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ABSTRACT

With the aid of next-generation sequencing technol-
ogy, researchers can now obtain millions of micro-
bial signature sequences for diverse applications
ranging from human epidemiological studies to
global ocean surveys. The development of
advanced computational strategies to maximally
extract pertinent information from massive nucleo-
tide data has become a major focus of the bio-
informatics community. Here, we describe a novel
analytical strategy including discriminant and
topology analyses that enables researchers to
deeply investigate the hidden world of microbial
communities, far beyond basic microbial diversity
estimation. We demonstrate the utility of our
approach through a computational study performed
on a previously published massive human gut 16S
rRNA data set. The application of discriminant and
topology analyses enabled us to derive quantitative
disease-associated microbial signatures and de-
scribe microbial community structure in far more
detail than previously achievable. Our approach
provides rigorous statistical tools for sequence-
based studies aimed at elucidating associations
between known or unknown organisms and a
variety of physiological or environmental conditions.

INTRODUCTION

The biosphere contains an estimated 1030 � 1031 microbial
cells, at least 2 � 3 orders of magnitude larger than the

number of plant and animal cells combined (1). These
microbes play an essential role in processes as diverse as
maintenance of human health and biogeochemical
activities critical to all life. However, the diversity and
the community structure of complex microbial
communities are still poorly understood, historically due
to our inability to culture most microorganisms using
standard microbiological techniques. While there are
likely millions of bacterial species, only a few thousand
have been formally described to date (2). Accordingly,
researchers lack basic information to compare microbial
communities under different physical–chemical condi-
tions, and to model dynamic microbe–microbe and envi-
ronment–microbe interactions.
The recent development of massively parallel

pyrosequencing technology allows researchers to study
genetic materials recovered directly from environmental
samples, by eliminating the need of laboratory isolation
and cultivation of individual species, and thus opens a new
window to probe the hidden world of microbial
communities (2–4). In recognition of the role of marine
microbes in biogeochemical processes, the International
Census of Marine Microbes (ICoMM) consortium has
launched an international effort to catalog the diversity
of microbial populations in the oceanic, coastal and
benthic waters. Microbes associated with human health
are intensely studied through two large-scale initiatives:
the Human Microbiome Project (HMP) sponsored by
National Institutes of Health and MetaHIT sponsored
by the Europen Union, which seek to establish a correl-
ation between the composition of the human micro-
biome and various diseases (5). These studies leverage
the power of deep sequencing that allows for the rapid
and cost-effective surveying of complex microbial
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communities to reveal the presence of known and current-
ly unknown species alike. However, as emphasized specif-
ically by the NIH HMP working group, computational
methods for analyzing massive sequence data generated
by these initiatives are still in their infancy, and conse-
quently new computational algorithms and strategies are
urgently needed to maximize research yields in these
efforts (5).
This article presents a novel computational strategy spe-

cifically designed to address the challenges of analyzing
large collections of 16S rRNA pyrosequencing data for
various biological and ecological inquires. The key idea
is to use taxonomy-independent analysis to transform
the information encoded in the nucleotide domain into
the numerical domain, and then use various advanced
machine learning and statistical methods to quantify and
visualize the associations between altered microbial com-
munity composition with physiological or environmental
conditions of interest. We demonstrate the viability of the
proposed analytical strategy on a previously published
massive human gut 16S rRNA data set generated by
Turnbaugh et al. (9) to investigate correlations between
the human gut microbiota and obesity. The work by
Turnbaugh et al. and other papers mostly by the same
group have reported that an obese phenotype is associated
with broad, phylum-level changes in the gut community
structure (6,7). More specifically, obese individuals appear
to have a lower proportion of Bacteroidetes and a higher
proportion of Firmicutes compared with lean individuals.
This pattern was initially reported only in a small cohort
of 12 subjects (�350 sequences at each sampling point),
likely too small to develop a good indicator for the overall
population (8). A subsequent study involving a much
larger number of samples suggested that it was the ratio
between Bacteroidetes and Actinobacteria, not Firmicutes,
that differed in the obese group compared with the lean
group (9). It is well established that Firmicutes and
Bacteroidetes are the two largest phyla in the human gut
flora, consisting of over 250 and 125 genera, respectively
(10). It is possible that the compositions of only a few
genera within these phyla are altered in obesity. Hence,
it would be valuable to examine differences in microbial
composition at more resolved phylogenetic levels. To this
end, we performed a series of data analyses that correlated
community structures in the gut with respect to physio-
logical state. Our study showed that while several

genus-level operational taxonomic units (OTUs) classified
as belonging to Bacteroidetes were all negatively correlated
with obesity, there exist both negatively and positively
correlated OTUswithin Firmicutes, which in part explained
some conflicting results observed in previous studies.
Through discriminant and topology analyses, we further
showed that despite individual diverse gut microbial com-
positions, common microbial signatures exist that can be
used to accurately stratify obese and lean individuals. Our
study brought new light onto this human microbiome
question that previous methods have been unable to
resolve. Our approach is broadly applicable to other
sequence-based microbial studies.

MATERIALS AND METHODS

Figure 1 presents the schematic diagram of the proposed
analytical strategy. We detail each module in the following
subsections.

Taxonomy-independent analysis

Providing a detailed description of microbial populations,
including high, medium and low abundance components,
is frequently the first step to perform in microbial com-
munity analysis (10,11). PCR-based techniques for select-
ively generating 16S rRNA amplicons followed by DNA
sequencing are currently the most commonly used
approach to characterizing microbial communities, and
have been successfully used in numerous applications
[see e.g. (12,13) for excellent review]. Existing algorithms
for microbial classification using 16S rRNA sequences can
be generally categorized into taxonomy-dependent or
taxonomy-independent analyses. In the former methods,
query sequences are first compared against a database and
then assigned to the organism of the best-matched refer-
ence sequences (e.g. BLAST). Since most microbes have
not been formally described yet, these methods are inher-
ently limited by the lack of completeness of reference data-
bases (12). Taxonomy-dependent analysis is performed
generally for the purpose of sequence annotation. In this
article, we primarily focus on taxonomy-independent
analyses, where sequences are compared against each
other to form a distance matrix, based on which hierarch-
ical clustering is performed to group sequences into OTUs
of specified sequence variations. Typically, sequences with
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Figure 1. Schematic diagram of the proposed analytical strategy.

e205 Nucleic Acids Research, 2010, Vol. 38, No. 22 PAGE 2 OF 10



1–3% dissimilarity are assigned to the same species, while
those with <5% dissimilarity are assigned to the same
genus (9,14,15), although these distinctions are controver-
sial. Various ecological metrics can then be estimated from
the clustering information to characterize a microbial
community. The analysis does not rely on any reference
database, and hence is able to enumerate characterized
organisms as well as novel pathogenic and uncultured
microbes.

We recently developed a new algorithm, referred to as
ESPRIT, for large-scale taxonomy-independent analysis
(16). The algorithm consists of four modules: (i) filtering
out low-quality sequence reads on the basis of multiple
criteria, (ii) computing pairwise distances between input
sequences, (iii) performing hierarchical clustering to
group sequences into OTUs at different distance levels
and (4) performing statistical inferences to estimate
various ecological metrics. In contrast to many existing
16S rRNA-based studies, ESPRIT uses the Needleman–
Wunsch algorithm (17), instead of multiple sequence
alignment, to optimally align each pair of 16S rRNA
sequences, and the quickdist algorithm (3) to compute
pairwise distances. More specifically, each pairwise
distance equals mismatches, including indels, divided by
a sequence length. To avoid overestimating distances
between sequences from rapidly diverging variable
regions, end gaps are ignored and gaps of any length are
treated as a single evolutionary event or mismatch.
Through a benchmark study, we demonstrated that
global pairwise alignment provided a much more
accurate estimate of microbial richness than multiple
sequence alignment. Interested reader may refer to the
Supplementary Data for a detailed discussion. Within
the ESPRIT framework, we also developed a new cluster-
ing algorithm, referred to as Hcluster, to handle
large-scale hierarchical clustering analysis. Unlike conven-
tional methods that load a distance matrix direct-
ly into memory, Hcluster groups sequences into OTUs
on-the-fly while keeping track of linkage information,
which overcomes memory limitations. The
complete-linkage method was used to ensure that the
maximum pairwise genetic distance of the sequences
grouped into the same cluster is smaller than the specified
distance level defining an OTU. ESPRIT has been used
extensively by the research community. Two versions of
ESPRIT, one for personal computers and one for
computer clusters, are freely available at http://plaza.ufl.
edu/sunyijun/ESPRIT.htm.

Constructing profile data matrix

One of the major obstacles of using sequence data to
query a biological/ecological hypothesis is that most stat-
istical approaches reported in the literature were designed
solely for analyzing numerical-valued data. To overcome
this difficulty, we applied taxonomy-independent analysis
to transform the information encoded in the nucleotide
domain (i.e. A, T, C and G) into the numerical domain.
More specifically, we used ESPRIT to hierarchically
group sequences into OTUs at various distance levels to
form a tree-like structure. Using a barcode labeling system

for each sample, the origin of each sequence was retrieved
and the number of sequences from each sample within
each OTU was counted and recorded in a data matrix.
Each column of the data matrix represents a sample,
and each row represents an OTU. The data matrix was
then normalized along the row direction so that each
column vector represents a percentage profile of OTUs
in each sample. Analogous to microarray technology
that enables researchers to ’simultaneously’ monitor the
expression levels of all genes in a cell or tissue (18,19),
the so-obtained profile data matrix provides microbiolo-
gists with a ‘global’ view of how microbial compositions
change across individuals or between groups with different
physiological states at various phylogenetic levels.
Alternatively, a profile data matrix can be generated
using taxonomy-dependent analysis. However, a massive
amount of query sequences would be grouped into the
unknown or uncultured category regardless their origins,
and the uncertainties in sequence annotation would
propagate to the entire downstream data analyses. Once
we obtain a profile data matrix, various advanced compu-
tational methods can be applied to analyze massive,
high-dimensional data. In this article, we mainly focused
on discriminant and topology analyses. In conclusion
section, we presented a brief discussion of how to use
nucleotide sequence data to infer microbial interaction
networks.

Discriminant analysis

The main purpose of discriminant analysis is to identify a
list of OTUs containing the most discriminant informa-
tion that can be used to characterize microbial
communities under different conditions. From clinical
perspectives, identifying the pathogenic phylotypes strat-
ifying diseased patients from healthy individuals could be
used for disease diagnosis and to help physicians make
informed decisions to prescribe personalized antibiotics,
rather than broad-spectrum antibiotics, to maximize the
treatment efficacy (20). Note that the primary goal of
the recently launched HMP Project is to determine
whether there are associations between changes in the
microbiome and various diseases and thus to pave the
way for future large-scale human epidemiological studies
(5). Discriminant analysis is probably one of the most
rigorous analyses one can perform to quantify such
associations.
One major characteristic of a profile data matrix is that

the number of OTUs is several orders of magnitude larger
than the number of samples. For instance, in the case
study we present in Result section, at the 0.05 distance
level, the number of observed OTUs is 40 765 while
there are only 101 samples. In the statistical literature,
this is called a ‘small N and large P’ problem (21,22),
where N is the number of samples and P is the number
of OTUs. In this situation, special care must be taken to
avoid overfitting problems. A commonly used practice is
to select a small feature subset so that the performance of
a learning algorithm is optimized (21–23). For the purpose
of this article, we used ‘1 regularized logistical regression
to perform feature selection and classification
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simultaneously (23). Since the objective function
optimized by the algorithm is not differentiable, fast im-
plementation of ‘1 regularized learning has long been con-
sidered a challenging problem in the machine-learning
community. We recently developed a new gradient
descent based algorithm for large-scale ‘1 regularized
learning (23) (http://plaza.ufl.edu/sunyijun/DGM.htm).
The new algorithm makes large-scale studies (e.g. permu-
tation tests) computationally tractable. Due to the small
sample size, the leave-one-out cross validation (LOOCV)
method was adopted to estimate the prediction perform-
ance. In each iteration, one sample was held out for test,
and the remaining samples were used for training. The
regularization parameter of a logistical regression model
was estimated through 10-fold cross validation using the
training data, and then a predictive model was trained
using the estimated parameter and ‘blindly’ applied to
the held-out sample. The experiment was repeated until
each sample had been tested. Test samples were not
involved in any stage of training process (see Figure 2
for details). A receiver operating characteristic (ROC)
curve obtained by varying a decision threshold was then
used to visualize how a prediction model performed at
different sensitivity and specificity levels. The area under
ROC curve (AUC) provides a quantitative assessment of
the predictive value of constructed classifiers (AUC=1:
perfect ability to discriminate and AUC=0.5: random
guess) (24).
A typical 16S rRNA-based microbial study involves

only tens or at most hundreds of samples. With a small
data size, it is possible that the outcomes of discriminant
analysis are due to some random confounding factors of
no interest to investigators. We performed a permutation
test to estimate the P-value of predictive performance.
For computational reasons, in this article, the permuta-
tion test was repeated 1000 times. In each iteration, the
class labels were randomly shuffled, the above-described
experimental protocol was executed and the area under
the resulting ROC curve was recorded. The P-value was

computed as the occurrence frequencies of the iterations
where the resulting AUCs outperformed that obtained
using the original class labels.

Topology analysis

Topology analysis was preformed that enables micro-
biologists to visualize and study the global topology struc-
ture of a complex microbial community. In this analytical
strategy, each sequence is regarded as a data point in a
high-dimensional nucleotide space, with each coordinate
corresponding to a nucleotide base taking values from set
{A, T, C, G}. We used the Isomap algorithm (25) to map
sequences into a two-dimensional numerical space that
optimally preserves the intrinsic geometry or distribution
of the data (i.e. two sequences that have a small genetic
distance between each other should stay together in a
two-dimensional numerical space). In order to make
computation feasible, in this article, we considered only
the clusters generated by ESPRIT at the 0.10 distance
level, and removed small clusters containing less than
10 sequences. However, we should emphasize that the
analysis can be performed at all distance levels. We then
randomly selected 100 sequences from each cluster (if a
cluster contained less than 100 sequences, all sequences
were used.), and computed the pairwise inter-cluster
distances as dij ¼

1
NiNj

P
sn2Ci

P
sm2Cj

dðsn,smÞ, where dij is
the distance between clusters Ci and Cj, dðsn,smÞ is the
pairwise distance between two globally aligned sequences
sn and sm, and Ni and Nj are the numbers of sequences
from the two clusters that were used in distance com-
putation. The pairwise inter-cluster distances were then
fed into the Isomap algorithm to generate a two-
dimensional mapping of massive sequence data. The
code is available at http://waldron.stanford.edu/isomap/.
The only free parameter of the algorithm is the number of
the nearest neighbors used to construct a neighborhood
graph, which was set to 10.

TEST DATA

TRAINING
DATA

CLASSIFIER

TEN-FOLD
CV

BEST
PARAMETER

LOOCVDATASET

TEST

TRAIN

Figure 2. Experimental protocol. Due to the small sample size, the LOOCV method was used to estimate the prediction performance. In each
iteration, one sample was held out for test and the remaining samples were used for training. The regularization parameter of a logistical regression
model was estimated through 10-fold cross-validation using the training data, and then a predictive model was trained using the estimated parameter
and blindly applied to the held-out sample. The experiment was repeated until each sample had been tested.
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Sequence annotation

We used the RDP classifier (26) to annotate all the
sequences due to its computational efficiency. We also
used BLAST search against the RDP-II (27) and
greengenes (28) databases to phylogenetically classify the
sequences within the top ranked OTUs. A query sequence
was assigned to the organism of the best-matched
reference sequence if the E-value �10�20 and the identity
percentage �95%. The analysis was performed on
the RAST web application (29). Both the RDP
classifier and RAST do not classify sequences below the
genus level.

RESULTS

We conducted an intensive computational study on a
publicly available human gut microbiota data set to dem-
onstrate the viability of the proposed computational
strategy. The data set was originally used to study the
connection between obesity and altered composition of
the human gut flora (9). It contains 1 119 519 sequences
with an average length of 219 nucleotides, covering the V2
hyper-variable region of 16S rRNAs collected from the
stool samples of 154 individuals from 54 families. Each
sample is labeled as obese, lean or overweight, based on
the corresponding body mass index. This is by far the
most comprehensive 16S rRNA-based survey of the
human gut flora available to date. To reduce random
sequencing errors, we applied a trimming procedure
similar to those used in (9) to remove reads that (i)
contain at least one mismatch in the primers, (ii) contain
ambiguous bases or (iii) have a length <200 bp. We per-
formed a taxonomy-independent analysis of the data
using the ESPRIT tools described in Taxonomy-
independent analysis section, and generated profile data
matrices at various distance levels from 0.03 to 0.18 using
the approach outlined in constructing profile data matrix
section.

Microbial signatures associated with obesity

We first applied unsupervised learning techniques to visu-
alize the distributions of the samples. In order to reduce
the effect of confounding factors such as antibiotics usage
and sampling depth, we removed the samples that (i) were
obtained from the individuals who were on antibiotics
within 6 months of stool sample collection, (ii) have less
than 3000 sequences and (iii) have ambiguous class labels
(i.e. overweight). This resulted in a total of 101 samples
with 26 in the lean group and 75 in the obese group. We
then performed a correlation analysis of OTUs with
respect to physiological state. The heat map of the top
50 ranked OTUs defined at the 0.08 distance level
plotted in Figure 3 reveals that obese individuals have a
distinguishing pattern of microbial profiles compared with
lean individuals. Unsupervised hierarchical clustering
clearly partitions the samples into two groups, and this
pattern was observed over a wide range of phylogenetic
levels (Supplementray Figures S2–S4).

For a more rigorous analysis, we then applied super-
vised machine-learning techniques to quantify how the

predictive value of microbial profiles varies at different
phylogenetic levels. We used ‘1 regularized logistical re-
gression to estimate the posteriori probability of a sample
belonging to the obese or lean group [see (23) and
‘Materials and Methods’ section for details]. The AUCs
obtained at different distance levels ranging from 0.03 to
0.18 are presented in Figure 4 (left panel). We observe that
the microbial profile-based predictive models perform very
well over a wide range of distance levels. For example, at
the 0.08 distance level, the AUC equals 0.88 (P-value
<0.001 obtained by a permutation test; Supplementary
Figure S5). At the 80% sensitivity level, the model cor-
rectly classified 83 out of 101 samples (82%), including 61
obese and 22 lean individuals (Figure 4, right panel). The
data set under analysis came from a twin study (9), and it
was reported that members within the same family had
similar gut microbial community structures. In order to
avoid information leakage, we also performed a LOOCV
where all the samples from the same family were held out
and classified by the predictive model constructed using
the samples from ‘other’ families. The classification result
had no statistical difference from that obtained using
LOOCV (P-value >0.30 based on a Student’s t-test;
Figure 4, left panel). This experiment demonstrates that
despite the fact that each individual has diverse gut micro-
bial compositions (9,10) and that members within the
same family have similar overall gut community structures
independent of obesity status, there exists a ‘common mi-
crobial signature’ that can be used to accurately distin-
guish obese from lean individuals. Interestingly, the
AUC analysis reveals that the discriminant information
is contained over a wide range of phylogenetic levels
(Figure 4, left panel). This finding extends previous
studies by quantifying the association between changes
in the microbiome and obesity and pinpointing OTUs
that may have a connection with obesity at more
resolved phylogenetic levels.
It is interesting to note that the AUC versus distance

level plot has a bell shape (Figure 4). This makes intuitive
sense. When the distance for defining OTUs is large,
sequences are grouped into large clusters where discrimin-
ant and non-discriminant informations are mixed. On
the other hand, when the distance level is small (say 0.03
and 0.05), deep sequencing is required to obtain accurate
estimates of microbial composition profiles (3,30). For the
gut microbiota data we considered, the average number
of sequences in each sample was 7799 with one standard
deviation of 5953. This level of coverage may not be suf-
ficient to fully catalog the microbial species resident in the
gut, and it is likely that more exhaustive surveys can lead
to derivation of a more accurate microbial signature at the
genus or even species phylogenetic levels.

Topology structure of human gut microbiota

We next applied topology analysis to the data to visualize
the community structure of the human gut microbial
community. We used the Isomap algorithm (25) to map
the sequences into a two-dimensional numerical space
that optimally preserves the geometry of the data (see
‘Materials and Methods’ section for details). Figure 5
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presents the output of the analysis. Each circle represents
an OTU defined at the 0.10 distance level, and the
diameter represents the number of sequences within the
OTU divided by the total number of sequences. We used
the RDP classifier (26) to annotate the sequences in each
cluster. The face color of each circle represents the per-
centage of the sequences within that cluster that can be
annotated by RDP at the genus level with a confidence
level >80%. This figure reveals the following points:
(i) Bacteroidetes and Firmicutes phyla are the two largest

groups within the human gut flora, and a large proportion
of sequences (>60%) are unclassifiable at the genus
level. These results are consistent with the findings
reported in (10). (ii) There are clearly two subgroups
within Firmicutes, supporting a recent suggestion that
this phylum is likely to be redefined (31).

We next used Isomap to analyze the top ranked OTUs
correlated with obesity. Among the 7491 OTUs defined at
the 0.10 distance level, only 266 (<3.6%) OTUs had a
significant correlation with weight status with a P-value
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Figure 3. Heatmap of the top 50 ranked gut microbiota OTUs (rows) defined at the 0.08 distance level. Lean individuals (l) have a distinguishing
pattern of microbial composition profiles compared to obese individuals (o). The OTUs were ranked based on their corresponding correlation
coefficients with respect to the weight status.
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The ROC curve obtained at the 0.08 distance level. The sensitivity and specificity are defined as the rate of correctly predicting obese and lean
individuals, respectively.
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<0.05. The results of topology analysis are presented in
Figure 6. Unlike the previous results, the face color of
each circle represents the magnitude of the corresponding
correlation coefficient with obesity. BLAST search against
the RDP-II (27) and greengenes (28) databases was used
to phylogenetically classify the 52 227 sequences within the
266 top ranked OTUs (Supplementary Tables S1–S3). For
ease of presentation, each cluster was labeled with the
name of the phylum it was assigned to. From the
analysis, we observed that: (i) The compositions of most
OTUs within Bacteroidetes and Firmicutes phyla have
little or no correlation with the disease states. (ii) The
OTUs within Bacteroidetes tend to have a negative correl-
ation with obesity, which is concordant with previous
results, suggesting that obese individuals have a lower pro-
portion of Bacteroidetes in the gut (6,7,9). (iii) As we
observed in the total gut topology structure analysis in
Figure 5, Firmicutes is partitioned into two subgroups.
Interestingly, one subgroup contains more OTUs that
have a positive correlation with obesity, while the other
group contains more negatively correlated OTUs. This,
together with the first observation, may explain why
previous studies did not find a significant connection
between Firmicutes and obesity since analyses were
largely restricted to the phylum level and treated
Firmicutes as a single group (9).

The full annotation results of the sequences within the
266 top ranked obesity-associated OTUs are reported in
Supplementary Tables S1–S3. Notably, as many as 40 000
(>77%) sequences were classified as unknown at the genus
level, suggesting that many potentially important gut
microbes have yet to be characterized. As this is one of
the deepest interrogations of the gut microbiota to date, it
is not surprising that there is no prior information avail-
able on the association of many OTUs revealed here with
obesity or any other human diseases. However, previous

reports of phylum level associations and analysis of
models using cultivatable species from representative
genera provide pointers to potential roles for phylotypes
in obesity.
Our analysis revealed that several OTUs classified as

belonging to Bacteroidetes were all negatively correlated
with obesity (Figure 6). There have been conflicting results
with regard to the relationship of Bacteroidetes and
obesity in human studies. In a study using FISH probes,
Duncan et al. found no relationship between obesity and
Bacteroides populations in individuals on controlled
weight maintenance diets (32). Zhang et al. also found
no difference between the fraction of Bacteroidetes in
obese and non-obese individuals in a sequence-based
study (14). Conversely, Nadal et al. demonstrated
an increase in Bacteroides proportions in adolescents
on a weight-loss regimen (33), and studies by Ley et al.
proposed that a reciprocal relationship between
Bacteroidetes and Firmicutes was evident in obese individ-
uals (7). While the total abundance of microbes within this
phylum may not be an accurate biomarker of obesity in
itself as shown above, analysis at the genus level may
reveal significant associations between specific members
of Bacteroidetes and weight status. The two genera from
this phylum that were most associated with weight status
were Bacterioides and Rikenella (P-value <0.0001). It
has been proposed that Bacteroides populations could
contribute to the generation of propionate, which may
favor a lean phenotype by inhibiting lipid synthesis from
acetate (34).
A novel finding derived from applying our new analyt-

ical tools is that while some OTUs classified as Firmicutes
were correlated positively with obesity, others showed a
negatively correlation (Figure 6). The large majority of
OTUs in Firmicutes were comprised of the class
Clostridia and the order Clostridiales. Notably,
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Figure 5. Topology analysis performed on the human gut flora. The OTUs were defined at the 0.10 distance level. The face color of each circle
represents the percentage of the sequences within an OTU that can be annotated by RDP at the genus level with a confidence level >80%. The circle
diameter is proportional to the number of sequences in each OTU divided by the total number of sequences (in log scale).
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unclassified Clostridiales, Clostridiaceae and
Lachnospiraceae were the most prevalent components in
Clostridiales. The classified genera from this phylum that
were most associated with a decrease of abundance in
obesity were Megasphaera, Phascolarctobacterium and
Erysipelothrix. Megaspheara and Phascolarctobacterium
are genera of the Acidaminococcaceae family, anerobic
Gram-negative diplococci that use amino acids as their
sole energy source. These genera are routinely found in
the gut of mammals, but no direct link between energy
extraction efficiency or host physiology has been
reported to date. The genera from Firmicutes that were
increased in obesity included Roseburia, Sporobacter and
Faecalibacterium. Faecalibacterium is a major component
of the gut flora and members are thought to influence
colonic health in a number of ways (35).

CONCLUSIONS

Advances in next-generation DNA sequencing technology
allow researchers to obtain millions of DNA sequences
rapidly and economically. Consequently, large-scale
DNA sequencing is increasingly used as a primary
research tool in environmental and human epidemiologic-
al studies. Advanced computational algorithms are crucial
to efficiently extract pertinent information from massive
nucleotide data collections to maximize research yields.
While many 16S rRNA-based studies were mainly
designed to catalog the diversity of microbial populations
(12), we report here a novel analytical strategy that
enables researchers to deeply investigate the hidden
world of microbes beyond basic microbial diversity esti-
mation. We applied the proposed strategy to derive

specific microbial signatures associated with obesity and
describe microbial community structures in far more de-
tail than previously achievable. Although we still cannot
determine the cause/effect relationship between the human
gut microbiota and obesity, we have clearly shown that
our approach partially addresses the needs of analyzing
the HMP data. Whether the association we identified is
direct or indirect is a subject of large-scale population
studies, and is outside the scope of this method article.
However, the strategy for analyzing the data from popu-
lation studies largely remains the same.

We herein mainly focused on taxonomy-independent
analysis, discriminant analysis and topology analysis.
The ultimate goal of a microbial community analysis
is to establish a microbial interaction network. Since
only a small fraction of microbes can be cultivated in
laboratories under current technologies, it would be diffi-
cult to use a cultivation-based method to perform such
studies. Accordingly, little work has been done in this dir-
ection (36). Profile data matrices generated through
taxonomy-independent analysis contain sufficient statis-
tical information to study dynamic microbe–microbe
and environment–microbe interactions. The results of
our ongoing network analyses will be reported elsewhere.

The above bioinformatics analysis can be applied to
query multiple research questions. For example, clinical
microbiologists may want to derive microbial signatures
to characterize microbially caused diseases such as bacter-
ial pneumonia and inflammatory bowel disease; they may
also want to perform time series analyses to study how
antibiotics usage affects the dynamics of microbial
communities over time (4) (in this case, each column of
a data profile matrix represents a time point at which a
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sample is collected.); in our study, we found that
Bacteroidetes is the second largest phylum present in the
human gut. A recent study showed that in elderly individ-
uals, it is Actinobacteria that is the second most abundant
gut phylum (37). It would be interesting to study how
microbial composition changes over time by collecting
gut samples from individuals of different ages. The
above are just a few possible applications. We are curr-
ently developing a web application that will provide re-
searchers with a complete package of computational tools
for microbial community analysis. We hope that the web
application will be of high utility for the microbiology
community and beyond.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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