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ABSTRACT

The quest for a universal and efficient method
of identifying species has been a longstanding
challenge in biology. Here, we show that accurate
identification of species in all domains of life
can be accomplished by multiplex analysis of
variable-length sequences containing multiple
insertion/deletion variants. The new method, called
SPInDel, is able to discriminate 93.3% of eukaryotic
species from 18 taxonomic groups. We also dem-
onstrate that the identification of prokaryotic and
viral species with numeric profiles of fragment
lengths is generally straightforward. A computa-
tional platform is presented to facilitate the
planning of projects and includes a large data set
with nearly 1800 numeric profiles for species in all
domains of life (1556 for eukaryotes, 105 for prokary-
otes and 130 for viruses). Finally, a SPInDel profiling
kit for discrimination of 10 mammalian species
was successfully validated on highly processed
food products with species mixtures and proved
to be easily adaptable to multiple screening pro-
cedures routinely used in molecular biology
laboratories. These results suggest that SPInDel is
a reliable and cost-effective method for broad-
spectrum species identification that is appropriate
for use in suboptimal samples and is amenable to
different high-throughput genotyping platforms
without the need for DNA sequencing.

INTRODUCTION

The correct identification of entities belonging to the
biological category we call ‘species’ is frequently inhibited

by both theoretical and practical limitations. The
long-running debate on the meaning of this category has
produced over 20 different concepts of species that chal-
lenge any attempt to identify a species accurately (1).
Additionally, the multiplicity of biological properties
and methods currently used for identification have
resulted in many practical limitations that often lead to
contradictory results (2–6).
Developments in the field of molecular biology have

revolutionized the way that we classify and identify
species. Initial methods based on protein analysis had sig-
nificant limitations, such as rapid protein degradation in
samples under stress conditions, a high risk of
cross-reactivity or problems associated with tissue specifi-
city. These limitations were only overcome with the advent
of DNA-based systems. Information encoded in nucleic
acid sequences can be examined using multiple methods
for molecular-recognition purposes: hybridization
between a known genomic or synthetic DNA probe and
the target DNA, generation of species-unique patterns
of amplified products by PCR (coupled with enzymatic
restriction or not) and direct sequencing (3,4,6).
Nevertheless, many of these methods are limited by:
(i) the need for high amounts of quality DNA neither
degraded nor chemically modified, (ii) the occurrence of
non-specific DNA hybridizations, (iii) the difficulty of in-
terpreting electrophoretic profiles in mixtures and (iv) the
high dependence on laboratory conditions, hampering the
standardization of results for inter- and intra-laboratory
comparisons [for further information see (2–6)].
Direct DNA sequencing of cytosolic and mitochondrial

ribosomal RNA (rRNA) (7–10) and protein-coding genes,
e.g. cytochrome b (11–13) and cytochrome c oxidase
I (14), is presently the most effective analytic and diagnos-
tic approach for species identification. Conventional
capillary sequencing methods usually rely on the inspec-
tion of a single large amplicon, over 300 bp (8,13,14), to
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obtain enough information for a confident discrimination,
which poses serious problems for the typing of suboptimal
DNA samples and increases the likelihood of null results
(for instance, due to intraspecific polymorphisms on PCR
primer-binding sites). Also, detection of mixtures requires
species-specific primer sets or time-consuming and expen-
sive cloning steps. The so called ‘next-generation’ of
sequencing technologies have already offered promising
results in metagenomic studies (15–17) but are still rarely
used in species identification procedures and have not
been subjected to validation studies (18,19).
Although the field will inevitably move towards more

economical and faster sequencing technologies, it is still
imperative to conceive other ways of retrieving informa-
tion enclosed in nucleic acid sequences. This search can
open new avenues in the development of valuable
methodologies for genetic screening, and ultimately, the
identification of individuals and species without directly
determining DNA or RNA sequences. To address
this need, we designed an alternative approach for bio-
logical identification in a wide range of life forms based
on the length of rRNA gene regions. The use of size vari-
ation in hypervariable regions or related approaches
has already proved to be efficient in the identification of
species (20–27).
The SPecies Identification by Insertions/Deletions

(SPInDel) method described here makes use of the evolu-
tion of rRNA gene sequences across species (Figure 1):
hypervariable regions, regions containing multiple indels
that potentially allow for differentiation by the determin-
ation of sequence length, are found interspersed with
highly conserved domains, regions presenting none or
low sequence variability used as anchors (10,28–31).
Thus, a species can be defined by a unique set of
fragment lengths (a ‘SPInDel profile’) that can be
interrogated using the present array of high-throughput

genotyping platforms, ranging from gel and capillary
electrophoresis to mass spectrometry and high perform-
ance liquid chromatography. Numeric profiles of
fragment lengths yield a considerable power of discrimin-
ation: in theory, and for simplicity’s sake assuming no
functional constrains and independence of SPInDel loci,
a survey of just 6 hypervariable regions with 20 alleles
each (or 11 regions with 5 alleles each) is enough to
discriminate all eukaryotic species on Earth, which are
estimated to be between 5 and 15 million in number (32)
(Figure 2a).

We present a new method of species identification that
includes the following: (i) a large data set comprising
nearly 1800 numeric profiles for the identification of
eukaryotic (n=1556), prokaryotic (n=105) and viral
species (n=130); (ii) a publicly available computational
platform for data analysis accompanied by a collaborative
online workspace (http://www.portugene.com/SPInDel/
SPInDel_web.html and http://groups.google.com/group/
spindel); (iii) a multiplex PCR profiling kit for the
identification of 10 eutherian species by capillary electro-
phoresis; and (iv) a validation study performed in highly
processed food products, including the identification of
species from mixtures.

MATERIALS AND METHODS

Nucleotide sequences

The reference sequences for all complete mitochondrial
genomes available on April 2009 were retrieved from the
NCBI Entrez Nucleotide database (http://www.ncbi.nlm
.nih.gov) with the Geneious 4.6.4 software (33). A total
of 1757 complete mitochondrial genomes, mitochondrial
chromosomes (e.g. Spizellomyces punctatus) and plasmids
(e.g. Oryza sativa and Zea mays) were extracted
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Figure 1. Schematic illustration of the strategy used in the species identification by the insertions/deletions (SPInDel) method. (a) Illustration of the
sequence alignment for three hypothetical species. Four conserved regions (green boxes) define three hypervariable domains (dotted brown lines).
A section of the alignment is magnified to show the presence of multiple gaps in hypervariable regions. (b) Each species is identified by a numeric
profile resulting from the combination of lengths in hypervariable regions.
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(Supplementary Table S1). We arranged these sequences
into 18 major taxonomic groups comprising at least six
sequences each (Table 1) and excluded 96 sequences
belonging to underrepresented taxonomic groups.
In each group, we excluded the following: (i) duplicated
reference sequences for the same species; for instance,
Rattus norvegicus AC_000022.2 was removed, but
R. norvegicus NC_001665.2 was kept; (ii) sequences
lacking clearly annotated rRNA genes; and (iii) sequences
in which rRNA genes have several introns. We included
sequences identified as belonging to subspecies or hybrids.
The adjacent large and small subunit rRNA genes were
used in Platyhelminthes, Arthropoda and seven
Vertebrate groups (Supplementary Figure S1). In the
remaining taxa, only the large subunit rRNA gene was
investigated because the large and small subunit rRNA
genes were not contiguous.

A set of complete mtDNA sequences from
Caenorhabditis briggsae, Drosophila simulans, Bos taurus
and Homo sapiens was retrieved from the NCBI Entrez
Nucleotide database for the assessment of intraspecific
diversities. These species were selected because they
present the largest number of available complete
mtDNA sequences returned in an initial Entrez
Nucleotide search. We then extracted the largest possible
number of sequences for each species using several search
statements on the Entrez Search Field (e.g. ‘complete
mitochondrion species name’ and ‘complete mtDNA
species name’).

Prokaryotic 16S rRNA sequences were obtained from
the Greengenes web application (34). We extracted all
classified sequences from the phyla Crenarchaeota
(Archaea) and Tenericutes (Bacteria) with a minimum

nucleotide size of 1250 and without nucleotide
ambiguities. Redundant sequences belonging to the same
species and sequences without a clear species assignment
were subsequently removed. Nucleotide sequences of viral
reference genomes were retrieved from the NCBI Viral
Genomes project (http://www.ncbi.nlm.nih.gov).
All sequences in each group were aligned using the

default settings of the MUSCLE 3.6 software (35).
In the case of Arthropoda, Actinopterygii, Eutheria
(Figure 3a) and intraspecific groups, we only ran the
first two iterations of the MUSCLE algorithm (the
–maxiters 2 option) as recommended by the software
user’s guide when dealing with a large number of se-
quences. The alignment of duplicated rRNA genes on
mtDNA was also performed as described earlier.

Selection of SPInDel conserved and hypervariable regions

We identified SPInDel conserved and hypervariable
regions using a sliding window analysis of nucleotide di-
versity (p) (36) and the number of segregating sites (S)
across rRNA gene alignments using the DnaSP ver. 5.10
software (37) (Figure 3b and Supplementary Figure S2). A
window of 100 nucleotides was moved along the align-
ment in 1 nt steps, and the values for each parameter
(p and S) were assigned to the nucleotide at the
midpoint of each window. Sites with alignment gaps
were counted in the window length. Standard diversity
measures were also calculated in the DnaSP software
(Supplementary Table S2).
SPInDel conserved regions were selected as poten-

tial primer-binding sites using, whenever possible,
the following criteria: (i) location in highly conserved
domains 17–25 nt long; (ii) GC content between
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Figure 2. Species discrimination achieved with the SPInDel method. (a) Using a logarithmic scale, the four straight lines represent the possible
number of different profiles obtained when combining lengths from hypervariable regions, considering 2, 5, 20 or 100 alleles per region. For
simplicity’s sake, we assumed that each allele is sampled once and that there is independence among loci. The dotted line represents the estimated
maximum number of eukaryotic species on Earth (15 million). (b) Maximum frequency of species-specific profiles observed by combining SPInDel
hypervariable regions in 18 eukaryotic groups. The maximum frequency of species-specific SPInDel profiles (y-axis) is plotted for all m-combinations
from a set with n hypervariable regions (x-axis), for m from 1 to n. The complete set of values for each taxonomic group can be better visualized on
the Supplementary Figure S18.
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30% and 70%; (iii) corresponding to primers with a
predicted melting temperature (Tm) between 54 and
63�C; and (iv) absence of self-complementarity.
Salt adjusted Tm values (38) and hairpin and self-
dimerization of primers were calculated using the Oligo
Calc webserver (39).
The selected conserved regions for Eutheria (labeled

A–F) and Amphibia (labeled E–G) were identified on
the RNA structural model of the Homo sapiens
12S rRNA and the Xenopus laevis 16S rRNA, respectively
(Figure 3c and Supplementary Figure S3). Structural
diagrams incorporating secondary and tertiary inter-
actions were retrieved from the Comparative RNA Web
(CRW) Site (40) (http://www.rna.ccbb.utexas.edu).
We also used the conservation diagram superimposed
onto the Zea mays (accession number X00794) mito-
chondrial small subunit rRNA secondary structure
available on the CRW site. This diagram indicates
the maximum and minimum numbers of nucleotides
observed in some variable domains based on the
alignment of 901 sequences (Supplementary Figures S3
and S4).
The DNA secondary structures of theHomo sapiens 12S

rRNA (accession number J01415) and Xenopus laevis 16S
rRNA genes (accession number M10217) were predicted
by free energy minimization methods (41) in the mfold
web server (42) as described earlier (43). Folding tempera-
tures of 37 and 20�C were used for H. sapiens and X. laevis
rRNA gene sequences, respectively (Supplementary
Figure S5).
A total of 6044 profiles from Eutheria, including

H. sapiens and B. taurus intra-species profiles, were used
to test for correlations among hypervariable regions. A
hierarchical clustering analysis (HCA) was performed
using the R package ‘pvclust’ (44). The hierarchical clus-
tering was performed using average linkage correlation as
a metric and 1000 bootstraps were used to estimate the
bootstrap probabilities (BP). The results were presented in
a dendrogram (Supplementary Figure S6). The same data
set was examined by principal component analysis (PCA)
using the programming language R. A 2D diagram of the
PCA results was created by exporting the principal
component values to Microsoft Excel.
We tested the discriminatory efficiency of the SPInDel

approach on the eutherian data set by PCA, con-
sidering profiles as variables. A multidimensional scaling
(MDS) analysis was also performed with the R package
‘MASS’ (45), using the dissimilarity matrix obtained
from the number of differences between profiles
generated on the SPInDel workbench (Figure 4a and
Supplementary Figure S7). The same matrix was used
to construct a UPGMA (Unweighted Pair Group
Method with Arithmetic Mean) tree (Figure 4b). An
in-house developed algorithm was used to cluster
profiles based on a dissimilarity matrix obtained
from the number of differences between the profiles
from different species. The output was exported in
the Newick format from the SPInDel workbench and
edited in the FigTree v1.3.1 software (http://tree.bio.ed
.ac.uk/).

Calculations on SPInDel profiles

We defined ‘standard SPInDel profile’ as the set of
fragment length of all contiguous SPInDel hypervariable
regions observed in a sequence (AB length; BC length; CD
length; Figure 3d). The fragment length also includes the
two flanking conserved regions. The potential use of
SPInDel profiles for species identification purposes
requires the existence of ‘species-specific SPInDel
profiles’: those that are only found in one species within
a taxonomic group and allow their unequivocal identifica-
tion. Thus, the discriminatory capacity of the SPInDel
approach in a particular taxonomic group fGn can be
easily measured by the frequency of species-specific
SPInDel profiles in that group,

fGn ¼
Nsp

N
,

where G denotes the taxonomic group under investigation
according to the two-letter code in Table 1, n is the
number of SPInDel hypervariable regions included on
the profile, Nsp is the number of species-specific SPInDel
profiles and N is the total number of sequences repre-
sented on group G. For instance, fFu3 indicates the
frequency of species-specific SPInDel profiles with three
hypervariable regions observed in the Fungi group.
The number of species-shared profiles (Nsh) refers to
those that were found in more than one species.
Accordingly, the total number of different profiles (Ndp)
is Nsp+Nsh.

The average number of pairwise differences in a sample
of SPInDel profiles was estimated using the equation for
nucleotide diversity (p) (36), adapted as follows:

pGn ¼

PN
K¼1

PN
l>k dkl

NðN�1Þ
2

,

where k and l are indices that refer to individual SPInDel
profiles, dkl is the number of SPInDel hypervariable
regions (from the total set of n) that differ in length
between profiles k and l and N is the total number of
sequences represented in group G. The average number
of pairwise differences per locus is pGn =n, where n is the
number of loci (i.e. hypervariable regions). The frequency
distribution of the number of SPInDel hypervariable
regions that differ between all pairs of SPInDel profiles
in a taxonomic group (mismatch distribution; Figure 3e
and Supplementary Figure S8) was estimated as described
earlier for DNA sequences (46,47).

The two measures fGn and pGn yielded disparate values for
many loci as a result of their different sensitivities to the
allele distributions. The parameter fGn only considers the
existence of unique alleles and disregards information
from shared alleles. However, parameter pGn has an
opposite behavior that focuses on the uneven distribution
of alleles among sequences, regardless of whether they are
characteristic of a certain species. The former measure is
appropriate to ascertain the discriminatory efficiency of
the system concerning species identification, while the
latter is a better indicator of the overall genetic diversity
at each locus.
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Figure 4. Discrimination of eutherian species using standard SPInDel profiles. (a) MDS plot obtained from the matrix of pairwise distances
measured by the number of different loci between profiles. Species were labeled according to their taxonomic category. (b) UPGMA polar tree
representing the phylogenetic relationship among the most represented eutherian groups. The input matrix and UPGMA tree were generated by the
SPInDel workbench.
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SPInDel profiles of unknown origin can be identified by
a k-nearest neighbor method using a database of known
profiles. The k-nearest neighbor algorithm is a supervised
learning approach that finds the k closest matches in a
database of known profiles using a distance metric.
The SPInDel workbench uses the discrete metric: if x= y
then d(x,y)=0; otherwise, d(x,y)=1. x is the length of one
hypervariable region in the observed profile and y the
length of the corresponding region in a profile from the
reference database. The similarity values are obtained by
summing the score of the discrete metric over all
hypervariable regions in the profile. The discrete metric
was chosen since it is not clear how distances between
fragment lengths can be translated into evolutionary dis-
tances. The discrete metric means that length differences
gets punished equally hard independent of the degree to
which the lengths differ. The k nearest neighbor algorithm
was implemented using Biopython and the discrete distance
metric was added to the library.
A modified leave-one-out cross validation was used

to test the accuracy of the SPInDel k-nearest neighbor
classification algorithm. The modification ensures that
there is always one profile left for each of the class
labels in the reference data set. This is necessary because
there are some classes with only one or few species or
genera in the data set. The classification performance
was calculated as the fraction of correct assignments
(Supplementary Table S3).

SPInDel workbench

We developed a computational platform for project man-
agement, alignment of nucleotide sequences, visualization
and selection of conserved regions, calculation of the
properties of PCR primers, prediction of SPInDel
profiles and diverse statistical and phylogenetic analyses.
The workbench includes a database management system
with aligned and curated gene sequences and SPInDel
profiles for the identification of nearly 1800 species in all
domains of life (1556 for eukaryotes, 105 for prokaryotic
and 130 for viral species). Detailed information on the
workbench can be found on Supplementary Figure S9
and at http://www.portugene.com/SPInDel/SPInDel_
web.html.

Experimental data

We collected 94 samples from humans and 9 domestic
mammalian species belonging to unrelated individuals
and, when applicable, different breeds (Supplementary
Table S4). Eight samples of non-mammalian species
were also used (Supplementary Table S5). DNA was
extracted from various types of biological materials,
such as dried blood on FTA paper (Whatman, Clifton,
NJ, USA), buccal swabs, muscle and liver, using
standard Chelex (Biorad, Hercules, CA, USA), phenol–
chloroform or saline extraction protocols. Processed
food samples were obtained from supermarkets and
retail stores and included meat mixtures with complex
matrices subject to strong thermal and chemical treat-
ments. These samples had to be subjected to mechanical

homogenization prior to a standard phenol–chloroform
extraction.

Using the SPInDel workbench, we performed the
following: (i) aligned rRNA gene sequences from the 10
target species; (ii) selected the eutherian conserved regions
A to M; (iii) retrieved degenerate primers; (iv) generated
species-specific profiles; and (v) tested the discriminatory
efficiency of the procedure. Conserved regions were used
for the design of only forward or reverse primers to allow
the simultaneous amplification of all loci by multiplex
PCR (Figure 5a).

Degenerate primers were used in six conserved regions
(A, B, D, F, H and M) to accommodate interspecific base
differences and avoid loss of amplification due to
mispriming (Supplementary Table S6). All primers
retrieved from the workbench had similar melting
temperatures (Tm near 60�C) to achieve a good balance
among PCR products in the multiplex reaction. The final
set of 23 PCR primers was screened for potential cross-
reactivity in the multiplex reaction (all possible
primer-primer combinations were tested) using the
AutoDimer version 1.0 program with default settings
(48). PCR primers were purchased from Thermo
Electron Corp. (Waltham, MA, USA) with reverse
phase HPLC purification and some were 50-end labeled
with 6-Carboxyfluorescein (6-FAM), 6-Carboxy-20-, 4-,
7-, 70-tetrachlorofluorescein (TET) and 6-Carboxy-20-, 4-,
40-, 50-, 7-, 70-hexachlorofluorescein (HEX) fluorescent
dyes (Supplementary Table S6).

We tested each pair of primers by singleplex PCR on a
Thermocycler GeneAmp PCR System 2700 (Applied
Biosystems, Foster City, CA) using 2 ml of extracted
DNA in a 12.5ml reaction volume containing 1.25 ml of
10� PCR buffer, 0.25 ml of the four dNTPs (0.2mM
each), 1.0 ml of MgCl2 (25mM), 1.25ml of each primer
(2.5 mM) and 0.1 ml of Taq polymerase (Bioron
Ludwigshafen, Germany). After a 95�C pre-incubation
step of 2min, PCRs were performed for a total of 35
cycles of denaturation at 95�C for 30 s, annealing at
58�C for 30 s, and extension at 72�C for 1min, with a
final extension step of 10min at 72�C. PCR products
were separated by 12% polyacrylamide gel electrophoresis
and visualized by silver staining (Figure 5b). To avoid an
overlap between alleles from two hypervariable regions
with similar size and the same fluorescent labels, all
amplicons had size ranges at least 75 bp apart
(Supplementary Figure S10). Although we tested primers
labeled with three dyes (6-FAM, TET, HEX) to explore
the full potential of the detection system, two dyes are
sufficient to combine these seven loci in a single multiplex
reaction (locus DE could be labeled with TET dye).

After optimization, multiplex PCRs were performed on
all samples, including on those from non-mammalian
species and processed food product (Supplementary
Table S7), using the SPInDel profiling kit by combining
2 ml of extracted DNA, 1 ml of primer mix (2 mM of each
primer) and 5 ml of Multiplex PCR Master Mix (Qiagen
GmbH, Germany) in a 10 ml final volume. PCRs were per-
formed as follows: an initial denaturation step at 95�C for
15min, followed by 30 cycles of 30 s at 94�C, 90 s at 56�C
and 1min at 72�C and a final extension step of 50min at
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72�C. A long final extension step is recommended to
promote complete adenylation (the non-template
addition) in all PCR products. We produced ladders for
each locus by mixing amplified products of each allele in
balanced concentrations (Supplementary Figure S11).
Each allelic ladder was then re-amplified to increase the
final stock volume.

Samples were prepared for fragment-size detection by
adding 1 ml of PCR product to 15 ml deionized formamide
containing 0.75 ml GeneScanTM 500 TAMRA size standard
(Applied Biosystems). The separation and detection of
amplified products were accomplished with the ABI
PrismTM 310 Genetic Analyzer (Applied Biosystems)
using filter set C with 6-FAM, TET and HEX (Figure 5c,
Supplementary Figures S12 and S13). Sizing was per-
formed using the GeneScanTM 350 TAMRA size
standard and the ABI PrismTM GeneScanTM v3.1.2
software package (Applied Biosystems). Positive and
negative controls were used in all reactions.

RESULTS

Gaps in ribosomal RNA gene alignments

We decided to use mitochondrial rRNA genes instead of
cytosolic versions because: (i) several reference

mitochondrial genomes are available from which
complete rRNA genes can be retrieved; (ii) on average,
mtDNA has a high mutation rate than nuclear DNA
(with the exception of plants) and thus accumulates
more indels; and (iii) the high number of mtDNA copies
per cell increases the probability of obtaining results from
degraded/low-copy DNA samples. Therefore, we aligned
1556 mitochondrial rRNA gene sequences belonging to
species from 18 eukaryotic groups (Figure 3a;
Supplementary Table S1 and Figure S1). The proportion
of sites with gaps in each alignment varies from <15% in
Alveolata (10.0 %) and Metatheria (14.1%) to >90% in
Fungi (91.3%) (Supplementary Table S2 and Figure S14).
The inspection of sequence alignments revealed that most
observed gaps result from small insertion/deletion (indel)
polymorphisms across species. Although most rRNA
genes with large or numerous introns have been
excluded to allow feasible alignments, the inclusion of a
few rRNA genes with small introns explains the high
number of gaps observed in the intron-rich mtDNA of
Fungi and Viridiplantae (Supplementary Figure S14).
The highest values of nucleotide diversity and number
of variable sites, not considering sites with gaps, were
observed in invertebrate groups (Supplementary
Table S2). It should be noted that the inclusion of more

A_F

B_F C_R

D_F E_R

12s rRNA tRNA val

F_F

C_R

16s rRNA

H_F I_R

J_F K_RG_R

tRNA leu

L_F M_R

(a)

(b)
chickencowpigrabbit

JK

DE

BC

LM

HI

FG

AC

F
lu

or
es

ce
nt

 y
ie

ld

human

Molecular weight (bp)
(c)

Figure 5. Experimental application and validation of a SPInDel profiling kit for identification of eutherian species. (a) Graphical representation of the
seven ribosomal RNA hypervariable regions amplified bymultiplex PCR. PCR primers (arrows) were named using letters A toM, their orientation (F, for
forward, R for reverse) and labeling with fluorescent dyes (blue, orange and green arrows). (b) The products of multiplex PCRs of three eutherian and one
avian species are shown on a silver stained polyacrylamide gel. Each species has a unique pattern of migration because of differences in the length of
amplicons (hypervariable regions). Identification of species using such gels is only possible by comparing the banding pattern of the target sample with
those of reference samples analyzed with the same procedure. (c) Electropherogram illustrating a SPInDel profile from a human reference sample obtained
by capillary electrophoresis withmultidye fluorescence detection. The profile is displayed in a four-color fluorescent system, in which green, blue and yellow
channels were used for detection of amplified products and red was used for a size marker. The species identification is achieved by running the SPInDel
numeric profile of the target sample against a reference database (SPInDel workbench).
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species in a taxonomic group yields fewer conserved and
longer hypervariable regions.
Some mitochondrial genomes contain duplicated

regions. The existence of two or more different copies of
a particular gene within the same genome can result in
mixed profiles and lead to misclassifications. Here, we
analyzed 10 species with duplicated rRNA genes that ful-
filled our criteria for inclusion in the SPInDel database: 3
from Viridiplantae, 1 from Stramenopiles, 5 from
Alveolata and 1 from Nematoda. The sequence alignment
of duplicated rRNA genes showed no indel events in any
of these cases and a few base substitutions in Alveolata
species (Supplementary Figure S15). These results demon-
strate that our identification procedure is not hampered by
the existence of duplicated genes at least in this set of
species. On the contrary, sequencing-based approaches
could be more prone to dubious classifications due to
the occurrence of base substitutions, as observed in
Alveolata species.

Eukaryotic SPInDel profiles

We performed a sliding window analysis of nucleotide
sequence variability across mitochondrial rRNA genes to
identify highly conserved regions, i.e. regions with no or
minimal variability at the sequence level (‘SPInDel
conserved regions’), and regions with high numbers of
indels across species (‘SPInDel hypervariable regions’,
here also considered as polymorphic loci). The nucleotide
diversity (p) and the number of segregating sites (S) vary
markedly across rRNA genes, with several peaks of high p
and S values on multiple parts of the alignments
(Figure 3b; Supplementary Figure S2). The abrupt rise
and sudden decline in diversity values result from an
imbalanced distribution of gaps along the sequence align-
ment with indel-rich sections interspersed with highly
conserved domains. SPInDel conserved regions were
designated alphabetically starting at the 50-end of the
rRNA gene, and SPInDel hypervariable regions were
designated by the combination of SPInDel conserved
regions that define them (e.g. ‘AB’ designates the
hypervariable region defined by the conserved regions
‘A’ and ‘B’; Figure 1). The hypervariable regions pre-
sented here are relative to each taxonomic group under
study. For instance, hypervariable regions AB in
Viridiplantae and Eutheria are not comparable because
they represent different sections of the rRNA sequence
alignments.
We defined a ‘SPInDel profile’ as the numeric set of

fragment lengths measured in nucleotides (also designated
here as alleles) in two or more SPInDel hypervariable
regions from a DNA sequence (e.g. 176, 101, 119 in
species 1 of Figure 1). A ‘standard SPInDel profile’
refers to profiles that include all contiguous hypervariable
regions (Figure 3d shows standard profiles observed in
some eutherian species). We generated 1556 standard
profiles using the sequence alignment of rRNA gene as
indicated in Supplementary Figure S1, after defining
conserved regions for 18 taxonomic groups of eukaryotes
(Supplementary Table S1). The utility of SPInDel as a
taxonomic tool requires the existence of ‘species-specific

SPInDel profiles’, i.e. profiles unique within a taxonomic
group that therefore allow the identification of a species.
We observed 1451 species-specific profiles among the 18
eukaryotic groups for mitochondrial rRNA genes, which
meant that 93.3% of all SPInDel profiles are unique
(Table 1). The frequency of species-specific SPInDel
profiles (fGn ) was higher than 0.90 in all eukaryotic
groups (mean value of 0.95), except in Viridiplantae due
to the inclusion of some subspecies profiles (fVi8 =0.83)
(Table 1; Supplementary Figure S16). In seven groups,
all species had a unique profile (fGn =1.00). The number
of species with shared profiles was 105 (6.75% of the total
number of species). When we excluded subspecies and
hybrids with equal profiles (19 cases), this value decreased
to 5.53%. For instance, the same profile was observed in
Zea mays mays and Z. mays parviglumis (but this profile
was different from that of Z. luxurians and Z. perennis)
and in Anguilla bicolor bicolor and A. bicolor pacifica
(Supplementary Table S8). Similarly, the three subspecies
of the red junglefowl (Gallus gallus gallus, G. gallus
spadiceus and G. gallus bankiva) had the same profile,
but this profile was different from other species of the
same genus (G. lafayetii, G. sonneratii and G. varius).
We also noticed that some domestic species and their
wild ancestors had equivalent profiles, in agreement with
the well-known difficulty of devising a satisfactory genetic
definition for ‘domestic species’ in comparison to its wild
ancestor, as in the cases of dog (Canis lupus familiaris) and
wolf (C. lupus lupus) or the llama (Lama glama) and gua-
naco (Lama guanicoe).

Shared profiles were mostly observed among species
belonging to the same genus (3.98% of the total number
of species). In many cases, this apparent limitation of our
approach simply reflects the lack of clear boundaries
between species, particularly those exposed to recent hy-
bridizations or with short evolutionary histories (some-
times referred to as ‘species complexes’ to indicate their
close genetic similarity). For instance, the only shared
profile in Fungi was between Aspergillus tubingensis and
A. niger from the A. niger species complex, which is one of
the most difficult groups to classify and identify
(Supplementary Table S8). In Cnidaria, the same profile
was shared by the three members of the Montastraea
annularis coral species complex (M. annularis, M. franksi
and M. faveolata), whose species status has been disputed
for many years (49). Similarly, the same profile was
observed in two morphospecies of the coral genus
Pocillopora (P. eydouxi and P. damicornis). Note that in
both cases these species are impossible to differentiate
not only by SPInDel profiles but also by sequencing of
rRNA genes, a situation which was also observed in
some species of Actinopterygii, Aves and Eutheria (the
number of haplotypes is lower than the number of refer-
ence sequences used; Supplementary Table S2).
The presence of shared profiles and rRNA sequences in-
dicates that discrimination of these species would also not
be possible by mtDNA sequencing, at least on rRNA
genes.

In the largest animal phyla, Arthropoda, only four
profiles were found shared among 204 species, with
fAr5 =0.96. Two profiles included four species of the
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Bactrocera dorsalis complex of tropical fruit flies, a
recently recognized, rapidly evolving species complex
with multiple sibling species (50) (Supplementary
Table S8). The four pest species with shared profiles are
morphologically similar (50), but our approach differenti-
ates B. carambolae/B. papaya from B. dorsalis/B.
philippinensis. We only found 24 species from different
genera with equal profiles (1.54% of the total number of
species), and they were restricted to Actinopterygii (seven
profiles shared by 14 species from a total of 539) and
Eutheria (three profiles shared by 10 species from a total
of 237).

Overall, these results show the great efficiency of the
SPInDel approach for species-level assignments of differ-
ent eukaryotic lineages using mitochondrial rRNA genes,
with successful identification in >95% of cases. Only a
small number of species are impossible to distinguish
with our approach (Table 1; Supplementary Table S8),
although most of these can be discriminated using add-
itional hypervariable regions (e.g. the additional analysis
of small subunit rRNA gene sequences in certain groups
not described here). In other situations, the simple
addition of a conserved region to split a hypervariable
domain is sufficient for identification. For example,
D. melanogaster and D. simulans have two indel poly-
morphisms in the hypervariable region EF (one insertion
in each species), resulting in the same sequence length.
The inclusion of a conserved region (e.g. Z) between
these two indels creates two hypervariable regions (EZ
and ZF) in which each one differentiates between species
by a single nucleotide.

We also measured the level of discrimination allowed by
the SPInDel approach by considering the number of
pairwise differences between profiles, i.e. the higher the
number of different hypervariable regions between two
profiles, the lower the probability of misclassification.
The average number of pairwise differences per
hypervariable region (pGn =n) varies from 0.67 in
Alveolata to 0.98 in Fungi (Table 1). Values higher than
0.75 were found in most groups, indicating that on
average, two profiles diverge by more than three
quarters of their loci. This pattern is clearly seen in the
histograms representing the distribution of all individual
pairwise profile comparisons (mismatch distribution)
because most groups presented unimodal distributions
with high mean values of pairwise mismatches (Figure
3e; Supplementary Figure S8). In several groups, most
pairwise comparisons were made between completely dif-
ferent profiles (last column on the histograms; as in
Viridiplantae, Fungi, Porifera or Arthropoda).

Although we focus our attention on performing identi-
fication at the species level, higher-level taxonomic
categories can also be discriminated using our approach.
The phylogenetic, principal component and MDS
analyses show that the assignment of individuals to
higher taxonomic levels is achievable in Eutheria.
In some cases, taxonomic divisions such as families and
orders appeared as nested monophyletic lineages or
clusters in concordance with current taxonomy
(Figure 4; Supplementary Figure S7). However, some
discrepancies are clear in a few categories, such as

Chiroptera and Insectivora. These clustering approaches
can still be very useful to retrieve some taxonomic infor-
mation from casework samples belonging to species not
present in the database.

Region by region and combinatory analyses

In order to assess the individual contribution of each
hypervariable region to the discriminatory efficiency of
standard profiles, we estimated fGn and pGn =n using the
SPInDel workbench (Figure 3f; Supplementary
Figure S17). We next asked how many hypervariable
regions would be necessary to identify species with high
accuracy within each taxonomic group. All profiles with n
hypervariable regions were generated and compared in the
SPInDel workbench by obtaining all n-combinations.
When only one locus was considered (n=1), the
maximum observed fG1 varied from 0.03 in Actinopterygii
and Eutheria to more than 0.80 in Viridiplantae, Alveolata,
Porifera and Echinodermata (Figure 2b; Supplementary
Figure S18). These values drastically increased when
profiles with two loci were considered (n=2); in
two-combined profiles, the maximum fG2 was higher than
0.80 in 15 groups out of 18. Actinopterygii and Eutheria
reached a maximum fGn higher than 0.80 with four and five
combined regions, respectively. This result clearly shows
that just a few loci are sufficient to identify most species
within a group. Interestingly, joining regions with the
highest individual discriminative values did not necessarily
lead to higher discriminatory efficiencies for combined
regions. For instance, in Arthropoda, the fArn of separated
loci were 0.37 (DE), 0.13 (EF), 0.07 (AB), 0.04 (BC) and
0.03 (CD), but when combined, ‘DE; EF’ had a lower fAr2
value (0.85) than ‘BC; DE’ (0.89) and ‘AB; DE’ (0.88).
The highest fAr3 value for a three-locus profile was
obtained with ‘AB; BC; DE’ (0.96), which did not include
the region (EF) with the second highest value of fAr1 .
These observations suggest that variations in some

hypervariable regions could be correlated. In order to
test this hypothesis, we implemented hierarchical cluster-
ing and principal component analyses on the complete
eutherian data set. In fact, adjacent regions of eutherian
rRNAs were highly correlated, particularly the pairs BC/
DE, EF/GH and JK/LM (Supplementary Figure S6). One
possible explanation for this phenomenon, assuming
non-recombination of mtDNA in eutherian species (51),
is the occurrence of an insertion (or deletion) of a nucleo-
tide into a stem region followed by a compensatory inser-
tion (or deletion) on the complementary strand in order to
maintain the structural stability. The length of adjacent
regions would be under co-evolution because paired
bases are usually close in the sequence. Epistatic inter-
actions between alleles to preserve the structural
properties of DNA or proteins have already been
detected in coding (52) and non-coding (43) regions of
mtDNA. Further work is necessary to explain these
striking results.

Intra-species data sets

The effectiveness of SPInDel depends upon the existence
of low intraspecific variation, so we analyzed four large
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intra-species data sets from Nematoda (Caenorhabditis
briggsae), Arthropoda (D. simulans) and Eutheria (Bos
taurus, Homo sapiens). Values of pGn =n lower than 0.05
were observed in C. briggsae, B. taurus and H. sapiens
(although reaching 0.28 in D. simulans), which indicates
that all profiles from the same species diverged by a small
number of hypervariable regions (Table 1 and
Supplementary Figure S16). The mismatch distribution
of intra-species data sets clearly shows that most profiles
are equal, with the exception of D. simulans
(Supplementary Figure S19). From 5664 H. sapiens
rRNA gene sequences, only 10 individuals (0.2%) had
unique profiles (Table 1), whereas most sequences were
equal or divergent by only one out of 12 hypervariable
regions. Based on these results, we concluded that high
levels of intraspecific divergence are uncommon,
although detailed sampling of SPInDel profiles in more
species is needed to verify this observation.

SPInDel profiles of prokaryotes and viruses

We tested the SPInDel concept on the cytosolic 16S rRNA
genes of two prokaryotic groups: Crenarchaeota
(Archaea) and Tenericutes (Bacteria). The alignment of
rRNA genes revealed that 10.4 and 21.6% of sites had
gaps in Crenarchaeota and Tenericutes, respectively
(Supplementary Table S2). These values were lower than
those found in most eukaryotic groups for mitochondrial
rRNAs. Even so, several species had unique SPInDel
profiles, with fGn reaching 0.62 in Crenarchaeota and 0.44
in Tenericutes. The mismatch distribution of pairwise dif-
ferences showed that 80% of profile comparisons diverged
by three or more loci in Crenarchaeota, while this value
reached 88% in Tenericutes (Supplementary Figure S20).
The pGn =n was 0.51 and 0.54 in Crenarchaeota and
Tenericutes, respectively. Identical profiles were almost
always derived from species of the same genus
(Supplementary Table S8).
To verify whether the SPInDel concept could be

generalized to taxa without rRNA genes, we tested all
available reference genomic sequences from five taxonom-
ic groups of viruses: Lentivirus (Retroviridae),
Papillomaviridae (dsDNA viruses), Rhabdoviridae
(ssRNA negative-strand viruses), Flaviviridae and
Picornaviridae (ssRNA positive-strand viruses). Mosaics
of conserved and hypervariable regions suitable for
SPInDel implementation were found on the pol gene of
Lentivirus, L1 ORF of Papillomavirida and the L gene of
Rhabdoviridae. No such pattern was found on the
sequence alignment of ssRNA positive-strand viruses.
Values of pGn were similar to those of some eukaryotic
groups (0.68 to 0.74), while fGn varied from 0.36 in
Lentivirus to 0.80 in Papillomaviridae (Table 1). This
result clearly demonstrates that our methodology can be
used in different genomic regions wherever conserved
domains are interspersed with variable-length sequences.

SPInDel profiling kit

We proved the efficacy of the SPInDel concept by
discriminating 10 eutherian species (Supplementary
Table S4) using the length of seven hypervariable

regions determined by gel and capillary electrophoresis
(Figure 5). The experiment was designed using the
SPInDel workbench (Supplementary Figure S9 and S21).

As a first step toward a multiplex assay, we tested seven
primer pairs using singleplex PCR on two to five samples
from each target species (Figure 5a). Amplification and
correct sizes of PCR products were confirmed on poly-
acrylamide gels (data not shown) for six loci with PCR
primer melting temperatures (Tm) of 58� C. Locus FG
yielded no PCR product in several attempts; therefore, a
new forward primer was designed between positions 1569
and 1588 (instead of 1549 and 1570) according to the
H. sapiens mtDNA reference sequence numbering
(Supplementary Table S6). Then, the seven primer pairs
were combined at similar concentrations (2 mM) and tested
in a multiplex reaction under annealing-temperature
gradient PCR from 48 to 64�C. A Tm=56�C resulted in
the amplification of all desired loci with similar band
intensities and no relevant non-specific amplicons. Some
species are clearly discriminated by conventional poly-
acrylamide gels as long as reference samples are
analyzed simultaneously (Figure 5b).

Subsequently, amplified products were analyzed by
capillary electrophoresis with multicolor fluorescence de-
tection, which resolves similar sized PCR products labeled
with spectrally distinguishable dyes; in this case, three dyes
were used (Supplementary Figure S10). Hypervariable
regions AC and FG yielded peaks with lower intensities
that were, nevertheless, within optimal detection limits
(Figure 5c). We observed some differences between the
expected and observed length of amplified products,
most likely because of differences in purine and pyrimi-
dine contents, which are known to influence the mobility
of DNA molecules. To compensate for this difference, we
used internal size standards and the establishment of a
home-made allelic ladder to accurately identify alleles
(Supplementary Figure S11).

The three dye multiplex PCR assay was used to analyze
94 reference samples of human and domestic species
(Supplementary Table S4). In some cases, traces of
non-specific amplification (e.g. peaks resulting from
cross-amplifications between primers designed for differ-
ent loci) were detected but did not interfere with the
expected profile (Figure 5c). For instance, a peak close
to locus JK recurrently appeared on most Felis catus
samples, but it did not prevent the correct interpretation
of the profile. We obtained successful amplifications for
the seven loci in all samples with the exception of seven
Capra hircus individuals for which no traces of amplified
products were observed in locus FG, possibly due to poly-
morphisms on primer-binding sites. Because the profiles of
these 10 species diverge by at least six hypervariable
regions (Supplementary Figure S21), incomplete profiles
missing a few hypervariable regions are informative
enough for unambiguous identification.

Testing multiple members of the same species showed
that peak sizes were consistently identical among individ-
uals. However, we did detect intra-specific polymorphisms
in two species. A shorter allele was observed in a F. catus
individual for locus DE, although species identification
was unequivocal. Interestingly, wild and domestic
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rabbits (Oryctolagus cuniculus) had different profiles, as all
wild individuals presented a shorter allele at locus HI and
a longer allele at locus JK. Additional samples are
required to demonstrate that wild and domestic variants
of rabbits can be distinguished by our method. In any
case, identification of O. cuniculus samples (wild or
domestic) was unequivocal among these 10 species
because species-specific profiles diverge by at least six
loci (Supplementary Figure S21).

The design of PCR primers in highly conserved regions
significantly increases the probability of successful ampli-
fications in highly divergent species. We tested the
SPInDel profiling kit using standard PCR conditions in
representative species from Arthropoda, Mollusca,
Actinopterygii and Aves (Supplementary Table S5).
In all cases, amplified products were obtained that
defined very different profiles among classes that can be
used for preliminary identifications, at least at the class
level (Supplementary Figure S12). The different length
of amplicons observed for different classes suggests that
cross contaminations are also easily detected. Overall,
these results confirmed that broad-range SPInDel
systems can be easily devised because primers designed
for eutherian species yield amplified products for very
divergent taxonomic groups.

The co-amplification of seven informative rRNA
regions in a single multiplex PCR and the length of the
targeted amplicons (five out of seven loci had alleles
<350 bp in length) enables this method to be used for
suboptimal DNA samples (Supplementary Figure S10).
This was demonstrated by the typing of nine processed
food samples that had been subjected to severe physical
and chemical alterations (Supplementary Table S7).
We obtained complete profiles in six cases, while three
samples yielded incomplete Sus scrofa profiles. As
expected, longer regions (FG and AC) were more difficult
to amplify in suboptimal samples. Despite this limitation,
we were able to unequivocally identify all species reported
on the food products’ labels, including products that
contained mixtures of species. The identification was
done by comparing the numeric profiles obtained by
capillary electrophoresis with those of the reference
samples. For instance, we easily detected porcine and
bovine biological material in a mixed meat food product
(Supplementary Figure S13).

DISCUSSION

We developed a new resource for the taxonomical identi-
fication of eukaryotic species based on the particular mode
of sequence evolution of mitochondrial ribosomal RNA
(rRNA) genes. The core element of the protein synthesis
machinery is the ribosome, a complex catalytic machine
composed of rRNA molecules and several different
proteins (the ribosomal proteins) (53). All mitochondrial
genomes harbor genes coding for the small and large
subunit rRNAs, whereas genes for 5S rRNA only occur
in a few species (54).

The rRNA molecules are folded into precise 3D struc-
tures that form the compact core of the ribosome and

determine its overall shape (28,31,53) (Figure 3c).
The structural features of rRNA molecules include
regular unknotted helical elements composed of canonical
base pairs (the so-called secondary structure) along with
more complex longer-range intramolecular tertiary inter-
actions, such as pseudoknots (i.e. the interaction between
a loop of one stem and residues outside that stem).
Although biologically active RNAs most likely undergo
functional conformational transitions, similar rRNA
architecture is evident in higher-order rRNA structural
models obtained by comparative sequence analysis and
experimental methods (28,31). Interestingly, homology in
secondary and tertiary interactions in rRNA structural
motifs is achieved with very different primary sequences,
which means that different sequences can correspond to
the same 3D structure and molecular function. In general,
alignments of primary rRNA gene sequences from differ-
ent species show alternating regions of nucleotide conser-
vation and variation (Figure 3b; Supplementary
Figure S2), both in terms of nucleotide substitutions
(commonly called ‘SNPs’) and insertion/deletion (indel)
events (10,30). The presence of indels results in sequences
of different lengths and introduces gaps in the alignment,
typically denoted by a dash ‘–’ (Figure 3a). Thus, the
overall length of these hypervariable regions is poorly
conserved and these regions are often referred to as
expansion segments or D (divergent) domains (29,30).
The DNA sequence analysis of both cytosolic and mito-

chondrial rRNA genes has been used as a primary tool for
phylogenetic reconstructions, mainly because they occur
in all organisms, are functionally conserved and have a
mosaic structure of conserved and variable regions that
allows for inferences on a wide range of phylogenetic
time scales (7,10,55). As pointed out previously (14), the
broad taxonomic use of rRNA genes is constrained by the
prevalence of indels that greatly complicate sequence
alignments. However, our concept for biological identifi-
cation circumvents this apparent limitation by using
rRNA gene sequences in a different manner: conserved
regions are used to define variable segments in which a
combination of sequence lengths is characteristic of each
species (Figure 1). Because the conserved core of nucleo-
tide sequences is retained in all rRNA sequences [some
were postulated to date back to the RNA world (56)],
our approach has the potential to work for very general
taxonomic identifications. Moreover, as suggested by our
investigation of different groups of viruses (Table 1), other
genomic regions may present similar patterns of sequence
evolution and thus may also be suitable for species iden-
tification using the SPInDel concept.
The mosaicism seen in the distribution of gaps through-

out rRNA genes is most likely the result of purifying
selection acting to maintain the rRNA architecture with
differences in the base-to-base mutability of rRNA gene
sequences. It has been demonstrated that there is consid-
erable heterogeneity in the relative rates of evolution of
different structural categories (stems, loops, bulges and
junctions) within cytosolic rRNA and that these rates
vary across phylogenetic domains (31). Although evolu-
tionary rates for mitochondrial rRNA genes are still
poorly defined, indel proliferation is likely most
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constrained in regions corresponding to functionally-
relevant stems and in elements with unpaired bases of
strong structural and functional relevance. For instance,
most SPInDel conserved regions selected from the euther-
ian 12S rRNAs include unpaired bases at multi-helix
junctions (e.g. regions A and B) or near pseudoknots
(region E) (Figure 3c and Supplementary Figure S3).
Figure 3c clearly shows that one of the most divergent
regions with multiple indels found in Eutheria belongs
to a large loop between conserved regions E and F. The
conservation diagram for eukaryotic mitochondrial small
subunit rRNA also shows a great variability in the
number of nucleotides within hypervariable regions
(Supplementary Figure S4). For instance, different euther-
ian species can have between 3 and 400 nt in hypervariable
region EF. Therefore, the proliferation of indels is most
likely associated with unconstrained regions such as large
loops.
The patchy structure observed in rRNA gene align-

ments could also be influenced by heterogeneity in the
mutation rate across mitochondrial DNA positions, as a
result of differences in replication errors and/or DNA
damage. For instance, the transient formation of second-
ary structures in DNA during replication and transcrip-
tion may protect paired bases from chemical alterations,
while rendering others vulnerable, such as unpaired and
mispaired bases of stem-loop structures (57–59). This is
particularly relevant in mtDNA genes because of the
highly mutagenic environment of mitochondria, which is
rich in oxygen-free radicals. In fact, this could help to
explain why mitochondrial rRNAs have higher rates of
indels (resulting in a higher power of discrimination for
SPInDel) than do their cytosolic counterparts (Table 1).
Moreover, rRNAs are synthesized at a higher rate than
mRNAs in human mitochondria, with a 15- to 60-fold
excess of truncated transcripts containing the two
rRNAs (and no mRNAs) relative to full length transcripts
encoding all mRNAs, the two rRNAs, and most of the
tRNAs (60–62). This high rate of synthesis significantly
increases the propensity for transcription-driven mutagen-
esis in rRNA genes. In agreement with these observations,
we observed long stretches of paired bases intermingled
with large loops in the DNA sequences encoding the
H. sapiens 12S rRNA and X. laevis 16S rRNA molecules
(Supplementary Figure S5). This sequence structure is in
agreement with the high folding potential observed for the
genomic region encoding rRNAs and the resemblance
between DNA and complementary RNA structures that
was previously detected in human mtDNA (43,63). These
results suggest that heterogeneity in the rate of nucleotide
changes in DNA sequences (and its mosaic structure)
could indirectly reflect the folding potential of derived
RNA molecules.
One great benefit of using our molecular approach for

the identification of species is its use of indel polymorph-
isms. Overall, this class of polymorphisms has an
intra-species frequency that is significantly lower than
that of SNPs. For example, it was estimated that �20%
of all human polymorphisms in the nuclear genome are
indels, consistent with the values found in D. melanogaster
(16%), C. elegans (25%) and A. thaliana (37%) (64).

A survey of 60 published intraspecific data sets revealed
that only 30 studies reported indels, which comprised on
average 12% of all variable sites in the non-coding
mtDNA control region (65). Similarly, our method is
also less prone to misclassifications due to the occurrence
of mitochondrial heteroplasmy, i.e. when there are two or
more mtDNA types present within the cells of a single
individual. This is because small indels are less likely to
occur in tissues than base substitutions, particularly in
protein-coding regions (66).

The complex mutational mechanism underlying indel
events also helps to explain the low probability of
having an excess of polymorphic variants of this class
within a species or individual. Indels are less prone to
recurrent mutations (i.e. identical insertions or deletions
occurring in independent lineages), which means that
there is a low probability that similar sequences originated
by convergence (homoplasy). In this regard, an investiga-
tion of 38 published interspecific data sets (including mito-
chondrial rRNAs) proved that indels have significantly
less homoplasy than base alterations, while representing
a considerable portion of the potential phylogenetic in-
formative content (67). The insertion of a nucleotide
that restores a previous deletion at the same position or
vice versa (a phenomenon known as ‘back mutation’) is
also very unlikely in this class of polymorphisms. In fact,
the low diversity observed in hypervariable regions in the
intraspecific data sets (Table 1) and in the 94 tested
eutherian samples corroborates these theoretical
expectations.

Despite the low intra-species diversity in rRNA genes,
indel polymorphisms have a sufficiently rapid evolution-
ary rate of accumulation that allows for discrimination
between closely related taxa. The frequency of
species-specific SPInDel profiles, even when subspecies
were included in taxonomic groups, was higher than
0.90 in most cases (mean value of 0.95), which indicates
that 93.3% of all SPInDel profiles are unique (1451
species-specific profiles from a total of 1556 species).
In any case, well-sampled data sets are still necessary to
prove that intraspecific variation and interspecific diver-
gence in rRNA variable-length regions do not overlap for
various taxonomic groups.

The occurrence of intraspecific or intraindividual vari-
ability in hypervariable regions does not pose serious
problems for the SPInDel approach because it relies on
the analysis of multiple loci, which presents a clear advan-
tage over methods targeting a single locus (11,13,14).
In cases where one (or more) SPInDel hypervariable
region(s) have an unexpected length (i.e. different from
the reference length), a correct identification is still
possible based on the information from the remaining
loci. In the most difficult cases, SPInDel should at least
serve as a guide for further research and/or should exclude
some possibilities. The same is true in the case of the
occurrence of null alleles by possible limitations of the
screening technique. As shown in Figure 2b, combining
only two or three hypervariable regions results in high
frequency values of species-specific SPInDel profiles. The
guarantee against misclassifications resulting from missing
data or unexpected allelic variants relies on the fact that
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most profiles diverge by several loci, which was clearly
shown by mismatch distributions (Figure 3e and
Supplementary Figure S8).

The identification of a species using our method is
achieved by running the SPInDel numeric profile of the
target sample against a reference database. This can be
easily done by using the ‘search profile’ option available
on the SPInDel workbench (Supplementary Figure S9).
The profile can be generated by capillary electrophoresis
with the use of allelic ladders (Figure 5c), or by any other
related technique. However, if the exact determination of
the fragment lengths is not possible, as in some agarose
and polyacrylamide gels, the identification is still achiev-
able by comparing the banding pattern of the target
sample with those of reference samples analyzed with
the same procedure. Equal patterns suggest that the
samples might belong to the same species (Figure 5b).

Here, we demonstrated the applicability and robustness
of our approach using conventional multiplex PCR
coupled with capillary electrophoresis in highly processed
food samples (Supplementary Table S7). Complete
profiles were obtained in almost all cases, even in
samples that were subjected to strong physical and
chemical alterations (Supplementary Figure S13).
This system is appropriate for low-quantity and/or
degraded DNA samples due to (i) the use of mtDNA as
a target for PCR, which is usually present in many copies
per cell, provides a clear advantage over nuclear
genome-based methods; (ii) the targeting of short
amplicons and (iii) amenability to multiplexing. In fact,
correct identifications were possible on partial profiles
including only short amplicons (Supplementary
Table S7). Therefore, we have selected numerous
SPInDel hypervariable regions with short alleles in all
taxonomic groups for inclusion in the workbench to fa-
cilitate the analysis of suboptimal samples. One advantage
over existing approaches is the possibility of identifying
species that co-exist in a sample using conventional la-
boratory equipment and without the need for time-
consuming cloning steps or expensive microarray
devices. For instance, a mixture of pork and bovine
materials was easily identified in meat products
(Supplementary Figure S13).

The utility of the SPInDel approach is not restricted to
the boundaries imposed by the taxonomic groups we have
initially selected (Table 1). As presented here, our method
is limited by the need of knowing the broad taxonomic
group where the identification is aimed. However, the
structural and functional conservation of some sections
of rRNAs suggests that broader screening tests can be
easily designed. In fact, the alignment of a representative
species from each eukaryotic group disclosed a handful of
well-conserved regions of potential utility (Supplementary
Figure S22), as previously reported by others for cytosolic
rRNA genes (7,10,55). Also, we were able to amplify
DNA from avian and fish samples using PCR primers
intended for mammalian species (Figure 5b and
Supplementary Figure S12). These results suggest that
this method can be used for taxonomic classification of
a wide range of species as long as appropriate conserved
regions are selected.

The simplicity of the SPInDel concept makes it easily
adaptable to diverse high-throughput genotyping plat-
forms with a reduced cost per sample (Supplementary
Table S9). A myriad of research fields can benefit from
this methodology: biomedical sciences (e.g. characteriza-
tion of clinical pathogens), forensics (e.g. identification of
human remains in mixtures of biological materials), food
quality control (e.g. detection of fraudulent description of
food contents), ecology (e.g. identification of bones, feces,
hair or seeds found in the field), ancient DNA studies and
paleogenetics, among others. Further work is now neces-
sary to explore the potential applicability of sequence
length determination in species identification procedures
using, for instance, nanotechnology and bioelectronic
systems (68–70). In theory, a lab-on-a-chip platform can
be developed to determine the length of hypervariable
regions with high-throughput multiplexing capability.
Hopefully, this development will aid in the long-standing
quest for a portable system that would allow rapid species
identification in the field.
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