HIV Ags
(including Nef, Gag and Env) that were modified to express a single palmitoyl chain at their
C terminus to serve as an endogenous adjuvant. After 4 immunizations, 93% of volunteers
generated IgG Abs and 86% showed a specific CTL response (Ag alone had no effect). Both
responses persisted for at least 2 years in a majority of participants, indicating that long-
lasting memory was generated [39]. Unfortunately, this vaccine failed to boost HIV-specific
CTL responses in HIV infected subjects (N = 43) [40].

The TLR2 ligands described above are easily incorporated during peptide synthesis, yielding
a well-defined and totally synthetic vaccine. These lipid adjuvants consistently boosted both
humoral and cell mediated responses to peptide-based vaccines in normal healthy
volunteers. The magnitude and duration of the Ab responses suggest that they would be
sufficient to prevent many infectious diseases. However the ability of such vaccines to
promote CTL responses was less impressive, nor were they effective in post-exposure
settings. Thus, their utility for the prevention/treatment of chronic infectious diseases (such
as HPV or HIV) is uncertain.

Safety
Clinical trial results indicate that lipopetide vaccines are generally safe. The LYMErix™
vaccine was well tolerated in clinical trials involving over 20,000 individuals followed for
up to 6 years. Local adverse events, in particular redness and/or swelling at the injection site,
were mild to moderate and generally lasted only 2-3 days. Less than 4% of the vaccinees
reported systemic complaints, primarily myalgia or fever, and no hypersensitivity reactions
or abnormal laboratory results were observed [29;30;41]. By 2001, over 1.4 million doses of
LYMErix™ had been administered in the United States. The Vaccine Adverse Events
Reporting System database included 905 reports of mild self-limiting reactions and 59
reports of arthritis associated with vaccination [42].

The safety of LYMErix™ differed somewhat from the effect of lipopetide vaccines used in
anti-HIV trials. A meta-analysis of 10 such trials involving a total of 200 healthy volunteers
and 48 HIV infected subjects showed that 18 individuals (including a number of normals)
experienced grade 3 systemic events related to vaccination, including asthenia, fever,
headache and arthralgia [38], a reactogenicity profile that raises concern about the safety of
this form of adjvuant.

TLR3
General overview

TLR3 is expressed within the endosomal compartment of conventional dendritic cells and
macrophages and is present on the surface membrane of non-immune cells including

Steinhagen et al. Page 3

Vaccine. Author manuscript; available in PMC 2012 April 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



epithelial cells [2]. TLR3 is triggered by double-stranded RNA (dsRNA) produced during
the replication of most viruses. The interaction of TLR3 with dsRNA initiates a TRIF-
dependent signaling cascade that progresses through the activation of NF-kB, MAP kinases
and IRF3 and culminates in the production of inflammatory cytokines and type I IFNs
[43;44]. Thus, TLR3 is distinct from all other TLRs in that it does not utilize the MyD88-
dependent pathway for signaling.

A potential advantage of TLR3 agonists is that triggering via this signaling cascade
facilitates Ag cross-presentation, in which CD8+ T cells are primed by exogenous Ag
presented in the context of MHC class I molecules, improving the generation of cytotoxic T
cells [45;46]. Cross-presentation is also enhanced by the type I IFNs induced following
TLR3 stimulation [47]. Thus, TLR3 ligands are considered excellent candidates as adjuvants
for vaccines targeting the induction of a strong cellular immune response [48].

TLR3 ligands and their immunogenicity
Poly I:C (polyriboinosinic:polyribocytidylic acid) is a synthetic analog of dsRNA and the
archetypal TLR3 ligand [49]. Since poly I:C interacts with additional receptors (including
retinoic acid-inducible gene I, melanoma differentiation-associated gene 5 and double-
stranded RNA-dependent protein kinase), it's adjuvanticity cannot be uniquely ascribed to
TLR3 activation [50;51]. In a murine model of influenza virus infection, intranasal
administration of poly I:C with an HA-based influenza vaccine induced a strong IgA anti-
HA response in the nasal mucosa and IgG response in serum, whereas vaccination without
poly I:C had little effect. The addition of poly I:C protected mice from lethal nasal or
pulmonary viral challenge [52]. Other studies in murine models show that poly I:C can
enhance the efficacy of peptide-based cancer vaccines by promoting tumor specific T cell
responses [53-56].

Despite promising findings in mice, poly I:C had limited success inducing IFNs or
mediating anti-tumor activity in primates (including human) due to degradation by serum
nucleases [57;58]. Higher doses of poly I:C caused severe safety problems, including shock,
renal failure and coagulopathies in phase I-II clinical trials of cancer patients [59]. To
improve the activity and safety of TLR3 ligands, derivatives of poly I:C were produced, of
which poly ICLC and poly I:C12U (also known as Ampligen®) are the most widely studied.
Although clinical trials involving these adjuvants have been initiated, no published data on
their activity and safety is available.

Poly ICLC is a synthetic double-stranded polyriboinosinic-polyribocytidylic acid stabilized
with poly-L-lysine carboxymethyl cellulose. It is 5 -10 times more resistant to hydrolysis by
primate serum than poly I:C [60]. In a murine CNS tumor model, poly ICLC improved IFNg
production, enhanced CTL responses by 2-4 fold and improved survival 2-fold vs vaccine
alone [61]. A Study of human papillomavirus (HPV) infection in rhesus macaques showed
that administering HPV antigen plus poly ICLC increased IFNg secreting cell numbers by 2-
fold and enhanced HPV-specific CD4+ T cell responses by 5-fold when compared to
vaccine alone [62]. Inclusion of poly ICLC boosted the titer of HPV-binding Ab by up to
1,000-fold.

Synthetically modifying poly I:C to introduce mismatched bases (uracil and guanine)
generates TLR3 ligands whose immunostimulatory potential is similar to poly I:C, but with
less toxicity [63]. Poly I:C12U is a representative example of such synthetic mismatched
dsRNA. In pre-clinical studies, poly I:C12U stimulated human monocyte-derived DC to
mature and produce IL-12 (and decrease their production of IL-10) [64]. These activated DC
promoted antigen-specific CTL responses and the differentiation of CD4+ T cells toward a
Th1 phenotype [65]. In an influenza virus H5N1 infection model, intranasal administration
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of H5N1 vaccine with poly I:C12U increased antigen-specific IgA production by nearly 3-
fold [66]. Viral titers following challenge were significantly reduced, and nearly all mice
were rescued from lethal H5N1 virus infection.

Safety
Initial clinical studies involving poly ICLC showed that high dose therapy was associated
with mild to severe side effects including hypotension, fever, and anemia. Once the dose and
frequency of delivery were optimized, this TLR3 agonist was well tolerated in humans
[67-74]. Several phase I-II clinical trials evaluating the activity and safety of poly ICLC as a
cancer vaccine adjuvant are ongoing.

Poly I:C12U was well-tolerated in several long-term phase I-II clinical trials involving
cancer patients [75]. This reduced toxicity when compared to poly I:C may reflect the
accelerated hydrolysis and shorter plasma half-life of poly I:C12U [75;76]. Available data
suggest that this agent is the most promising TLR3 ligand under clinical development.
Studies of poly I:C12U as monotherapy against viral infection and phase II and III clinical
trials examining their use in HIV and chronic fatigue syndrome are underway [77;78]. Use
of this TLR3 ligand as a vaccine adjuvant in humans is less advanced, with a phase I clinical
trial in patients with ovarian cancer scheduled to begin in the near future [65].

TLR4
General overview

TLR4 is expressed by cells of the innate immune system, including conventional dendritic
cells and macrophages. It is also expressed by many non-immune cells including fibroblasts
and epithelial cells [2;79;80]. Triggering via TLR4 induces a signaling cascade that utilizes
both the MyD88- and TRIF-dependent pathways, leading to NF-kB and IRF3/7 activation,
respectively [2;81]. Among TLRs, only TLR3 and TLR4 stimulate the production of type I
IFNs via TRIF [2;81]. TLR4 activation typically induces robust IL-12p70 production and
strongly enhances Th1 type cellular and humoral immune responses [82;83].

TLR4 ligands
A diversity of ligands reportedly interact with TLR4, including lipopolysaccharides (LPS),
mannans (Candida albicans), glycoinositolphospholipids (Trypanosoma), viral envelope
proteins (RSV and MMTV) and endogenous antigens including fibrinogen and heat-shock
proteins [2;81]. LPS, which is found in the outer membrane of gram negative bacteria, is the
most widely studied of the TLR4 ligands, and virtually all clinical trials involving TLR4
adjuvants examine derivatives of LPS. LPS is a complex molecule, and it is the lipid A
portion composed of polyacylated diglucosamine lipids that mediates interactions with
TLR4 [84;85]. Although the immunostimulatory capacity of LPS has been known for
decades, the intact molecule is highly toxic, preventing it's use as a vaccine adjuvant [86].
Fortunately, the monophosphoryl lipid A (MPLA) component of LPS (purified from the cell
wall of Salmonella minnesota R595 and detoxified by mild hydrolytic treatment) is
considerably less toxic yet maintains immunostimulatory activity [87-89]. Studies in rabbits,
guinea pigs, dogs and horses show that MPLA is 1,000-fold less toxic than LPS, a finding
that paved the way towards clinical trials of TLR4 agonists [90].

Clinical activity
Numerous clinical studies examining the adjuvant activity of TLR4 ligands combined with
vaccines targeting a wide variety of pathogens and tumor antigens have been conducted
(Table 2). In general, adding MPLA to vaccines typically boosted serum Ab titers by 10 - 20
fold when compared to vaccine alone (Table 2). MPLA preferentially induces the production
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of IgG2a Abs and supports the generation of Th1 immunity in mice [91;92]. Human vaccine
trials indicate that MPLA has a safety profile similar to that of alum [82;92]. Even very high
doses of MPLA (up to 100 mg/m2 delivered i.v.) are safe, inducing neither renal nor hepatic
toxicity [93].

Extensive clinical studies were conducted using MPL® (also known as AS04), consisting of
MPLA absorbed onto aluminum hydroxide or aluminum phosphate [94;95]. The
combination of AS04 plus hepatitis B vaccine (FENDrix®) was studied in
immunocompromised individuals (including the elderly, those with immunodeficiency
diseases and patients on hemodialysis) [96;97]. FENDrix® was well tolerated and induced
higher seroprotection rates and Ab titers than Engerix-B® ( the licensed HBV vaccine) in
multiple clinical studies [98-102]. In a phase III study [102], the safety and efficacy of 2
doses of FENDrix® was compared to 3 doses of Engerix-B® in >1,300 healthy individuals.
One month after the first injection, the seropositivity rate (anti-HBs titer >1 mIU/ml) was
76.8% in the FENDrix® group versus 37.3% in the Engerix-B® group, and seroprotection
rates (titer >10 mIU/ml ) were 34.1% versus 13.1%, respectively. After the final vaccination,
98.5% of FENDrix® subjects were seroprotected vs 96.8% in the Engerix-B® group. The
GMTs elicited by FENDrix® were more than two-fold higher than those elicited by
Engerix-B®, a difference that persisted through 36 months [97].

In hemodialysis patients, seroprotection was achieved in 91% of subjects immunized with 4
doses of FENDrix® vs 84% in recipients of Engerix-B® [103]. This differences persisted at
36 months post vaccination (73% versus 52%, respectively). Antibody concentrations in the
FENDrix® group were higher at all time points, and the vaccine was well tolerated,
resulting in licensure by the EU in 2005.

AS04 was also used as an adjuvant with Cervarix®, a conjugate vaccine that uses virus-like
particles to induce immunity against HPV-16 and HPV-18 [94]. When compared to the
same vaccine adjuvanted with alum, Cervarix® induced significantly higher anti-HPV16
and anti-HPV18 L1 Ab responses (1.6 - 3.2 fold, p<0.05) at all time points [104]. 3.5 years
after Cervarix® vaccination, Ab titers were 17 - 30 fold higher than those induced by natural
HPV16 or HPV 18 infection [105;106]. The efficacy of Cervarix® was examined in
randomized phase II and III clinical studies. In the phase II trial, Cervarix® provided 100%
protection against HPV-16/18 infection for >12 months [105]. In the phase III trial (which
included women with and without previous HPV exposure), the vaccine reduced the
frequency of HPV-associated cervical intraepithelial neoplasia grade 2 by 92.9% [107].
Additional Phase II/III clinical data established the safety and efficacy of Cervarix®, and
this AS04-adjuvanted vaccine was approved for use in the EU and the US [107][108;109].

AS04 has also been studied in combination with cancer vaccines. Melacine® consists of the
lysates from two allogeneic melanoma cell lines combined with DETOX®, an adjuvant
containing AS04 plus cell wall material from Mycobacterium phlei [110]. This vaccine was
tested in a phase II multi-center clinical trial of melanoma patients with stage III/IV disease
[111]. 12% of participants showed some response to immunotherapy, and Melacine® was
approved for the treatment of metastatic melanoma by the Canadian FDA [112]. AS04 is
also a component of Stimuvax®, a complex mixture of lipopeptides, proteins, and lipids
used in patients with adenocarcinomas including non-small cell lung cancer [113;114]. In a
phase II trial, Stimuvax® improved median survival time by ≈33% (p=0.069) without
inducing significant toxicity. A phase III trial to confirm these findings has been initiated
[115].

AS04 is heterogenous, in that it contains several different MPLA species that vary in length
and degree/type of fatty acid acylation. Building upon the success of MPLA/AS04, a new
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class of synthetic lipid A mimetics, the aminoalkyl glucosaminide 4-phosphates (AGPs) was
developed [83;92][116]. In contrast to the complex mixture of lipid A congeners found in
MPLA, AGPs can be synthesized at high purity as single chemical entities and modified to
alter biological/pharmacodynamic activity. RC-529 (also known as Ribi.529) is a leading
AGP that is structurally similar to the hexa-acyl component of MPL®. RC-529 was co-
administered with the HBV vaccine (Supervax®) and compared to Engerix-B®. Supervax®
induced significantly greater seroprotection, achieving 99% seroprotection at 3 months vs
84% for the control group (p< 0.0001). Anti-HBV titers were significantly higher at all time
points for the Supervax® group. Based on these findings and an acceptable safety profile,
the RC-529 conjugated HBV vaccine was approved for use in Argentina [117] .

Safety
In general, adverse events (typically mild - moderate) were more frequent in subjects
receiving AS04 or RC-529 adjuvanted vaccines vs alum. In studies of FENDrix®, the
frequency of pain, erythema and swelling exceeded that of Engerix-B®, [102]. The safety of
the AS04 adjuvanted HPV-16/18 vaccine was summarized in a meta-analysis of 11 clinical
trials. Local and systemic adverse events were higher in recipients of the AS04 vs alum
adjuvanted vaccine. However compliance with the three-dose schedule did not differ
between groups nor did the rates of serious adverse events (2.8% vs 3.1%), medically
significant conditions (19.4% vs 21.4%), new onset of chronic diseases (1.7% for both) or
new onset of autoimmune diseases (0.4% vs 0.3%) [118]. The safety profile of this TLR4
adjuvant was sufficiently to allow licensure in vaccines used in the US, Europe and
Argentina.

In clinical studies of Supervax®, the incidence of injection site pain was significantly
increased when compared to the alum-adjuvanted HBV vaccine (70% vs 42%, p<0.0001).
These local reactions were typically mild to moderate, and resolved within 3 days. The
incidence of systemic adverse events was low, and did not differ significantly between
groups. No serious systemic adverse events related to vaccination were reported.

TLR5
General overview

TLR5 is triggered by a region of the flagellin molecule expressed by nearly all motile
bacteria [119;120]. TLR5 is found on the surface of many types of immune cells, including
monocytes, mDCs, Langerhans cells, T cells and NK cells [121-126]. When used as an
adjuvant, flagellin is typically fused to a recombinant vaccine Ag. In that form, flagellin
directly induces DC maturation, triggering the up-regulation of co-stimulatory signals and
Ag-presenting molecules (CD80, CD83, CD86, MHC class II, TNFα, IL-8, IL-1β, CCL2,
CCL5) [125]. The effect of fusing flagellin to protein-based vaccines was examined using
the fluorescent protein EGFP as a model system. Almost 50% of APCs internalized
flagellin-EGFP vs 3% internalizing EGFP alone. Flagellin-EGFP also stimulated APCs to
produce 20-fold more TNFα than EGFP (p<0.001), and uniquely induced Ag-specific CTL
responses in vivo [127]. When used as an adjvuant, flagellin stimulates monocytes to
produce the cytokines IL-10 and TNFa [123], NK cells to produce IFNg and α-defensins,
and T cells to proliferate and produce cytokines and chemokines (e.g. IL-10, IL-8 and IFNg)
[122].

TLR5 ligands and their pre-clinical activity
The adjuvant properties of flagellin-Ag complexes were investigated in several animal
models. When coupled to ovalbumin, flagellin induced an IgG Ab response 10-fold higher
than OVA co-administered with alum [128]. Fusing the poorly immunogenic M2e protein
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from the influenza virus with recombinant Salmonella Typhimurium flagellin (STF2)
yielded a vaccine that induced a 10-fold higher Ag-specific IgG response than M2e
formulated in alum [129]. Other studies showed that flagellin-Ag vaccines induced
protective Ab responses against Yersinia pestis [130], West Nile virus [131], vaccinia virus
[132] and Pseudomonas aeruginosa [133;134]. These protective responses were
characterized by high titered Ag-specific IgG (IgG1, IgG2a) responses that were generally
two logs higher than Ag alone or Ag + flagellin (not fused) (p<0.05). Since TLR5 is not
expressed on B cells [124]) this enhanced Ab production was presumably mediated by
improved APC function.

There is no published information on the immunogenicity or safety of flagellin-based
vaccines in humans, although several clinical trials are ongoing. No injection site
inflammation or severe systemic adverse effects were detected in studies of mice and non-
human primates [130;135].

TLR7/8
General overview

TLRs 7 and 8 are phylogenetically and structurally related [136]. Both recognize single
stranded (ss) RNA sequences containing poly-U or GU-rich sequences and are activated by
synthetic imidazoquinolines including imiquimod (R-837) and resiquimod (R-848) as well
as by guanosine analogues such as loxoribine [136-139]. TLR 7/8 molecules are localized to
the endosomal compartments of human immune cells including DCs, monocytes,
macrophages, lymphocytes, Langerhans cells, and NK cells [124;140;141]. Because of their
numerous similarities, TLRs 7/8 will be handled together in this section.

The interaction between TLRs 7/8 and their cognate ligands activates DC to i) enhance
expression of co-stimulatory molecules (e.g. CD80, CD86, CD40) [142], ii) migrate [143]
and iii) produce pro-inflammatory cytokines including IFNα, TNFα and/or IL-12 (the later
facilitating induction of Th1-type responses). In this context, TLR7-specific activation
preferentially triggers IFNα secretion by pDC whereas TLR8-specific activation
preferentially induces IL-12 production by mDCs [140;144]. TLR 7/8 also promote the
maturation of Langerhans cells and their migration from the skin to the lymph nodes
[145;146].

In addition to activating DCs, TLR 7/8 stimulate B cells to secrete Ig and produce cytokines
(e.g. IL-6, TNFα) [147] while triggering NK cells to produce IFNg [148]. TLR 7/8 ligation
stimulates T cells to proliferate and produce IFNg, IL-2 and IL-10. Memory T cells are
particularly sensitive to this form of TLR-mediated activation [122], and TLR7/8 ligands
may reduce the immunosuppression mediated by CD4+ T regulatory cells [149].

TLR7/8 ligands and their pre-clinical activity
Most pre-clinical studies involving TLR7/8 agonists utilized imiquimod (which
predominantly activates TLR7) or resiquimod (which triggers both TLR7 and 8).
Compounds that selectively activate TLR7 (852A) or TLR8 (3M-002) [140;150] have been
identified but there is insufficient published information to assess their utility as vaccine
adjuvants. It is currently unclear whether ligands targeting TLR7 vs TLR8 will be superior
vaccine adjuvants. Resolving this issue through pre-clinical studies is complicated, as there
is disagreement in the literature concerning the ability of mice to respond to TLR8 ligands
that are active in Man [136;151-153]. Studies utilizing monocytes and APCs collected from
human newborns and adults indicate that the Th1-response induced by TLR8 stimulation
substantially exceeds that induced by other TLR ligands (including TLR7). This finding

Steinhagen et al. Page 8

Vaccine. Author manuscript; available in PMC 2012 April 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



raises the possibility that TLR8 ligands might be of particular utility in vaccines targeting
newborns [154;155].

Pre-clinical studies indicate that imidazoquinolines can improve both the magnitude and
quality of Ag-specific T cell and Ab responses. In mice and macaques, i.m. and s.c. delivery
of TLR7/8 agonists with the HIV-1 Gag protein enhanced Ag-specific IgG and CTL
responses, particularly when the adjuvant was conjugated to Ag [156-159]. In a guinea pig
model of genital HSV infection, an HSV-2 glycoprotein based vaccine combined with
imiquimod enhanced Ab production by up to 10-fold (p <0.001) and reduced the number of
lesions and frequency of genital HSV recurrences by >80% (p<0.001). Interpretation of
these findings was complicated by the observation that imiquimod alone reduced HSV
recurrences by 62%, so that no significant reduction for the vaccine + imiquimod vs
imiquimod alone groups was observed [160].

TLR7/8 agonists have also been used as adjuvants in combination with cancer vaccines. In a
genetically engineered mouse model, a DNA vaccine encoding HER2/neu adjuvanted with
imiquimod significantly delayed the development of spontaneous mammary tumors and
reduced their incidence by 65% when compared to the DNA vaccine alone. These effects
were accompanied by a significant increase in Ag-specific Ab production (3 fold, p <0.05), a
switch from IgG1 to IgG2a Ab isotype, and a 30% increase in CTL activity (p <0.05) [161].

Clinical activity
Imiquimod (Aldara, 3M) is the only TLR7/8 agonist to undergo extensive clinical testing
(Table 3). It is licensed for topical use to treat warts caused by HPV, basal cell carcinoma,
and actinic keratosis [162-165]. Topical imiquimod was tested in combination with several
cancer vaccines (Table 3). When used with a vaccine composed of several melanoma
peptides plus Flt3 ligand (hematopoietic growth factor), imiquimod increased the fraction of
patients who developed peptide-specific CTL responses. However, no effect on disease
progression was observed in this study of 27 patients with stage II-IV post surgical disease
[166].

Another vaccine used the NY-ESO-1 protein in combination with topically administered
imiquimod for the treatment of malignant melanoma (stage II-III). Applying imiquimod
cream to the vaccine site stimulated novel Ab and/or CD4+ T cell responses in
approximately half of the trial participants. Biopsies of imiquimod treated skin showed a
significant enhancement of mononuclear cell infiltrates including T cells, APCs and NK
cells vs untreated skin [167].

A phase I-II trial compared topical imiquimod to 3 other adjuvants (GM-CSF, hyperthemia,
mucin-1-mRNA/protamine complex ) in combination with a multi-peptide vaccine (HLA-
A2 restricted TAA-eptiopes and MHC class II-binding peptides) in prostate cancer patients.
Recipients of the imiquimod-adjuvanted vaccine showed the best response, as determined by
a slowing in the rate of PSA rise. Unfortunately, this study did not evaluate immunological
markers or disease progression, so no definitive conclusions can be drawn [168].

In summary, preclinical studies suggest that TLR7/8 ligands can boost both humoral and cell
mediated responses to vaccines targeting infectious diseases and cancer. Only imiquimod
was clinically evaluated as a vaccine adjuvant, where it boosted Ag-specific Ab and CD4
responses in cancer patients, although it is unclear whether this impacted disease
progression.
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Safety
Topical administration of imiquimod in human vaccine trials was well tolerated. Adverse
events were uniformly mild, transient, and primarily involved local reactions (such as
cutaneous erythema). No severe systemic events were reported. These findings are
consistent with large clinical trials in which cutaneous imiquimod cream was used to treat
diseases such as actinic keratosis [165].

In contrast, severe side effects were reported after oral or systemic use of imidazoquinoline
as a monotherapy in humans [169-171]. In a phase I clinical trial of cancer patients, oral
administration of 25 - 200 mg of imiquimod was associated with sustained dose-related
hematological toxicity. At doses ≥50 mg, grade 3-4 lymphopenia developed in nearly half of
all patients. At higher doses, hepatic and renal impairment were found [171]. Thus while
safe for topical use, formulating imiquimod with vaccines designed for internal use is likely
to be problematic.

TLR 9
General overview

TLR9 is expressed by human B cells and pDC. The receptor is localized within endo-
lysosomal compartments and detects the unmethylated CpG motifs present at high frequency
in bacterial (but not mammalian) DNA [172]. The recognition of CpG DNA by cells
expressing TLR9 has a cascading effect on the immune system, leading to the maturation,
differentiation, and/or proliferation of NK cells, T cells, B cells, monocytes and
macrophages [124;172-179]. The resultant immune response is characterized primarily by
the production of pro-inflammatory and Th-1 biased cytokines (including IL-1, IL-6, TNFα,
IFNg and IL-12 [172;173;180-184].

TLR9 ligands
The immunostimulatory activity of bacterial DNA is mimicked by synthetic
oligonucleotides (ODN) expressing CpG motifs [185-187]. These are typically composed of
phosphorothioate nucleotides, which are considerably more resistant to nuclease digestion
than native phosphodiester nucleotides, and thus have a substantially longer half-life in vivo
[188]. Three major classes of CpG ODN have been described, each with distinct structural
and biological properties. “K” type ODN (also referred to as “B” type) consist of multiple
CpG motifs on a phosphorothioate backbone. They are strong modulators of B cell
activation and induce the maturation of pDCs and monocytes [189-191]. “D” type ODN
(also referred as “A” type) are constructed of a mixed phosphodiester/phosphothioate
backbone, contain a single CpG motif flanked by palindromic sequences, and a poly G tail at
the 3' and 5' termini, facilitating the formation of concatamers. “D” ODN excel are
triggering pDC to produce IFNα [182][190]. “C” type ODN resemble “K” type in being
composed entirely of phosphorothioate nucleotides, but resemble “D” type in containing
palindromic CpG motifs. They have immunostimulatory properties found in both “K” and
“D” type ODN, including the ability to activate B cells and stimulate the production of IFNα
by pDC [188].

Preclinical studies conducted in rodents and non-human primates demonstrate that CpG
ODN can accelerate [192], increase the magnitude [192-194], and prolong the duration of
vaccine-specific Ab responses [194-196]. In addition, CpG ODN improve the response
induced by mucosal vaccines [197-200] and enhance the immunogenicity of vaccines
administered to immunocompromised populations [201-204]. CpG ODN promote vaccine
immunogenicity by improving Ag uptake by professional APC (particularly pDC),
triggering the functional maturation of APC, and generating a cytokine/chemokine
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microenvironment supportive of Ag-specific immunity [205]. These effects are optimized
when vaccine and adjuvant are presented to the immune system in close spatial and temporal
proximity [193;206;207].

Clinical activity
CpG ODN as adjuvants for vaccines targeting infectious diseases—Human
clinical trials examining the adjuvant activity of TLR9 ligands have focused on “K” type
ODN. Those trials evaluated CpG ODN combined with vaccines designed to prevent
malaria [208-211], hepatitis B (HBV) [212-217] influenza [218] and anthrax [219] (Table
4). When co-administered with Engerix-B®, CpG ODN significantly improved the Ab
response of healthy individuals through 48 weeks of follow-up when compared to the
conventional vaccine. The geometric mean titer of anti-HBs antibody in volunteers treated
with CpG ODN plus Engerix-B® was 13-fold higher after primary and 45-fold higher after
secondary immunization than that induced by vaccine alone. Moreover, all participants
immunized with the CpG-adjuvanted vaccine developed seroprotective titers by 2 wk after
priming [215;216], compared to none of the control group. These findings were replicated in
an independent clinical trial [217]. All patients receiving the CpG adjuvanted vaccine
maintained titers in the seroprotective range for >1 year compared to 63% vaccinated with
Engerix-B® alone [212;213]. The adjuvanted vaccine also induced protective Ab titers in
HIV patients who were hyporesponsive to Engerix-B® alone [212].

CpG ODN were also tested as adjuvants in combination with AVA, the licensed anthrax
vaccine. The adjuvanted vaccine boosted anthrax specific Ab responses of healthy subjects
by 6-8 fold and accelerated the induction of immunity by approximately 3 wk [219]. Other
trials showed that naive volunteers mounted a significantly stronger Ab response to the
poorly immunogenic malaria vaccine candidates Apical Membrane Antigen 1 (AMA1) and
Merozoite surface protein 142 (MSP142) when co-delivered with CpG ODN. The co-
administration of CpG with AMA1 increased the GMT of anti-AMA1 Abs by 5.5 fold when
compared to subjects receiving AMA1 alone [208]. This enhanced Ab response was
achieved using a 4-fold lower concentration of AMA1 and was persistent: at 236 days after
vaccination, those immunized with AMA1 + CpG ODN maintained serum Ab titers 4.6-fold
higher than those vaccinated with just AMA1 [208]. While challenge studies were not
conducted, sera from volunteers vaccinated with AMA1 + CpG ODN was >4-fold more
effective at inhibiting the growth of P. falciparum 3D7 parasites in vitro that those
vaccinated with AMA1 alone (p <.0001). Unfortunately, the impact of adding CpG ODN
was insufficient to overcome the lack of immunogenicity of AMA1 when administered to
semi-immune adults with a history of multiple previous plasmodium infections and
circulating AMA1-specific Abs [209]. When co-administered with MSP142, CpG ODN
boosted average Ab titers by 8 fold when compared to MSP142 alone measured 2 wk after
third immunization [211]. The effect of CpG ODN on a vaccine containing both AMA1 and
MSP1 is underway (ClinicalTrials.gov Identifier:NCT0088961). The effect of adding CpG
ODN to the Fluarix influenza vaccine was less impressive. In that trial, CpG ODN reduced
the dose of vaccine required to achieve a strong immune response, but did not increase the
magnitude of the response [218].

CpG ODN as adjuvants for vaccines targeting cancer—The goal of most cancer
vaccines is to generate large numbers of tumor-specific CTL, as cellular rather than humoral
immunity is believed to play a central role in tumor eradication. In pre-clinical animal
studies, CpG ODN enhanced the production of cytotoxic CD8+ T cells targeting tumor Ags
[220;221]. This effect was observed when ODN were conjugated to or simply co-
administered with tumor Ag [222;223]. Of considerable interest, CpG adjuvanted tumor
vaccines effectively eliminated established cancers in murine models [224;225].
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These findings supported clinical studies using CpG ODN as adjuvants for cancer vaccines
(Table 4). In a trial examining the effect of a melanoma Ag A based vaccine (Melan-A;
identical to MART-1), inclusion of CpG ODN plus incomplete Freund's adjuvant generated
a stronger and more rapid CD8+ T cell response than the unadjuvanted vaccine. In that
study, 4 immunizations with the adjuvanted vaccine resulted in >3% of circulating CD8+ T
cells being Melan-A-specific: an order of magnitude higher than in patients treated with
vaccine alone [226].

In a phase I trial of patients with stage III/IV NY-ESO-1Bexpressing melanoma, only a
weak immune response was elicited by vaccination with the NY-ESO-1 peptide plus CpG
ODN. When the co-adjuvant Montamide was added to the the NY-ESO peptide plus CpG
ODN, the combination promoted the development of Ag-specific CD8+ T cells within 1
month [223]. A separate uncontrolled clinical trial used recombinant NY-ESO-1 protein plus
CpG ODN and Montamide to vaccinate patients with different tumor types [227]. Tumor
specific Ab responses rose significantly within 6 weeks while cross-primed NY-ESO-1-
specific CD8+ T cells were detected in a subset of patients by 12 weeks.

A Phase I study involving 14 patients with different types of cancer detected new Ag-
specific CD8+ T cell responses in 9 patients following combined vaccination with NY-
ESO-1, CpG ODN and Montanide [228]. Six of these 9 patients lived an average of 39
months, far longer than their predicted survival of only 4 months. Whether vaccine-induced
immunity was responsible for this improved clinical outcome could not be determined in
this uncontrolled study. In contrast, when CpG ODN was co-administered with GM-CSF
and a peptide corresponding to the immunodominant epitope from the tumor antigen hTERT
(human telomerase reverse transcriptase), no beneficial effect on the CTL response of
patients with sarcoma or glioblastoma was detected [229].

In toto, the clinical data indicates that CpG ODN are likely to find use as vaccine adjuvants,
particularly for those vaccines targeting infectious diseases. This reflects the consistent
ability of CpG ODN to boost Ag-specific humoral immunity in naive subjects. The utility of
CpG ODN as tumor vaccines adjuvants is less clear, as the magnitude of the CTL response
needed to clear an established tumor may exceed that which can be induced by the current
generation of vaccines. This is particularly true given the ability of tumor cells to suppress
or circumvent immune recognition. These concerns have focused attention on the use of
CpG ODN in combination with other immunomodulatory agents, an area of research that
deserves further attention.

Safety
Toxicity has not been observed in animal studies of CpG adjuvanted vaccines. At much
higher doses (used for other purposes), or in combination with agents that induce the
production of TNFα (such as LPS or D-galactosamine) [186;230;231], toxicity has been
reported. Evidence from clinical trials indicates that CpG ODN are reasonably well tolerated
when administered as vaccine adjuvants. However the frequency and severity of local
adverse events (injection site reactions such as pain, swelling, induration, pruritus, and
erythema) and systemic symptoms (including flu-like symptoms) were elevated. This higher
frequency and severity of AEs is likely attributable to the immunostimulatory properties of
CpG ODN. Most of these adverse events were mild-to-moderate, appeared within 24 hours
of dosing, and persisted for only a few days.

Conclusions
Toll-like receptors differ from one-another in location (intra-cellular vs plasma membrane),
use of accessory molecules to induce signaling (TIRAP, TRIF, TRAM and MyD88), the
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type of pathogen associated molecules they recognize (nucleic acids, polypeptides,
lipopolysaccharides), and the type of response they induce (inflammatory, Th1 or Th2).
These distinctions underlie inherent differences in the ability of speicifc TLR ligands to
influence the nature of the adaptive immune response they support when used as vaccine
adjuvants.

Clinical trials involving TLRs 2, 3, 4, 7/8 and 9 support the broad conclusion that TLR
ligands can be safe and effective vaccine adjuvants, with vaccines already licensed in the
US, Europe and Argentina containing such ligands. Sadly, there are no head-to-head pre-
clinical (much less clinical) trials examining the relative adjuvanticity of different TLR
agonists. Since vaccine development is a highly empirical process, and different types of
response are required to protect against distinct pathogens/tumors, there is little justification
for concluding that one particular ligand will be significantly more useful than other
available alternatives. However as clinical data accumulate, evidence of safety and
immunogenicity may shift the balance to favor incorporation of one or small subset of TLR
agonists in future vaccines.
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