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ABSTRACT

Five strategies for pre-processing intensities from
Illumina expression BeadChips are assessed from
the point of view of precision and bias. The
strategies include a popular variance stabilizing
transformation and model-based background cor-
rections that either use or ignore the control
probes. Four calibration data sets are used to
evaluate precision, bias and false discovery rate
(FDR). The original algorithms are shown to have
operating characteristics that are not easily com-
parable. Some tend to minimize noise while others
minimize bias. Each original algorithm is shown to
have an innate intensity offset, by which unlogged
intensities are bounded away from zero, and the
size of this offset determines its position on the
noise–bias spectrum. By adding extra offsets, a
continuum of related algorithms with different
noise–bias trade-offs is generated, allowing direct
comparison of the performance of the strategies
on equivalent terms. Adding a positive offset is
shown to decrease the FDR of each original algo-
rithm. The potential of each strategy to generate an
algorithm with an optimal noise–bias trade-off is
explored by finding the offset that minimizes its
FDR. The use of control probes as part of the back-
ground correction and normalization strategy is
shown to achieve the lowest FDR for a given bias.

INTRODUCTION

Background correction and normalization are important
pre-processing steps that must be applied to microarray
data before downstream analysis can be done. Illumina
whole-genome BeadChips have become increasingly
popular for expression profiling during the past few

years, but without any consensus yet regarding the
pre-processing steps. Illumina BeadChips have some
unique features compared with other microarray plat-
forms. Each array includes an unusually large number of
positive and negative control probes, and each probe is
replicated on each array in the form of a random
number of beads. The negative control probes can be
taken to represent the behavior of non-expressed probes
(1). Raw data from BeadChips usually takes the form of
probe summary profiles exported by BeadStudio software,
meaning that bead-level intensities are already sum-
marized into probe-level values, although extracting
bead-level data is also possible (2). BeadStudio also
exports intensity summaries for a variety of positive and
negative control probes. In this study, we assume that no
prior background correction or normalization has been
done, so all raw intensities are non-negative.
The pre-processing of data from any single-channel

microarray platform typically involves the three major
steps of background correction, between-array normaliza-
tion and data transformation. Most strategies for
pre-processing Illumina data share some features with
the robust multi-array analysis (RMA) algorithm, which
has become well accepted for Affymetrix GeneChip data
(3–5). RMA consists of a model-based background
correction step, followed by quantile normalization,
log2 transformation and probe-set summarization. The
normal-exponential (normexp) convolution model used
by RMA for background correction has been adapted to
normalize two-color microarrays (6,7). RMA estimates
the unknown parameters in the normexp model by an
ad hoc method, but maximum likelihood estimation has
been used in the two-color context after the development
of appropriate numerical algorithms (7).
A number of strategies have been proposed for pre-

processing BeadChip data. A relatively simple approach
is to quantile normalize then log-transform the raw
intensities, without any explicit background correction
(8,9). The same normalization and transformation steps
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have been used but preceded by maximum likelihood
normexp background correction (10). Normexp back-
ground correction has been also adapted to take advantage
of Illumina negative control probes (11–13). Ding et al. (11)
proposed a joint likelihood function for both negative
control and regular probes in order to estimate the
normexp parameters. Xie et al. (12) improved the compu-
tational procedures for maximizing the joint likelihood,
and also suggested a non-parametric approach in which
the background normexp parameters are estimated
purely from the negative control probes. Alternatively,
a variance-stabilizing transformation (vst) has been pro-
posed that is estimated from the bead-level standard devi-
ations (14). Vst is a generalized log2-transformation that
has the effect of background correcting and transforming
at the same time. It is followed usually by either quantile
normalization or robust spline normalization (15).
In this study, we conducted an assessment of five pre-

processing algorithms representative of the major
strategies for pre-processing BeadChip data (Table 1).
Two variants of vst are included. Two variants of
normexp, using or ignoring control probes, are included.
The normexp by control (neqc) algorithm uses the
non-parametric background correction from Xie et al.
(12) followed by quantile normalization with both
control and regular probes (13,16). The simplest pre-
processing strategy without background correction is
also included. Our results show that these five algorithms
have quite different behaviors, so that they are not easily
comparable. Some tend to maximize precision (minimize
noise) while some minimize bias. A special feature of our
work is that we use each of five base algorithms to
generate a continuum of related algorithms with different
noise–bias trade-offs, by offsetting the unlogged intensities
away from zero. Our study is not limited to the behavior
of the base algorithms as originally proposed, rather we
consider the potential of the base algorithms to generate
an algorithm with an optimal noise–bias compromise.
The idea of offsetting intensity data has been discussed

previously as an approximate variance-stabilizing strategy
in the context of two-color microarray data (6,17), and has
also been used for Illumina data (9,10,13,16). Adding an
offset to the intensities before log transformation not only
was found to lower the variance (improve precision) but
also to compress the fold-change range and increase bias.
In other words, offsets decrease noise but increase bias.
One of our observations is that each pre-processing

algorithm can be viewed as having an effective offset,
which tells us a lot about the noise–bias trade-off charac-
teristic of that algorithm. We measure the effective offset
for each algorithm by the typical unlogged intensity value
assigned by that algorithm to non-expressed probes. This
serves to calibrate the amount of shrinkage of normalized
log-intensity values. Each base pre-processing algorithm
has an innate offset, which we can increase or decrease
in our study, moving each pre-processing strategy along
the noise–bias spectrum. This provides major insight into
the relationships between the different strategies, and also
enables us to tune each strategy in an optimal fashion.

There is little agreement in the literature regarding how
best to evaluate the performance of pre-processing
strategies. Biological results have been used for the com-
parison (11), but this is subjective and does not dissect the
specific aspects of each algorithm’s behavior that contrib-
ute to its performance. We view the use of suitable cali-
bration data sets containing objective truth as the most
objective ‘gold standard’ approach to assessing different
strategies. Four data sets are used in this study. Two of
them are from spike-in experiments and two from mixture
experiments. A mixture experiment mixes two pure
samples at different proportions. Spike-in data sets
enable us to evaluate the strategies by comparing
observed to spiked-in fold changes. Mixture data sets
enable us to estimate false discovery rates (FDRs) in as-
signing differentially expressed (DE) genes by comparing
the list of test DE and non-DE genes obtained from the
comparison between mixed samples to the list of ‘true’
DE and non-DE genes obtained from the comparison
between pure samples.

Our five pre-processing strategies are compared by
using metrics for precision, bias and false discovery rate.
Precision is evaluated by calculating standard deviations
between replicate arrays. Bias can be measured by
comparing observed to known fold changes for spike-in
probes. Bias is also apparent by observing the range of
fold changes across all the probes on the arrays, because
the algorithms with greatest bias are those which most
shrink the fold-changes. Estimated FDR are used to
evaluate the trade-off between precision and bias.

We compare the pre-processing strategies in a number
of ways by varying the offsets. We can compare strategies
by way of FDR for a given level of bias, or by way of bias
for a given FDR. Alternatively, and perhaps most inform-
atively, we can select the offset that minimizes the FDR
for each algorithm, and then compare the minimized
FDRs. Our results show that normexp background cor-
rection using control probes (neqc) gives the best gain in
precision for minimum shrinkage. It presents the least
biased fold changes for a given FDR.

MATERIALS AND METHODS

Data sets

Four calibration data sets were used in this study:

. Mixture data (M1) (1). Two pure samples, MCF7 and
Jurkat, were mixed in six different proportions: 100%

Table 1. Pre-processing strategies assessed in this study

Name Bg correction Transformation Normalization

logq None Log2 Quantile
vstq Vst (implicit) Vst Quantile
vstr Vst (implicit) Vst Robust spline
neq Normexp (mle) Log2 Quantile
neqc Normexp Log2 Quantile

(using negative controls) (including controls)

For logq, neq and neqc, background correction is performed first,
then between-array normalization, then transformation. For vstq and
vstr, transformation is performed first followed by between-array
normalization.
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MCF7 (A1), 94% MCF7/6% Jurkat (A2), 88%
MCF7/12% Jurkat (A3), 76% MCF7/24% Jurkat
(A4), 50% MCF7/50% Jurkat (A5), 100% Jurkat
(A6). Each sample has two replicates, making up 12
arrays in total. Two HumanWG-6 version 1
BeadChips were used.

. MAQC data (M2) (18). Two pure samples, Universal
Human Reference RNA (UHRR) and Human Brain
Reference RNA (HBRR), were mixed in four different
proportions: 100% UHRR (A), 100% HBRR (B),
75% UHRR/25% HBRR (C), 25% UHRR/75%
HBRR (D). Each sample has five replicates, making
up 20 arrays in total. The data used were from test site
2 in the MAQC-I project. Four HumanWG-6 version
1 BeadChips were used.

. Spike-in data (S1) (19,20). There were 33 spike-in
probes and 12 spike-in concentrations (1000, 300,
100, 30, 10, 3, 1, 0.3, 0.1, 0.03, 0.01, 0). Each spike-
in concentration was repeated on four arrays, making
up 48 arrays in total. Eight MouseWG-6 version 1
BeadChips were used.

. Spike-in data (S2) (21). There were 34 spike-in probes
and 12 spike-in concentrations (1000, 300, 100, 30, 10,
3, 1, 0.3, 0.1, 0.03, 0.01, 0). Each spike-in concentra-
tion was repeated on four arrays, making up 48 arrays
in total. Eight HumanWG-6 version 2 BeadChips were
used.

Data input and normalization

Probe summary profile files and control probe summary
were exported from BeadStudio, without background cor-
rection or normalization. Output columns included detec-
tion P-values scores and bead-level standard deviations
for each array. The input function read.ilmn in the
Bioconductor package limma (22) was used to read the
data into R. The neqc function in limma implements
the neqc pre-processing strategy. Data pre-processing by
the logq and neq strategies was performed using the
backgroundCorrect and normalizeBetweenArrays func-
tions in limma. Data pre-processing by the vstq and vstr
strategies was performed using the lumiT and lumiN func-
tions in the Bioconductor package lumi (15).

Probe filtering

For each probe on each array, the BeadStudio detection
P-value is the proportion of negative control probes,
which have intensity greater than that probe on that
array. Probes were judged to be non-expressed if they
failed to achieve a detection P-value of 0.01 or less for
any array in a data set. Normalization was undertaken
on all probes, whether expressed or not.

Estimating the proportion of DE probes

A convex decreasing density estimate on a list of P-values
was used to estimate the proportion of DE probes (23).
Using normalized intensities from logq, differential ex-
pression between the pure samples in the mixture data
sets was tested using moderated t-statistics (24). The pro-
portion of DE probes in the data set was then estimated

from the associated P-values and the convest function in
the limma package.

Area under receiver operating curve

Area under receiver operating curve (AUC) was computed
to summarize the FDR receiver operating curve across all
possible P-value cutoffs. Using mixture data M1, lists of
nominally ‘true’ DE and non-DE probes were obtained by
comparing samples A1 and A6. Probes were then ranked
by P-value for each of the comparisons A2 versus A3, A3
versus A4 and A4 versus A5. Comparing each ranked list
to the true list yielded an AUC value, using the auROC
function of the limma package. Averaging the AUC values
from the three test comparisons gave the final value. The
AUC value was calculated in the same way for data set
M2, except that there was only one test list that compared
samples C and D. The entire AUC calculation was
repeated, including the derivation of ‘true’ DE and
non-DE probes, for each pre-preprocessing algorithm
and each offset.

Added offsets and optimal added offset

Offsets from 0 to 4000 at steps of 20 were added to the
unlogged intensities and AUC values were calculated for
each added offset. Offsets were added after background
correction step but before between-array normalization
and transformation. Offsets could not be added for the
vstq and vstr strategies because they do not have a
separate background correction step.
The optimize function in R (http://www.r-project.org/)

was used to find the optimal added offset, which maxi-
mizes the AUC value for each pre-processing strategy (25).

Normexp-by-control background correction

Illumina whole genome expression BeadChips include a
set of negative control probes with randomly generated
sequences (26). The number of negative control probes
ranges from 750 to 1600 for BeadChips from different
generations and different species. Previous studies by our-
selves and others showed that these negative control
probes provide a good measurement of the background
noise (1,11,12). These negative controls should therefore
be useful for the background correction of BeadChip data.
It is widely accepted that for high-density oligonucleo-

tide arrays, the signal can be usefully modeled as an ex-
ponential distribution and the background noise as a
normal distribution, for the purpose of background
correct. The popular RMA algorithm, originally de-
veloped for pre-processing Affymetrix GeneChips (3,5),
and adapted to two-color microarrays (6,7), fits a nor-
mal+exponential convolution model to the expression
data. The convolution model involves three unknown par-
ameters which must be estimated from the data, namely
the mean m and standard deviation s of the background
intensities and the mean a of the signal intensities.
Estimation algorithms using kernel density estimators
(3,5), saddle-point approximations (6) or maximum likeli-
hood (7) have been proposed to estimate these parameters.
Xie et al. (12) proposed three approaches to estimate

the normexp parameters. Their ‘nonparametric estimator’
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sets �̂ ¼ �b, �̂ ¼ sb and �̂ ¼ �y� �b, where �b and sb are the
mean and standard deviation of the negative control
probe intensities and �y is the mean intensity of the
regular probes for a particular BeadChip. The non-
parametric estimator was found to perform very com-
petitively (12), and is much faster to compute than
other normexp algorithms due to its arithmetic simplicity.
For some data sets, it is possible that some of the

negative control probes are subject to cross-hybridization
with expression transcripts and hence do not truly reflect
background intensity. To allow for this possibility, we
provide the option of robust estimation of the background
mean and variance in our public software. If this option is
chosen, �b and sb are replaced by estimators which are
robust on the log scale (27).

Quantile normalization with control probes

We propose a simple extension of quantile normaliza-
tion, in which control and regular probes are quantile
normalized together, including both positive and negative
controls. This serves to make quantile normalization more
robust against violations of the assumption that total
mRNA production is equal in all the samples. The neqc
pre-processing strategy presented in this study uses the
normexp-by-control background correction described
above followed by quantile normalization with control
probes.

RESULTS

Precision versus compression

We compare the performance of the five pre-processing
strategies using four calibration data sets. Two of the
data sets (M1 and M2) are based on mixtures of two
RNA samples, and two are spike-in experiments (S1
and S2) for two versions of human WG-6 BeadChips.
Figure 1 gives an overall view of the broad properties
of the five pre-processing strategies in their base form.
The middle column of the figure shows pooled sample
variances between replicates, a surrogate for precision.
This shows that the two vst algorithms have easily the
best precision (lowest variance), whereas the two
normexp strategies have the worst (highest variance).
However, precision is far from the whole story. The first
column of the figure shows that the vst algorithms give
most of the probes of the arrays virtually the same log2-
expression value, whereas the normexp algorithms
produce a much greater range of values. The third
column of the figure shows that the vst algorithms tend
to produce very small fold changes, whereas the normexp
algorithms yield a much greater range of fold changes. In
fact, the 90% percentile log2-fold change produced by
normexp strategies is 2–4 times that of the vst strategies
for data sets M1 and M2 (Table 2). It would appear that
the high precision of the vst algorithms has been bought
at the cost of a loss of signal. We need to somehow put the
algorithms on the same terms before we can compare them
meaningfully. In the following sections, we devise a
strategy to do that.

Bias

We can confirm that compressed fold changes correspond
to bias by examining results for spike-in probes. To em-
phasize this, we examined log2-fold-changes between the
two most extreme non-zero spike-in concentrations
(Figure 1 panels c3–c4, Table 3). The true log2-
fold-change here is log2 10

5 ¼ 16:6. All the pre-processing
strategies underestimate the true fold change, but the
normexp strategies do so far less than the vst or logq
strategies. We also examined fold changes between
progressive spike-in concentrations (Supplementary
Figure S1). All pre-processing strategies underestimated
fold changes at very low or very high concentrations,
but the normexp strategies are least biased overall. The
vst strategies were particularly biased at low concentra-
tion, giving log2-fold-changes hardly different from zero.

The ability of each pre-processing strategy to track to
the true concentrations can be summarized by computing
the regression slope of normalized log2-intensities on the
nominal spiked-in log2-concentrations. If the normalized
intensities were proportional to the spike-in concentra-
tions, then the regression slope would be one (21).
All pre-processing strategies give regression slopes less
than one, meaning that they tend to damp down the
fold changes. This is true for both spike-in data sets S1
and S2 (Table 3). However the normexp strategies are the
best, with least damping, whereas the vst strategies are the
worst.

Innate offsets

The results above show that the pre-processing algorithms
with best precision have worst bias and vice versa. A good
pre-processing strategy should strike a balance between
the precision and bias, yet each algorithm appears to
give more emphasis to one or the other. This raises
some interesting and important questions. Can we char-
acterize the position of each pre-processing algorithm on
the noise–bias (or precision–bias) spectrum in a quantita-
tive way? Can we modify the relative weight that each
algorithm gives to precision and bias, thus moving it
along the noise–bias spectrum? If so, does this allow us
to compare the basic pre-processing strategies on a more
equal and meaningful footing?

The left panel in Figure 1 shows the distribution of
normalized intensities for each pre-processing strategy.
The vstq and vstr strategies offset the data substantially,
in that even the smallest unlogged intensities are well
above zero. Adding a large offset to the intensities
before log transformation will lower the variance (as
seen in the center panel of Figure 1), but will also
compress the range of both intensities and fold changes
(seen in the left and right panels). This motivated us to use
the offset to adjust the balance of precision and bias.

We introduce the concept of ‘innate offset’ to measure
the offset introduced by a pre-processing strategy in its
base form. For the mixture data sets, we define innate
offset as the first quartile of the normalized probe
intensities. For spike-in datasets, innate offset can be
defined as the mean normalized intensity of probes with
spike-in concentration zero. All algorithms except vstr use
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quantile normalization, so the innate offset as just defined
is identical across all arrays of an experiment. For vstr, the
innate offset may vary slightly between arrays; for simpli-
city, we present the innate offset obtained from the first
array of each dataset as representative of vstr results.

The innate offset is intended to reflect the typical
intensity a pre-processing algorithm will assign to non-
expressed transcripts. We have shown elsewhere that the
proportion of expressed probes in data sets M1 and M2 is
�50% (1). This supports our choice of the first quartile as
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Figure 1. Operating characteristics of each pre-processing strategy. Shown are boxplots of normalized log2 intensities (a1–a4), log2 sample variances
(b1–b4) and absolute log2 fold changes (c1–c4) for each pre-processing strategy applied to each data set. Each boxplot shows the spread of values
across microarray probes for a particular strategy applied to a particular data set. The vertical axis has been truncated in some cases to better show
the main body of the boxplots. The first and second rows show results for mixture data sets M1 and M2, respectively. Panels c1-c2 show fold changes
for comparing pure samples. The third and fourth rows show results for spike-in data sets S1 and S2, respectively. Only results for spike-in probes
are shown (note that spike-in probes and array probes were normalized together). Panels a3–a4 show intensities for probes for which the spike-in
concentration is actually 0. Panels c3–c4 show fold changes from the comparison between spike-in concentrations 1000 pM and 0.01 pM. In the left
column (a1–a4), longer boxes indicate a good range of normalized values. In the middle column (b1–b4), lower boxes indicate higher precision. In the
third column (c1–c4), longer and higher boxes indicate a greater range of fold changes.
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the innate offset, because the 25% quantile of the the
intensities should be approximately the median of the
non-expressed probes.
The vst strategies have by far the largest innate offsets,

about 8–21 times (Table 2) or 6–12 times (Table 3) those
of the normexp strategies. In general, the order of
pre-processing strategies ranked by innate offset is the

reverse of their order ranked by variance, fold change,
or regression slope (Tables 2 and 3). The only exception
is neqc which has better precision than neq even though it
has smaller offset. This improvement is presumably due to
the extra information gained from using control probes in
the background correction and normalization processes.

Added offsets

We speculated that if the offsets introduced by different
strategies could be aligned, then the differences in preci-
sion and bias would not be as remarkable as observed in
Figure 1, and the strategies could be compared on more
equal terms. To test this idea, extra offsets were added
prior to normalization for the logq, neq and neqc
strategies to try to match the total resulting offsets of
these strategies to the innate offset of vstr strategy
(Extra offsets cannot be added to the vstq and vstr
strategies because they do not have a separate background
correction step). Figure 2 confirms for data set M1 that,
after equalizing the offsets in the above way, differences in
precision and fold change range between strategies were
much less pronounced. Differences in typical absolute fold
change were also reduced (data not shown).

To further demonstrate the role that the offset plays in
calibrating the noise–bias trade-off, we consider a simple
case in which increasing offsets are added to a data set and
the data set is normalized by the logq strategy. Precision
steadily improves and the fold change range steadily de-
creases as more offset is added (Figure 3). This clearly
demonstrates that the offset does play an important role
in controlling the precision and bias of the normalized
data.

With the ability to move the pre-processing strategy
in the noise–bias spectrum, we are able to determine
the optimal trade-off between noise and bias for a pre-
processing strategy and perform an unbiased comparison
for alternative strategies, which are described in the next
section.

Estimating the FDR

Differential expression analysis was performed to compare
the pure samples in the mixture data sets (i.e. A1 versus
A6 in data set M1 and A versus B in M2). A moderated
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Figure 2. Operating characteristics of pre-processing strategies when total offsets are forced equal. Shown are boxplots of (a) normalized log2
intensities, (b) log2 variances and (c) absolute log2 fold changes. Results shown are for data set M1, with added offsets of 73, 237 and 256 for
the logq, neq and neqc strategies, respectively.

Table 3. Innate offset, precision and bias of each pre-processing

strategy on spike-in data sets S1 and S2

Strategy S1 S2

Innate
offset

log2
var

Max
logFC

Slope Innate
offset

log2
var

Max
logFC

Slope

vstr 155 �8.6 8.5 0.59 150 �7.5 8.2 0.58
vstq 153 �8.4 8.0 0.57 150 �7.7 7.7 0.55
logq 78 �7.1 9.0 0.64 93 �7.1 8.4 0.61
neq 27 �4.7 10.6 0.75 23 �4.2 10.4 0.74
neqc 13 �5.0 11.7 0.83 13 �4.8 11.3 0.80

Innate offset is average raw intensity of 0-concentration spike-in
probes. log2 var is mean log2 variance for spike-in probes. Max
logFC is mean log2-fold-change between spike-in concentrations 1000
and 0.01 pM (true value is 16.6). Slope is the slope of the regression of
log2 intensities on the true log2 concentrations (ideal value is 1). The
best value in each subcolumn is bold.

Table 2. Innate offset, precision and bias of each pre-processing

strategy on mixture data sets M1 and M2

Strategy M1 M2

Innate
offset

log2
var

90%
logFC

Innate
offset

log2
var

90%
logFC

vstr 269 �8.7 0.40 235 �9.4 0.72
vstq 259 �7.8 0.45 234 �9.2 0.75
logq 196 �6.9 0.53 103 �6.3 1.11
neq 32 �2.5 1.37 26 �3.1 1.61
neqc 13 �2.8 1.36 11 �3.2 1.91

Innate offset is on the raw scale. log2 var is the median log2 probe-wise
variance. 90% logFC is the 90th percentile of absolute log2-
fold-changes between pure samples. The best value in each subcolumn
is bold.
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t-statistic was calculated for each probe and each data set
(24). We chose the top 30% of absolute t-statistics to des-
ignate ‘true’ DE probes, and the bottom 40% to designate
‘true’ non-DE probes. The proportion of DE probes was
estimated to be 27% and 41% for datasets M1 and
M2, respectively, supporting our choice of cut-off for se-
lecting DE probes. The ‘true’ DE probes and non-DE
probes were generated for each pre-processing strategy
separately.

Differential expression analysis was then carried out to
compare heterogeneous samples. We compared A2 versus
A3, A3 versus A4 and A4 versus A5 in data set M1 and C
versus D in data set M2. For each comparison, probes
were ordered from largest to smallest by absolute
moderated t-statistic. The ranking of the ‘true’ DE and
non-DE probes in these lists yielded a FDR and an
AUC value for each comparison. AUC was used as an
overall summary of FDR that is independent of the
cutoff used to select DE genes. For data set M1, AUC
for the three sample comparisons were then averaged.

The vst strategies were found to have the lowest FDR
(highest AUCs) and the normexp strategies to have the
highest (lowest AUCs) (Table 4). AUC generally increased
with innnate offset.

Optimizing the FDR

We next used AUC as a criterion to be optimized in order
to determine the best trade-off between precision and bias.

Offsets from 0 to 4000 were added to the background
corrected data for the neq and neqc strategies and to
raw data for the logq strategy to examine changes in
FDR. Figure 4 shows that the AUC value does not
always increase when the offset increases. Instead, each
strategy reaches its AUC peak with its own optimal
added offset and then its AUC value decreases. The best
AUC of the neqc strategy is comparable, or better than
those of logq and neq strategies, and neqc achieves this by
using a much smaller added offset in both data sets M1
and M2 (Table 5 and Figure 4). This small offset is highly
desirable in that it keeps the total offset and fold change
shrinkage to a minimum (Table 5). The neqc strategy also
clearly outperforms vstq and vstr strategies in terms of the
best AUC value and the typical absolute fold change.
We then compared different strategies by forcing them

to have the same AUC values. Offsets were added to the
data as appropriate to ensure that the logq, neq and neqc
strategies gave the same AUC value as the better of the
two vst strategies. The neqc strategy was found to achieve
this AUC with much larger fold changes and smaller total
offsets than the other strategies (Table 6), a highly desir-
able property. The other strategies gave fold changes often
only a third or a half as large as neqc, as measured by the
90% quantile of the absolute fold changes.
Finally, we compared the five strategies by forcing them

to have the same total offset, equal to that of the vst
strategy with best AUC value. This made the strategies
more similar than in any other comparison. On this level
playing field, the neqc strategy showed a modest but no-
ticeable edge on all performance measures, namely preci-
sion (Supplementary Figure S2), AUC and fold change
(Table 7). Only for data set M2, did neqc not yield the
best AUC value, but here all strategies gave high and
almost identical AUC values.

Probe filtering

Filtering out probes that were not expressed has been
found previously to improve statistical power to detect
DE genes (9,28,29). To explore the effect of this on our
results, we filtered out probes which failed to show good
evidence of expression for any array.
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Figure 3. Operating characteristics of the logq pre-processing strategy for different added offsets. Shown are boxplots of (a) normalized log2
intensities, (b) log2 variances and (c) absolute log2 fold changes for comparing pure samples. Results shown are for data M1.

Table 4. The innate offset and FDR for each pre-processing strategy

Dataset Strategy Innate offset AUC

M1 vstr 269 0.63
vstq 259 0.60
logq 196 0.57
neq 32 0.53
neqc 13 0.55

M2 vstr 235 0.935
vstq 234 0.942
logq 103 0.939
neq 26 0.923
neqc 11 0.931
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Comparisons between the different pre-processing
strategies were largely unaffected by filtering. Vst still
had the highest precision and smallest fold change range
of all the strategies (Supplementary Figure S3). The pre-
cisions of the normexp strategies improved slightly after
filtering whereas those of the vst strategies became worse
(Supplementary Table S1). This suggests that the normexp
strategies produce a decreasing mean–variance relation-
ship, so that filtering removes more variable probes,
whereas the vst strategies produce an increasing relation-
ship, so that filtering removes probes with low variances.
Evidently, the vst algorithms do not entirely succeed in
stabilizing the variance across the intensity range.

As with the full dataset, AUC values of the logq, neq
and neqc strategies first increased with the added offset
and then decreased after reaching their peaks. The neqc
strategy is now found to have the best AUC values in both
data sets M1 and M2 (Supplementary Figure S4).
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Figure 4. AUC as a function of added offset for the logq, neq and neqc strategies. Panel (a) is for data set M1, (b) for data set M2.

Table 5. Optimal added offset for each strategy in terms of FDR

Dataset Strategy Optimal
added offset

AUC Total
offset

90%
logFC

M1 vstr – 0.629 269 0.40
vstq – 0.600 259 0.45
logq 681 0.628 877 0.22
neq 922 0.630 954 0.21
neqc 156 0.635 169 0.58

M2 vstr – 0.9350 235 0.72
vstq – 0.9420 234 0.75
logq 108 0.9430 211 0.86
neq 171 0.9434 197 0.88
neqc 46 0.9430 57 1.32

The total offset is essentially the sum of the innate and added offsets.

Table 6. Comparing different strategies when FDRs are forced equal

Dataset Strategy Added
offset

Total
offset

AUC 90%
logFC

M1 vstr – 269 0.629 0.40
vstq – 259 0.600 0.45
logq 681 877 0.628 0.22
neq 623 655 0.629 0.27
neqc 78 91 0.629 0.74

M2 vstr – 235 0.935 0.72
vstq – 234 0.942 0.75
logq 26 129 0.942 1.03
neq 96 122 0.942 1.04
neqc 21 32 0.942 1.52

Note that the best AUC the logq strategy can achieve in data set M1 is
0.628, which is less than the consensus AUC value (0.629) chosen from
the vstr strategy.

Table 7. Comparing different strategies when total offsets are forced

equal

Data set Strategy Added
offset

Total
offset

AUC 90%
logFC

M1 vstr – 269 0.629 0.399
vstq – 259 0.600 0.446
logq 73 269 0.596 0.459
neq 237 269 0.602 0.459
neqc 256 269 0.634 0.461

M2 vstr – 235 0.935 0.722
vstq – 234 0.942 0.748
logq 131 234 0.943 0.829
neq 209 234 0.943 0.828
neqc 224 234 0.940 0.837
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The total offset used by neqc when achieving its best AUC
value is also much smaller than those used by other
strategies (data not shown). Comparing the five strategies
by fixing AUC values or total offsets also shows the su-
periority of the neqc strategy (Supplementary Tables S2
and S3).

DISCUSSION

This study has demonstrated that offsets provide a means
to measure and manipulate the noise–bias trade-off of
pre-processing algorithms for Illumina BeadChip data.
This is the first study that explores the role of offsets in
a systematic way. The precision and bias of the algorithms
were found to be determined more by their total offset
than by any other property. To a first approximation,
all the algorithms can be placed on a (nearly one-
dimensional) continuum in terms of noise bias trade-off.
This approach constitutes a step forward in understanding
the relationships between existing algorithms, because it
allows algorithms to be compared on equivalent terms.
The potential of each of the base algorithms to generate
an algorithm with an optimal noise–bias compromise was
examined. This showed that adding a positive offset to
most of the algorithms can result in a substantial reduc-
tion in the FDR. The improvements achieved in this way
were greater than the differences between the original
algorithms.

This study is the first to make comparisons between the
popular vst algorithm and algorithms of the normexp
family, and the first to evaluate the algorithms with
respect to their noise–bias trade-offs. The algorithms
were evaluated using a suite of calibration data sets with
genomic-level known truth. One finding of the study is
that the very well-respected vst algorithm has operating
characteristics very similar to that of normexp back-
ground correction (with or without controls) when an
offset in the range of 200–300 is added (Figure 2). This
unifies a number of, apparently disparate, proposals
(6,14,12), and shows that the best performing algorithms
differ mainly in the relative emphasis given to precision
and bias.

We show that vst has high precision but also high bias,
with fold changes substantially understated. A practical
conclusion of this study is that researchers can achieve
much of the precision of the vst algorithm while
avoiding much of the bias by using normexp background
correction with a small to modest added offset. The
optimal offset to minimize the FDR varied from about
50 to nearly 1000 (Table 5), but any added offset
resulted in some improvement compared to not adding
an offset (Figure 4). For practical use, we feel that total
offsets larger than about 200 are undesirable because of
the degree of compression of the fold changes, regardless
of the FDR benefits. Neqc was the only algorithm tested
with optimal offset values smaller than this. In general,
the amount of bias that is introduced for a given gain in
precision was smaller for neq than logq, and smaller again
for neqc. This supports the use of control probes to tune
the normexp parameters (11,12). For routine practical use,

we recommend modest offsets for Illumina data in the
range of 10–50, which minimize the bias while still deliver-
ing a benefit in terms of FDR. Offsets of 16–50 have been
used in a number of biological studies (10,13,16). These
results remain essentially unchanged whether or not
control probes are used in the normalization step of
neqc, although the version with control probes used in
this study does slightly better on data sets M1 and S2
(data not shown).
The default background correction method used by

Illumina’s proprietary BeadStudio software is global
background correction, whereby the mean intensity of
the negative control probes for each array is subtracted
from the intensities of the regular probes for that array.
Global background correction was not included in this
study because it has been shown elsewhere to introduce
variability for probes with low intensities and to behave
poorly in differential expression analyses (19). More spe-
cifically, global background correction is inappropriate
in conjunction with the log algorithm, because it intro-
duces negative intensities and hence undefined values
after log-transformation. The neqc algorithm also
requires intensities which have not been global back-
ground corrected, because that would put the regular
probes on a different scale to the negative control
probes. The two vst algorithms and neq should give
similar results whether or not the regular probes have
been global background corrected. They are nearly,
although not entirely, invariant to this correction (data
not shown).
Our neqc software includes a robust version of neqc,

intended to allow the possibility that some of the
negative control probes are subject to cross-hybridization
with expression transcripts and hence do not truly reflect
background intensity (19). For the data sets considered
here, robust neqc has a slightly lower innate offset than
ordinary neqc but has nearly the same optimized FDR,
precision and bias (data not shown).
Illumina BeadChips include around 30 replicate beads

for each probe on each array. We analyzed the Illumina
BeadChip data at the probe-level using standard Illumina
output files, but analysis of the bead-level data is also
possible (2,19). In principle, the neqc strategy should be
just as effective for pre-processing bead level data as it is
for probe-level data. Its computational simplicity would
be especially valuable at the bead level.
Our results may have implications for other microarray

platforms. Affymetrix GeneChips include a MM
(mismatch) probe for each PM (perfect match) probe.
The MM probe differs from the corresponding PM
probe by only one base (the 13th base in the 25-mer
sequence). It has been reported that these MM probes
contain signals from target RNA (30), so MM probes
do not provide a direct measure of background noise.
On the other hand, a variety of recent commercial micro-
array platforms do include sizeable numbers of negative
control probes. These include Agilent Whole Genome
Oligo Microarrays and recent Affymetrix products such
as exon and microRNA arrays. If the negative control
probes are representative of background noise, then the

PAGE 9 OF 11 Nucleic Acids Research, 2010, Vol. 38, No. 22 e204



neqc pre-processing strategy should be applicable to these
microarray platforms as well.
The neqc pre-processing algorithm is implemented in

the freely available open source Bioconductor software
package limma (22). The default offset is 16, which
seems generally to give good results on recent versions
of human and mouse Illumina arrays. A case study, with
complete R commands, using the neqc algorithm to
normalize Illumina BeadChip data is included in
Supplementary Data. This approach has been used suc-
cessfully in some recent biological studies (13,16). Our ex-
perience in these applied studies is that neqc, neq and vst
give roughly similar numbers of DE genes on the basis of
P-value alone, but neqc yields fold changes 3–4 times as
large as those from logq and nearly five times as large as
vstq or vstr. Therefore, neqc yields more DE genes when
both fold change and P-value thresholds are used. Limited
experience with PCR validation suggests that the larger
fold changes returned by neqc are closer to the truth,
agreeing with the results reported here with spike-in
data sets.

CONCLUSION

This study conducts a comprehensive comparison of five
alternative pre-processing strategies with regard to preci-
sion, bias and FDR. The algorithms are found to differ
mainly in the degree to which they offset intensities away
from zero and the degree of compression they apply to the
fold changes. When this noise–bias trade-off was adjusted,
the five algorithms had broadly similar performance. Vst
was found to have high precision but also high bias.
Adding a positive offset is found to improve the FDRs
of the log and normexp algorithms. The normexp algo-
rithm using control probes (neqc) was found to achieve
the best precision for a given bias. This strategy is there-
fore recommended, in conjunction with a modest offset,
for pre-processing Illumina BeadChip data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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