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ABSTRACT

0°-Methylguanine (0%-meG), which is produced in
DNA following exposure to methylating agents, in-
structs human RNA polymerase Il to mis-insert
bases opposite the lesion during transcription. In
this study, we examined the effect of O®-meG on
transcription in human cells and investigated the
subsequent effects on protein function following
translation of the resulting mRNA. In HEK293 cells,
0°-meG induced incorporation of uridine or cytidine
in nascent RNA opposite the adduct. In cells con-
taining active 0°-alkylguanine-DNA alkyltransferase
(AGT), which repairs 0%-meG, 3% misincorporation
of uridine was observed opposite the lesion. In cells
where AGT function was compromised by addition
of the AGT inhibitor O®-benzylguanine, ~58% of the
transcripts contained a uridine misincorporation
opposite the lesion. Furthermore, the altered
mRNA induced changes to protein function as
demonstrated through recovery of functional red
fluorescent protein (RFP) from DNA coding for a
non-fluorescent variant of RFP. These data show
that 0®°-meG is highly mutagenic at the level of tran-
scription in human cells, leading to an altered
protein load, especially when AGT is inhibited.

INTRODUCTION

Radiation and chemicals can give rise to reactive species
that damage DNA, producing strand breaks, abasic sites,
and altered bases, sugars and phosphate groups. These
structural modifications to the genetic material often
exert detrimental effects on replication and gene expres-
sion, compromising DNA’s role as the repository of
cellular information. DNA-dependent DNA polymerases

can stall at damaged sites in the template, giving rise to
collapsed replication forks, or synthesize incorrect
products as they progress past the lesions, causing muta-
tions in the daughter DNA (1-3). DNA-dependent RNA
polymerases can also stall at damaged bases in DNA or
bypass the lesions, resulting in altered transcripts in a
process called transcriptional mutagenesis (4-8). To
avert the deleterious effects of DNA damage, cells have
evolved an elaborate array of DNA repair pathways that
maintain and preserve DNA structure. But when genomic
maintenance is compromised due to aberrant DNA repair,
the accumulated damage and associated effects on repli-
cation and transcription result in pathology that can
include cancer and developmental deficits (9,10).

Among the chemical agents that damage DNA are
those that alkylate the purines, pyrimidines and phosphate
groups. Methylating agents, such as the chemical
N-methyl-N-nitrosourea (MNU) or the endogenous
metabolite S-adenosylmethionine, produce two abundant
lesions, 7-methylguanine, which is relatively innocuous,
and 3-methyladenine, which is cytotoxic. Methylating
agents that tend to be highly carcinogenic, which
include MNU, also form significant amounts of
O°-methylguanine (0°meG) (11-14). Furthermore,
the O°-position of guanine is a target site for alkylation
by certain chemotherapeutic drugs, such as 1,3-bis
(2-chloroethyl)-1-nitrosourea (BCNU) and temozolomide
(15,16). BCNU adds a chloroethyl group to the
O°-position of guanine, which subsequently rearranges
and forms a cytotoxic interstrand DNA crosslink (17).
Temozolomide spontaneously degrades, giving rise to a
methyldiazonium ion that methylates DNA, including
the O%position of guanine (18). In both cases, the forma-
tion of the O%alkylated guanine plays an important role
in the cytotoxic mechanism of these drugs.

0°-MeG is highly mutagenic, instructing DNA poly-
merases to incorporate thymine instead of cytosine
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opposite the lesion, resulting in GC to AT transitions
during replication (19-21). 0°MeG is also cytotoxic
because it invokes DNA mismatch repair that results in
a cycle of futile attempts at clearing the lesion, ultimately
producing DNA strand breaks and inducing apoptosis
(22). The mutagenic and cytotoxic consequences of
0°meG are ameliorated by the presence of the protein
O%-alkylguanine-DNA alkyltransferase (AGT) (23-25).
AGT is found in both prokaryotes and eukaryotes and
works in a similar way in each. The protein binds to
0°meG, removes the methyl group and transfers it to a
cysteine located within the AGT active site, generating
S-methylcysteine in the protein and restoring guanine in
DNA. AGT’s action is not enzymatic: Its activity cannot
be regenerated after it has repaired a single lesion. AGT
can also remove longer chain alkyl groups from the
O°position of guanine; hence, it should come as no
surprise that AGT interferes with the chemotherapeutic
efficacy of agents that alkylate the O°-position of
guanine. In the case of BCNU, AGT repairs the
O°-chloroethylguanine intermediate, thwarting the forma-
tion of the cytotoxic DNA interstrand crosslink (26). For
temozolomide, AGT repairs O%-meG, thus clearing a cyto-
toxic DNA lesion that induces apoptosis (18,27).

In biochemical studies, O%®-meG induces transcriptional
mutagenesis when RNA polymerases bypass the lesion,
resulting in significant incorporation of uridine into
nascent RNA (28,29). However, the impact of this obser-
vation has not been demonstrated in human cells, either at
the level of altered transcripts or on the ensuing effects on
protein function. To examine this, a strategy was used in
which a site-specific O°meG was positioned on the
transcribed strand of a gene encoding a fluorescence-
defective red fluorescent protein (RFP) variant in a
plasmid that does not contain any known mammalian
origin of replication. Transcription past the lesion that
resulted in cytidine incorporation produced mRNA that
encoded proteins with no fluorescent activity. In contrast,
incorporation of uridine resulted in transcripts that
encoded the sequence of a functional, fluorescent protein
providing a clear demonstration that transcriptional mu-
tagenesis can produce altered RNA that affects protein
function following translation.

MATERIALS AND METHODS
Chemicals and biochemicals

PspOMI, Dpnl, BfuAl, Notl, Sall, T4 PNK, T4 DNA
ligase and helper phage M13K07 were purchased from
New England Biolabs (Waltham, MA, USA). Esp3I was
purchased from Fermentas (Glen Burnie, MD, USA).
Plasmids and HEK293 Tet-Off cells were procured from
Clontech (Mountain View, CA, USA). KOD Hot Start
Master Mix was purchased from EMD Biosciences
(Gibbstown, NJ, USA). DNA oligomers were made by
Sigma-Aldrich (St Louis, MO, USA). All media and sup-
plements for cell culture were purchased from Mediatech
(Manassas, VA, USA) and Clontech (Mountain View,
CA, USA). Chemical reagents were purchased from
Fisher Scientific (Pittsburgh, PA, USA).
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Vectors

Details of construction of pTT2-RA-G-F1(+), which
provided the core vector for the synthesis of pRFPwt,
pRFPm, pRinsert and pRFPm-O°meG, can be found
under Supplementary data. Each vector contained two
tetracycline response element-tight (TRE-tight) promoters
in tandem, which control the expression of the fluorescent
reporters AcGFP [green fluorescent protein (GFP)] and
DsRed-Express (RFP), and an F1 origin of replication,
which directs production of single-strand DNA (ssDNA)
that corresponds to the coding strands of the RFP and
GFP genes. Each vector was named according to the RFP
sequence it contained. pRFPwt contained the entire
DsRed-Express coding sequence. pRFPm contained the
DsRed-Express coding sequence with the mutation S21P
(TCC — CCCQ). pR-insert contained the DsRed-Express
coding sequence with a 73bp insert, which when
digested with the enzyme Esp3I is excised, linearizing the
plasmid with ends flanking an 11-bp gap centered on the
first C in the proline codon CCC of pRFPm. pRFPm-
0°meG contains the damaged base O%-meG opposite the
first C in the proline codon CCC.

ssDNA production

The vector pRFPm was propagated in One Shot
OmniMax2 T1R bacteria (Invitrogen) containing the F’
episome. These cells were super-infected with helper phage
M13K07 at a final concentration of >1x 10° pfu/ml
culture. Bacterial cells were pelleted, the culture super-
natant was filtered through a 0.22-um filter, and the
filtered media was treated with 1U/ml Dnase
(Worthington Biochemical) to remove contaminating
DNA from lysed bacteria. ssDNA was recovered by poly-
ethylene glycol precipitation of phage particles followed
by phage lysis with proteinase K and DNA purification
by phenol extraction and isopropanol precipitation
[Invitrogen online protocol, modified from (30)]. ssDNA
was used directly after precipitation without further
purification.

Production of pRFPm-0°meG

pRFPm-0O°meG was produced in vitro by combining
pRFPm ssDNA with Esp3I-digested pRFP-insert DNA,
which formed a gapped duplex. A DNA oligomer contain-
ing 0%°meG was ligated into the gap (Supplementary
Figure S4). To form a gapped duplex, 300pg of
pRFP-insert was digested with Esp3Il at 37°C for 2h,
removing the 73-bp fragment. pRFP-insert was mixed
with 1mg pRm ssDNA and denatured with 90%
formamide, 1mM EDTA at 45°C for 30min. The
sample was subsequently dialyzed against 50%
formamide, 200mM Tris—HCI, pH 7.8 at 37°C for at
least 3h to induce renaturation and formation of gapped
duplex DNA. This was followed by consecutive dialyses
against 100 mM Tris—HCI, 100 mM NaCl, 1 mM EDTA,
pH 7.8 at 4°C overnight and 10mM Tris—HCI, 1 mM
EDTA pH 7.8 (TE buffer) at room temperature for 5h,
respectively (31). The annealed DNA was precipitated,
resuspended in 10mM Tris—HCI pH 7.8 and analyzed by
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agarose gel electrophoresis to confirm the appearance of
double-stranded, open circular (gapped) plasmid DNA.

A DNA Il-mer containing 0%meG (5 CACGG
[0°-meG]GCCCT) was phosphorylated with T4 PNK
and annealed to the gapped duplex at a ratio of at least
5:1 by heating to 45°C and allowing to cool to 4°C in a
refrigerator. The mixture was incubated with T4 DNA
ligase (8 U/ug dsDNA) for 24 h at 14°C producing cova-
lently closed circular, double-strand DNA containing a
single 0°meG at a defined position (vector pRFPm-
0°meG, Supplementary Figure S4). The closed-circular
DNA was purified by two consecutive CsCl (1.01 g/ml)
gradient centrifugations (331000g for 24 h in a Beckman
70.1Ti rotor at 21°C) in the presence of ethidium bromide
(0.4mg/ml). The recovered closed-circular DNA was ex-
tracted with water-saturated butanol, dialyzed against TE
buffer at 4°C, ethanol precipitated and resuspended in TE
buffer.

Restriction digests with the enzyme PspOMI were used
to confirm the presence of 0®meG. pRFPm and pRFPm-
0°meG were digested with PspOMI for 1h at 37°C. The
products were resolved on a 0.8% agarose gel containing
ethidium bromide and visualized using a KODAK Gel
Logicl00 gel imaging system.

Cell culture and transfection

Stably transfected Tet-Off HEK293 cells were grown in
Eagle’s minimal essential medium (EMEM) supplemented
with 10% (v/v) Tet system approved fetal bovine serum,
ImM sodium pyruvate, 100 U/ml penicillin, 100 pg/ml
streptomycin and 100 pg/ml G418 and maintained in a
humidified incubator at 37°C under 5% CO,. Cells were
transiently transfected using PolyFect Transfection
Reagent from Qiagen (Valencia, CA, USA) according to
protocol. In brief, 48 h before transfection, cells were
plated in a six-well cell culture cluster (10° cells/well).
The plasmids (2ug) were pre-incubated with PolyFect
Transfection Reagent, mixed with EMEM and added to
the cells. In order to block repair of 0°-meG by cellular
AGT, O°benzylguanine dissolved in dimethyl sulfoxide
(DMSO) was added to cells where appropriate 1h
before transfection. The cells were subsequently incubated
at 37°C and 5% CO, and assayed after 24 h.

Plasmid replication in human cells

Methylated or unmethylated control DNA (pRFPm) from
bacteria, or DNA (pRFPm) isolated from human cell
nuclei was digested with Dpnl for 1h in the absence or
presence of 200 mM NaCl along with non-specific carrier
DNA (32). Following incubation with Dpnl, linear DNA
was digested using exonuclease III as described (33). An
aliquot of the digested DNA containing 0.05ng (after
Dpnl digestion) or 0.008 ng (after Dpnl and exonuclease
IIT digestion) was used in a PCR reaction (GoTaq green
master mix, Promega) containing primers (RdF: 5-CAGC
GGCCCTTCTCTCTTA-3; RR: 5-CGCTACAGGAAC
AGGTGGTG-3") whose product spans 7 Dpnl sites.

Fluorescence microscopy

For fluorescence microscopy, 2 x 10° cells were plated on
collagen type I coated four-well culture slides (BD
BioCoat, BD Biosciences) and transfected 24 h later with
1 ng plasmid as described above. After 24 h, cells were
washed with PBS, fixed with 4% formaldehyde and
covered with anti-fade reagent (Invitrogen) and a cover
slip. Fluorescent cells were visualized using a Nikon
Microphot-SA equipped with a super high-pressure
100W mercury lamp. Digital images were produced
using SPOT software. ImageJ and GIMP software were
used to further process images for publication.

Flow cytometry

Flow cytometry and cell sorting were performed on at
least three experimentally independent cell populations
on a BD-FACSAria cell sorter (BD Biosciences). GFP
and RFP were excited with a 488 nm laser, and detected
through spectral filters at 530/30 and 610/20, respectively.
Every fluorescence-activated cell sorting (FACS) analysis
recorded 1000 000 events. For cell sorting, gates for GFP-
and RFP-positive cells were drawn by hand around
untransfected cells. GFP-expressing cells were collected
in RLT Lysis buffer (Qiagen).

qRT% PCR

Quantitative real-time reverse transcriptase PCR (qRT*
PCR) analysis was performed with transfected cells
acquired by sorting GFP-positive cells using FACS.
RNA was purified using RNeasy micro kit (Qiagen) and
further DNase treated using TURBO DNA-fiee™
(Ambion) according to protocol. Subsequently, first
strand cDNA synthesis was performed using an RT
Script kit followed by quantitative real-time PCR per-
formed in triplicate using HotStart-IT® SYBR® Green
gPCR Master Mix (both from USB) on an iCycler MyiQ
(Bio-Rad). Relative gene expression quantification was
based on the comparative threshold cycle method
(2722CY (34). The cycle parameters were 95°C for 2 min,
and then 40 cycles at 95°C for 15s and 60°C for 1 min
followed by melt curve analysis. The sequences of the
primers used are as follows: RFP (forward primer: 5'-CG
GCTCCTTCATCTACAAGG-3'; reverse primer: 5'-CGC
TACAGGAACAGGTGGTG-3'), GFP (forward primer:
5-CACATGAAGCAGCACGACTT-3'; reverse primer:
S-ATGTTGTGGCGGATCTTGA-3) and GAPDH
(forward primer: 5-CGAGATCCCTCCAAAATCAA-3;
reverse primer: 5-TTCACACCCATGACGAACAT-3).

mRNA sequencing

RNA was purified using RNeasy micro kit (Qiagen) and
further DNase treated using TURBO DNA-free'™
(Ambion) according to protocol. Subsequently, first
strand ¢cDNA synthesis was performed using an RT
Script kit (USB). cDNA was amplified by PCR with
KOD proofreading polymerase using primers: forward
5-ATAGCATGTCGACGCCCTTCTCTCTTAAGGTA
GCTACA-3; and reverse 5-ATAGCATGCGGCCGCT
GCTTCACGTACACCTTGGAGCCGT-3'. These



primers introduced Sall and Notl restriction sites into the
5’- and 3’-ends of the PCR product, respectively. The PCR
products were digested with Sall and Notl and cloned into
a Sall-Notl digested vector, pCl-neo, from Promega.
Individual colonies were mini-prepped and sequenced
using the M13 reverse primer. For each experimental
replicate, 20 clones were sequenced.

Restriction enzyme assay

PspOMI digestion of reverse transcriptase PCR (RT-
PCR) amplified cellular RFP transcripts was used to
analyze the extent of transcriptional mutagenesis.
Briefly, cDNAs obtained from cells transfected with
pRFPm or pRFPm-O°meG were amplified by PCR
using KOD Hot Start Master Mix and RdF (5-CAGCG
GCCCTTCTCTCTTA-3) and RdR (5-TGCTTCACGT
ACACCTTGGA-3') primers and subsequently digested
with PspOMI. A standard curve was created by a series
of mixtures of pRFPwt and pRFPm plasmids using the
same PCR and digestion protocol. The digested DNA was
resolved on a 1% agarose gel and band intensities
analyzed by plotting lanes and measuring the area under
the curve for each band using ImageJ Software (NIH).
The ratio of the area of the upper band, the mutated
sequence, to the total area of both bands, combined
wild-type (wt) and mutated sequences, was used to
create a standard curve (Supplementary Figure S1). The
calculated ratio from each cDNA was compared with the
standard curve to determine the percentage of mutant
transcripts under each condition from at least three inde-
pendent experiments.

RESULTS
Synthesis of plasmids containing site-specific 0°-MeG

The overall strategy for examining the effect of 0°-meG
on transcription in a cellular system relied on biochemical
data showing that the lesion directs insertion of either
cytidine or uridine into nascent RNA, producing normal
or altered transcripts, respectively (28). When such
changes occur within an mRNA’s translated region, the
cellular protein synthesis machinery could be directed to
incorporate amino acids into the growing peptide chains
that result in aberrant proteins (5).

The approach required the assembly of three vectors:
pRFPwt, pRFPm and pRFPm-O°meG (Figure 1A).
Vector pRFPwt contained two reporter genes, one
encoding a GFP and the other encoding wt RFP. The
use of two fluorescent reporters added an important
control for the experiments described here. Vector
pRFPwt acted as a positive control with both GFP and
RFP fluorescence. In pRFPm, the RFP gene contained a
T to C point mutation, generating a S21P (TCC—CCC)
substitution that resulted in a non-fluorescent RFP
variant. This vector acted as a second control, exhibiting
only GFP fluorescence.

The third vector, pRFPm-0°meG, contained a single
0°-meG opposite the 5’ C in proline codon 21. pRFPm-
0°meG was the experimental vector used to determine the
effect of 0°meG on transcription and protein function.
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Figure 1. Plasmids. (A) The vectors used in these studies contained two
reporter genes, RFP and GFP, under the control of independent, iden-
tical tetracycline-responsive promoters P.. The vectors also contained
an F1 origin of replication, which directs production of ssDNA.
pRFPm contained a single base change from pRFPwt, which resulted
in an S21P mutation that coded for a non-fluorescent RFP. In pRFPm-
0°meG, 0°meG replaced G opposite the 5 C in the proline codon.
The PspOMI restriction sites used for vector analysis are also indicated.
(B) The presence of O°meG blocks PspOMI digestion. The vectors
were incubated with PspOMI and the products were resolved by
agarose gel electrophoresis. 1: pRFPm + PspOMI. 2: pRFPm-0°meG
+ PspOMI. 3: pRFPm-0°meG uncut plasmid. 4: pREPwt + PspOMI.
Marker in kilobases. See text for details.

In accordance with biochemical data, transcription past
the site-specific 0®-meG lesion should produce RNA con-
taining either 5'-CCC-3’, which would encode proline and
a functionless RFP, or 5-UCC-3’, which would encode
serine and restore RFP activity. Hence, in this scenario,
base misincorporation reverts the RFP RNA to the wt
sequence that restores fluorescence activity in response
to transcriptional mutagenesis.

A restriction digest with PspOMI was performed to
verify the presence of a site-specific 0°-meG in vector
pRFPm-0°meG. PspOMI cuts DNA at the sequence
5-GGGCCC-3/, but does not cut when one of the
guanines is replaced with an 0®meG, as is the case for
one of the two PspOMI sites in pRFPm-0°meG. For the
unmodified pRFPm, digestion with PspOMI should
produce DNA fragments 3654 and 2865bp in length.
When pRFPm was incubated with PspOMI, two bands
were observed with the expected sizes (Figure 1B,
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Lane 1). Furthermore, no closed circular plasmid was
seen, indicating that the digest went to completion. In
contrast, when pRFPm-O"meG was incubated with
PspOMI, only a single DNA band was produced
(Figure 1B, Lane 2), indicating that only one PspOMI
site was cut, producing a pattern identical to that of
PspOMI-digested pRFPwt (Figure 1B, Lane 4). These
results showed that a site-specific 0°®-meG was present in
the purified pRFPm-0°meG vector.

Plasmid replication was not observed in HEK293 cells

Detection of transcriptional mutagenesis using site-specific
DNA damage in plasmids is predicated on the notion that
replication does not occur, thus preventing formation of
mutated daughter DNA that would confound the results
observed during transcription. To eliminate replication in
the experiments reported here, plasmids lacking any
known mammalian origin of replication were used.
However, plasmid replication in human cells has been
reported even when the vectors did not contain a specific
known origin of replication (35). In fact, transcription
itself has been shown to induce replication in some cases
but not others (36,37).

To test for plasmid replication, methylated and
unmethylated control DNA samples and plasmid DNA
isolated from HEK293 cells were left untreated or
incubated with Dpnl, then amplified by PCR using
primers that spanned 1632 bp and seven Dpnl sites. The
restriction enzyme Dpnl specifically recognizes methylated
GATC sites. In the absence of NaCl, the enzyme efficient-
ly cleaves fully methylated GATC sites and slowly cleaves
hemi-methylated sites. In the presence of 200 mM NacCl,
Dpnl effectively cleaves fully methylated DNA at a
reduced rate but no longer cleaves hemi-methylated
DNA (32). Hence, in the presence of 200mM NaCl,
plasmid DNA that only replicated once, resulting in
hemi-methylated DNA, would be resistant to Dpnl
cleavage and subsequently amplified by PCR.

Fully methylated plasmid DNA isolated from dam"/
dem”™ DHSo bacteria was amplified to a small extent fol-
lowing digestion (Figure 2, Lanes A2 and A3). This was
likely due to residual, partially digested plasmid DNA,

leaving intact amplicon fragments (33). When exonuclease
III was used to digest linear DNA following incubation
with Dpnl, no amplification product was observed,
indicating that all the plasmid DNA had been cut at
least once by Dpnl, making it susceptible to exonuclease
digestion (Figure 2, Lanes A5 and A6). In contrast,
unmethylated plasmid DNA isolated from dam™ /dcm™
bacteria, which should not be a substrate for Dpnl, was
amplifed as expected following Dpnl and exonuclease 111
incubation, showing that unmethylated, closed-circular
plasmid was not subject to Dpnl digestion (Figure 2,
Lanes B1-B6). Plasmid DNA isolated from HEK293
cells behaved identically to methylated control DNA,
indicating that the plasmids used in this work were not
replicated following transfection (Figure 2, Lanes C1—C6
for transcriptionally active plasmids; the replication assay
for transcriptionally silent plasmids looked identical).

0%-MeG induced transcriptional mutagenesis in
HEK293 cells

To test for transcriptional mutagenesis by O°-meG,
HEK293 Tet-Off cells were transfected with the vectors
described in Figure 1. In some instances, cells were
treated with O°®-benzylguanine, eliminating AGT activity
that could repair the methylated base (38,39).
Transcription was induced by excluding the tetracycline
analog doxycycline (dox) from the growth medium, and
RNA was recovered from the cells 24 h after transfection.
The RFP mRNA was converted to DNA using RT-PCR,
and restriction enzyme sensitivity and sequencing were
used to characterize the products.

As in the assay to detect the presence of O°-meG in the
modified vector, PspOMI was used to test for transcrip-
tional mutagenesis. PCR was used to amplify RFP cDNA,
using primers that spanned the PspOMI site present in the
RFPm gene. cDNA generated from RNA following tran-
scription of the pRFPwt RFP gene does not contain a
PspOMI restriction site, leading to the formation of a
band of DNA corresponding to the expected 751bp
after incubation with PspOMI (Figure 3, Lane 1).
cDNA generated from cells transfected with pRFPm con-
tained one PspOMI restriction site, leading to the

200 mM NaCl X X X X X
Dpnl X X X X X X X X X X X
Exo lll X X X X X X
- . - m -
Lane: M - A1 A2A3A4 A5A6 B1B2B3B4B5B6 C1 C2C3C4C5C6
methylated unmethylated methylated
plasmid from plasmid from plasmid isolated

dam* bacteria

from transfected
HEK293 cells

dam~ bacteria

Figure 2. pRFPm is not replicated in human cells. Template DNA for Lanes A1-A6, was isolated from dam(+) bacteria. Template DNA for Lanes
B1-B6 was isolated from dam/dem(—) bacteria. Template DNA for Lanes C1-C6 was isolated from HEK293 cells 48 h after transfection in the
absence of dox. Lanes Al, A4, BI, B4, Cl and C4 are positive controls for PCR. Lane (—) is a negative control with no template DNA in the PCR

reaction. See text for details.



formation of a band of DNA at 623bp (and a band
at 128 bp, not shown) after incubation with PspOMI
(Figure 3, Lane 4). As predicted, RNA from cells trans-
fected with pRFPm-O°meG in the absence or presence of
inhibitor resulted in a mixture of PspOMI-resistant and
PspOMI-sensitive ¢cDNA due to the incorporation of
uridine or cytidine opposite O°-meG during transcription,
respectively (Figure 3, Lanes 2 and 3).

Band intensities from the PspOMI digest assay were
used to estimate the relative base incorporation during
transcription past 0°meG in HEK293 cells. In the
absence of 0°benzylguanine, 3.0 + 0.5% [standard error
of the mean (SEM) n = 3] of the transcripts contained a
misincorporation at the position opposite the O°-meG.
However, RFP transcripts from cells in which AGT was
inhibited with either 10 or 50 uM O°-benzylguanine prior
to transfection resulted in 64 £ 9% (SEM, n = 2) and
65 + 9% (SEM, n = 4) misincorporation, respectively.

RT-PCR was used to produce RFP cDNA for
sequencing from cells. Twenty individual cDNAs were
sequenced from four independent experiments each
giving a total of 80 sequences for each experimental
condition. The results from cells pretreated with 10 or
50 uM O°-benzylguanine (three experiments using 10 uM
O°-benzylguanine and one experiment using 50puM
O%-benzylguanine) and transfected with pRFPm-0°meG
confirmed that uridine and cytidine were principally
incorporated opposite the lesion. The percentage of
uridine misincorporation opposite 0®-meG was 58 + 7%
(SEM, n = 4), which was in agreement with the results
from the restriction digest assay. Additionally, one tran-
script from cells treated with 10 M O°-benzylguanine
contained a 10-base deletion, and a second contained a
1-base deletion located 2-4 bases from the lesion site co-
incident with misincorporation opposite the lesion
(Supplementary Table SII). The deletions in the RNA
are reminiscent of those observed by Marietta and
Brooks during transcription past a cyclopyrimidine
dimer on the transcribed strand (8). No aberrant
sequences were observed in cells transfected with
pRFPwt or pRFPm in the presence or absence of
O%-benzylguanine, or with pRFPm-O°meG in the
absence of inhibitor. These data indicate that O%-meG, if
left unrepaired, is highly mutagenic at the level of
transcription in human cells, inducing uridine incorpor-
ation in approximately two-thirds of the transcripts
produced.

1031

700

500

Figure 3. PspOMI digestion of RT-PCR products from cells reveals
misincorporation opposite 0°meG. RT-PCR products from cells trans-
fected with the following plasmids were digested with PspOMI.
I: pRFPwt. 2: pRFPm-0°meG. 3: pRFPm-0°meG in the presence of
10 uM O°%-benzylguanine. 4: pRFPm.
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Transcriptional mutagenesis by 0°-MeG induced changes
in RFP activity

To determine if transcriptional mutagenesis by 0%meG
results in changes in protein function following transla-
tion, recovery of RFP fluorescence was measured in cells
transfected with the vector pRFPm-0O°meG. Changes in
fluorescence were assessed qualitatively with fluorescence
microscopy and measured quantitatively with flow
cytometry.

Cells transfected with the control vector pRFPwt ex-
hibited both red and green fluorescence in the absence of
dox (Figure 4A). Cells transfected with the control vector
pRFPm exhibited only green fluorescence as expected,
since the S21P mutation eliminated the RFP activity
(Figure 4B); however, the presence of RFPm mRNA
was confirmed by quantitative real-time RT-PCR
(Figure 5). Interestingly, mRNA quantification revealed
a significant effect of 50puM OS°-benzyguanine on the
RFP/GFP mRNA ratio in cells transfected with pRFPm
and pRFPm-O°meG. This was not observed in the
presence of 10 uM O%-benzylguanine. An effect of 50 pM
O%benzylguanine alone on transcript levels has been
observed before (40,41). It is possible that, while not cyto-
toxic, 50 M O°-benzylguanine exerts an effect on the
transcript levels of certain specific genes or on transcrip-
tion in general.

A GFP filter RFP filter

Overlay

Figure 4. Fluorescence microscopy showing transcriptional mutagen-
esis. HEK293 cells were transfected with a specific vector as shown.
In all cases, images were obtained 24 h after transfection. Row A: cells
were transfected with plasmid pRFPwt and showed strong GFP and
RFP fluorescence. Row B: cells were transfected with pRFPm, which
expresses GFP and a non-fluorescent variant of RFP. No red fluores-
cence was observed. Row C: cells were transfected with
pRFPmM-0°meG. A small percentage of the cells exhibited red fluores-
cence, showing that a small quantity of mutant mRNA was formed
following transcription past the adduct (white arrowhead). Row D:
cells were transfected with pRFPm-0°meG in the presence of 10 uM
0%benzylguanine. These cells exhibited strong red fluorescence,
indicating an elevated level of transcriptional mutagenesis due to the
extended presence of 0%-meG.
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Figure 5. qRT?-PCR indicates presence of RFPm mRNA in the
absence of RFP fluorescence. Although there is no red fluorescence
in cells transfected with pRFPm, RNA quantification shows there is
no significant difference between RFP mRNA levels in cells transfected
with pRFPwt, pRFPm, pRFPm-O°meG and pRFPm-O°meG plus
10uM  O°benzylguanine. Additionally, treatment with 50uM O
benzylguanine significantly affected mRNA levels in cells transfected
with pRFPm, and pRFPm-0O°meG. Significance was determined by a
two-sample Student’s 7-test which compared the RFP-GFP mRNA
abundance ratio from untreated pRwt transfected cells to the ratio
observed under each of the experimental conditions in at least three
independent experiments (*P <0.05).

In contrast to cells transfected with undamaged
pRFPm, cells pre-incubated with 10 uM O°-benzylguanine
and transfected with pRFPm-0°meG exhibited robust
green and red fluorescence, indicating that uridine incorp-
oration opposite 0°-meG during transcription reactivated
RFP (Figure 4D). Furthermore, cells transfected with
pRFPm-0°meG in the absence of inhibitor exhibited
green fluorescence with ~1% RFP-positive cells,
showing that in some cells, the damaged base was suffi-
ciently long lived, even in the presence of active AGT,
to produce observable amounts of altered RFP mRNA
(Figure 4C).

Flow cytometry showed a strong recovery of red fluor-
escence when O°-meG was positioned on the transcribed
strand of DNA, especially in the presence of O°-
benzylguanine. In RFP-GFP fluorescence scatterplots,
recovery of red fluorescence was observed as a shift in
the distribution of cells along the y-axis (RFP fluores-
cence) with no corresponding difference in the distribution
along the x-axis (GFP fluorescence). Red and green fluor-
escence values from cells transfected with pRFPm fell
within the space defined by cells transfected with pGFP,
a single reporter plasmid expressing GFP (black polygon,
Figure 6A), indicating that GFP fluorescence was
dominant as expected. Note that the results for pRFPm
RFP-GFP fluorescence were not influenced by the
absence or presence of 0°benzylguanine (Figure 6B and
Q). Cells transfected with the plasmid pRFPm-0°meG in
the presence of O°-benzylguanine exhibited a clear shift

toward higher values of RFP fluorescence (Figure 6E,
22% of cells lie outside the black polygon), while cells
transfected with the same plasmid in the absence of inhibi-
tor fell primarily within the GFP region (Figure 6D).
However, some scatter toward the RFP-positive region
was observed (1.3% of cells lie outside the black
polygon). Cells transfected with pRFPwt expressed high
levels of both RFP and GFP (Figure 6F). Additional stat-
istical analysis of the flow cytometry data can be found in
Supplementary Figure S2. Overall, these data indicate that
the presence of O°meG in DNA can produce altered
RNA that results in changes to protein function via tran-
scriptional mutagenesis.

DISCUSSION

The results presented here show that O°meG located
on the transcribed strand of an active gene is mutagenic
at the level of transcription in human cells. These findings
are in agreement with biochemical data demonstrating
that this adduct induces base misincorporation
events during transcription by human RNA polymerase
I1, resulting in significant insertion of uridine opposite
the lesion (28). Furthermore, the production of altered
mRNA following transcription past O°-meG is consistent
with the recovery of RFP activity in HEK293
cells, showing that mutant transcripts do indeed
change the primary amino acid sequence of proteins
and that such change is reflected as altered protein
function in cells.

DNA repair affects the magnitude of base changes to
RNA that are induced during transcriptional mutagenesis
(42-46). In the presence of functional AGT, ~3% of the
transcripts were mutated following HEK?293 transfection
with a plasmid containing O°-meG, and only an
occasional RFP-positive cell was observed. In contrast,
inhibition of AGT by the drug O°benzylguanine
resulted in virtually all cells exhibiting RFP fluorescence,
with two-thirds of the transcripts containing a mutation.
Hence, inhibiting repair of 0°-meG led to increased tran-
scriptional mutagenesis. Thus, the consequences of O°-
meG formation in cellular DNA are not limited to S
phase, when it can induce mutations during replication,
but are also observed during transcription. Hence, AGT
may well protect all cells from the harmful effects of al-
kylation at the O°-position of guanine, including those
that are terminally differentiated and not replicating (10).

For human RNA polymerase 11, the extent of uridine
misincorporation during transcription past 0O°-meG in
cells differs from results using nuclear extracts as the
source of the transcription machinery. When HeLa
nuclear extract was the source of RNA polymerase II,
misincorporation of uridine opposite O%-meG occurred
25% of the time (28). This is in contrast to the
58% uridine misincorporation reported here for transcrip-
tion past the lesion in cells when AGT was inhibited
with O%-benzylguanine. In vitro transcription experiments
with the local sequence used in this study revealed a
misincorporation ratio similar to the results obtained in
cells suggesting possible sequence context effects rather
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Figure 6. Representative scatter plots of 293 cells show changes in protein function due to transcriptional mutatgenesis. (A) pGFP plasmid with
CMV promoter driving expression of GFP only. (B) pRFPm. (C) pRFPm+ 10 uM BzG. (D) pRFPm-0°meG. (E) pRFPm-0°meG + 10 uM BzG.
(F) pRFPwt. The polygon represents extent of red and green signal in (A) (pGFP). The number in the upper right of each panel is the percentage of
cells that fall outside of the GFP only polygon. Magenta color represents cells gated as significantly fluorescent compared with non-fluorescent

controls. The data are plotted on a natural log scale.

than differences between the two assays (Supplementary
Figure S3). A comparison between 0®-meG-induced tran-
scriptional mutagenesis and replicative mutagenesis
reveals some distinct similarities. Replicative DNA poly-
merases incorporate thymidine or cytidine opposite
0°meG, with reported T:C ratios ranging from 1:1 to
7:1, depending on the precise polymerase and DNA
sequence studied (19-21). Other replication products
have been observed but to a much lesser extent, including
incorporation of adenine and small deletions (44). For
DNA polymerases, these data are consistent with the
GC — AT transition mutations that have been reported
in a variety of assays used to examine replication past
0%meG in cells. The mutational events reported for
DNA polymerases correspond to those observed for
human RNA polymerase II, suggesting that the
underlying mechanism governing base misincorporation
opposite 0°-meG during transcription and replication
are similar (47).

DNA repair modulates the consequences of DNA
damage during replication, often suppressing mutagenesis
by removing the DNA lesions prior to S phase. Hence, in
the absence of AGT, the 0°meG mutation frequency
escalates during replication, reaching 75-90% in human
293 cells and 90-99% in Escherichia coli (42,48-50). This
is in marked contrast to the much lower mutation
frequencies of 5-25% observed when AGT is active.
Interestingly, the O°-meG-induced mutation frequency in
cells is virtually independent of DNA sequence, which is in
contrast to biochemical data. For example, primer exten-
sion studies with E. coli DNA polymerase showed differ-
ences in mutation frequency depending on sequence
context, but this result was not reproduced in cells (42).

Methylation damage to DNA poses a threat to cell via-
bility. Exogenous and endogenous methylating agents are

ubiquitous and contribute to the production of methyla-
tion damage in DNA, including the formation of O%-meG.
It is estimated that S-adenosylmethionine alone may react
with DNA in a typical mammalian cell to produce 10-30
0°%meG adducts per cell per day (51). Actual measure-
ments of 0°meG in DNA from human tissues suggest
that the lesion persists with steady-state values that,
while widely variable, amount to 1.4-220 lesions per
10°nt, with lower values measured in blood and the
higher levels found in lung tissue from smokers
(11,52,53). While the O°meG levels are low relative to
the total number of bases found in DNA, there is the
possibility that the lesion could be present within a tran-
scription unit in a few cells per day, contributing to
transcriptional mutagenesis. The majority of such muta-
tions to RNA may well be transient and perhaps even
benign due to RNA turnover; however, based on the
evidence presented here and elsewhere, it is possible that
transcriptional mutagenesis, rather than replication-
induced mutations, may be among the principal inducers
of many human diseases, ranging from cancer to prion
activation, though there is no direct evidence that this is
the case (45).

The drug O°-benzylguanine, which was used to inhibit
AGT activity in this study, has been used as a co-
chemotherapeutic agent in clinical trials to treat tumors
of the central nervous system. By inhibiting AGT,
O%-benzylguanine sensitizes cells to alkylating agents
such as BCNU that form adducts at the O°-position of
guanine. Inhibiting AGT prevents the repair of the
0%-alkyl lesion, potentially making the alkyating agent
more effective as an anti-tumorigenic compound. But
the data presented here show that inhibiting the action
of AGT induces transcriptional mutagenesis. In fact, the
maximum concentration of O°-benzylguanine measured in
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patient blood has been reported as 8-11uM, which is
consistent with the concentration used in the growth
medium in experiments reported here, suggesting that
the drug could induce transcriptional mutations in
patients (54).

The studies described here used an RFP reporter that
permitted the analysis of transcriptional mutagenesis in
individual cells, both at the level of the RNA and the
subsequent effects on protein function. While RFP alter-
ations do not affect cell physiology, the reporter-based
system does allow visualization of transcriptional muta-
genesis in single cells, providing insight into the distribu-
tion in mutation frequencies across the population of cells
rather than just observing averages. This information will
be important in considering what is happening in a popu-
lation of cells where the damaged gene cannot be
visualized directly. The work of Saxowsky et al. (46) has
been able to show that mutations at the level of transcrip-
tion can affect cellular processes. They examined the effect
of 8-oxoguanine in inducing mutations in Ras protein at
the level of transcriptional mutagenesis. They discovered
that a population of constitutively active Ras proteins was
produced via transcriptional mutagenesis, which led to
downstream events in the Ras pathway. Furthermore,
these same events were induced by mutations to the ras
gene, showing that transcriptional mutations, while tran-
sient in nature, can significantly affect cells, possibly
leading to oncogene activation (46). The work reported
here concerning 0°meG indicates that this lesion can
also induce transcriptional mutagenesis, and its effect
could be serious since it exhibits a high mutation fre-
quency in the absence of repair. An active gene containing
0°meG in a position sensitive to a T to C transition could
transiently produce as much as 66% altered transcripts
from that copy of the gene, resulting in a reduction of
wt protein. This would be detrimental during development
and could affect overall cell viability.
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