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Summary. Life course epidemiology concentrates on the contribution that social or physical
exposures have across the life course on adult health. It is known that the area of residence can
affect health, but little is known about the effect of the area of residence across the life course.
We examine the contribution that area of residence in 1960, 1970, 1980 and 1990 made on
subsequent mortality for 49736 male inhabitants of Oslo in 1990.We compare the performance
of multiple-membership and cross-classified multilevel models on these data with a correlated
cross-classified model that was developed for this.
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1. Introduction

A recent focus of chronic disease epidemiology has been in how exposures across the whole
life course may influence health in adult life (Kuh and Ben-Shlomo, 2004; Pickles et al., 2007).
Many chronic conditions such as cancers and cardiovascular diseases have long latency periods,
meaning that they develop over time (Rose, 1982). Various studies have indicated that expo-
sures in early life may be involved in the initiation of disease processes. Such exposures during
critical periods of fetal life and childhood growth may have long lasting effects on risk of dis-
ease in adults and suggest time lags between exposure and the clinical manifestation of disease
(Lynch and Davey Smith, 2005). This approach emphasizes that the timing of an exposure may
be important for the development of biological subsystems, such as anatomical structure and
physiological function, and for social transitions from childhood to adulthood, such as migra-
tion from the parental home, the establishment of one’s own residence and exiting the labour
market. Similarly, many risk factors in adult life tend to track over the life course, resulting in
increased risk depending on the duration of exposure, such as smoking, dietary habits, physical
exercise and environmental pollutants. These determinants may cluster spatially and accumu-
late longitudinally through the life course. The life course approach explicitly emphasizes that,
to acknowledge fully the patterning of disease risk in adulthood, factors from all stages of the
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life course need to be taken into account. This means that the life course approach can only be
applied to those who survive until adulthood.

A large body of literature exists examining the relationship between the place of residence
and health and the reasons why such a relationship may exist. Environmental influences on
health extend beyond the obvious physical factors such as a lack of clean water or exposure
to pollutants (Marmot, 2005) to socio-economic factors (Macintyre et al., 1993). With health
(or ill health) patterned by socio-economic circumstances, the neighbourhood or community of
residence is often put forward as a potential mechanism linking the two (Diez Roux, 2001). The
uptake of multilevel modelling in epidemiological and public health research has been key in the
investigation of ways in which an individual’s context can influence health (Pickett and Pearl,
2001). The difficulty in inferring causality from multilevel observational studies of neighbour-
hood effects, i.e. in showing that it is residing within a particular area that leads to ill health, has
been identified as a challenge for future research (Oakes, 2004). One potential solution to this
problem that has been proposed is to measure contextual exposures repeatedly—including the
area of residence—in addition to measuring individual exposures across the life course (Sub-
ramanian, 2004). There has, however, been a distinct lack of research into the extent to which
the area of residence at different stages of the life course may influence health, possibly because
of a paucity of suitable data. Strachan et al. (1995) analysed the effect of place of residence in
1939 (at age 0–16 years) and 1971 on death from ischaemic heart disease and stroke between
1971 and 1988. They divided England and Wales into 14 regions and used a fixed effects model
to separate the effect of region at the two time points. Using an extension of the same data,
Curtis et al. (2004) considered the separate effects of the place of residence in 1939 and 1981
on death between 1981 and 1991 and (among those still alive) on self-reporting of limiting
long-term illness in 1991. However, the cross-classified multilevel models that they used did not
include area of residence at each time point per se but rather a combination of region (England
and Wales was split into four regions) and type of area. Chandola et al. (2005) examined the
influence of area of residence between 1991 and 1998—yearly—on physical and mental health
functioning in 1999. They used a multiple-membership multilevel model with area defined by
electoral wards—fairly small areas containing between one and 10 households in the sample
that was used. Næss et al. (2008) used data from the Oslo mortality study, based on individuals
who were resident in Oslo in each of 1960, 1970, 1980 and 1990, to examine area effects on
mortality from 1990 to 1998. They used a cross-classified multilevel model to estimate effects at
a small area level.

We are interested in reanalysing the Oslo mortality study data with a view to determining the
extent to which the area of residence at different stages of the life course impacts on subsequent
mortality. So for someone who was aged between 30 and 39 years in 1990 we want to ascertain
the relative importance of the area of residence in each of 1960 (aged 0–9 years), 1970 (aged
10–19 years), 1980 (aged 20–29 years) and 1990. If we can estimate a variance that is associated
with the area of residence at each time point then we can partition the total variance due to area
of residence (at these four times) into that attributable to each time point. Multilevel models are
commonly used to partition variance and there is a clear hierarchical structure to the data, with
individuals living in one area at each time. If we find one time point to be more important than
the others—i.e. it is associated with a larger variance—then there is a suggestion that this is a
critical period for contextual influences on development. If, in contrast, we find a suggestion
that all time points are of equal importance then we can view this as some evidence that risk is
being accumulated across the life course.

There remains a question about what model is suitable for the analysis of the effect of area
over the life course. The two previously used approaches—multiple-membership models and
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cross-classified models—make different assumptions about how the effect of an area on individ-
ual health changes over time. Both models have their disadvantages. In this paper we describe
the data set and then detail various models that could be used to model the data. In particular,
we consider simple hierarchical models that use information from area of residence at just one
time point, multiple-membership models and cross-classified models. We also show how the
multiple-membership model can be extended for such data to enable empirical estimation of
the importance that is attached to an area at each time point, and how multiple-membership
models and cross-classified models can be combined to allow correlations between areas over
time to vary between 0 and 1. We then present the results of fitting these models to the data and
finish by drawing some conclusions about the use of such models in epidemiological research,
as well as drawing substantive conclusions regarding these data.

2. Data set

Census information from 1960, 1970, 1980 and 1990 was linked for individuals to the death
register (including deaths from 1990 to 1998). The study population was all male inhabitants
of Oslo on January 1st, 1990, who were aged 30–69 years: a total of 122951 individuals. There
were relatively few deaths among women in the younger age groups and we have restricted our
analysis to men. To study the residential history of people in Oslo, only those who had been
resident at all four censuses were included: a total of 50860 men. Immigrants to Oslo during
this period had an age-adjusted mortality rate of 101 (per 10000 person-years). Of the cohort
selected, people with missing data on area of residence at any of the censuses were excluded—a
total of 1124 individuals with an age-adjusted mortality rate of 211 (per 10000 person-years).
The remaining included population .n=49736/ had an age-adjusted mortality rate of 111 (per
10000 person-years).

Life course epidemiology—and in particular the study of chronic diseases—requires the anal-
ysis of the contributions of risk factors at all stages of the life course (Kuh et al., 2003; Kuh
and Ben-Shlomo, 2004). In this way we can gain an understanding of the natural history of a
disease. For this reason we have excluded deaths before 1990; the study population therefore
has an inevitable bias towards healthy survivors. The areas of residence are administrative areas
used for the organization of elections. The residential area code was known for the studied pop-
ulation at each of the four censuses. Areas were first given codes in 1960. In 1970 a new coding
system was introduced which had a higher resolution, but for continuity we applied the 1960
area codes to each census. Most of the new area codes that were used from 1970 onwards were
geographically nested within the 69 area codes from 1960. For a few places, such as industrial
sites, the borders did not coincide exactly and the coding of an individual to an area was based
on correspondence between street addresses.

The proportion of the population who migrated between censuses changed with age, but
the overall pattern was similar for all cohorts. Young people tended to be more mobile, with
migration reaching a peak during the 10 years after the census in which they were aged 20–29
years. In the youngest cohort, 61% of the population included moved from one area to another
between the 1980 and 1990 censuses (those in this cohort were aged 20–29 years in 1980); the
same percentage of the cohort of those aged 40–49 years in 1990 migrated between the 1970
and 1980 censuses. Of those aged 50–59 years in 1990, 68% migrated between the 1960 and 1970
censuses. Migration levels then decreased as those in each cohort aged; the lowest migration
level (15%) was seen between the 1980 and 1990 censuses for those aged 60–69 years in 1990.
The lower level of migration means that in this cohort there will be less power to detect differ-
ences between the effect of place of residence in 1980 and 1990. The median size of population
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Table 1. Example of migration histories
over four censuses for five individuals

Person Areas of residence in the
following years:

1960 1970 1980 1990

1 1 1 1 1
2 1 1 2 2
3 1 2 2 1
4 1 2 2 3
5 1 2 3 4

in each area decreased over time with a corresponding increase in heterogeneity of size (as
measured by the standard deviation of the populations). Areas with different sizes had similar
age-adjusted mortality at each time point. More detail of the data is provided elsewhere (Næss
et al., 2008).

We illustrate the format of the data in Table 1 by providing details of the residential history
or migration patterns of five hypothetical individuals, all of whom lived in the same area (area
1) at the time of the 1960 census. The first person also lived in area 1 at the three subsequent
censuses. (Note that he may have moved out of this area and subsequently returned between
censuses; however, we have no information about such movements and so, for this person, we
assume that he lived in the same area at all times.) Person 2 moved from area 1 to area 2 between
1970 and 1980. Person 3 moved from area 1 to area 2 between 1960 and 1970 and then returned
to area 1 between 1980 and 1990. Person 4 also moved from area 1 to area 2 between 1960 and
1970, but moved to a third area (area 3) between 1980 and 1990. Person 5 moved to a different
area between every census. We may expect the effect of residential area on health to differ for
these people for various reasons. Firstly, the five people lived in four different areas by the time
of the 1990 census and we might reasonably expect the different areas in 1990 to have differential
effects on mortality between 1990 and 1998. Secondly, the length of time that each person lived
in area 1 varied; person 1 lived there at all four censuses but person 4 and person 5 each lived
there for just one census. If something about living in this area is damaging to an individual’s
health then we would expect the length of exposure to that area to be important. Finally, the
time at which people lived in the same area does not always coincide. So person 2 and person
3 both lived in areas 1 and 2 at two of the censuses, but in 1970 and 1990 they were living in
different areas. The effect of living in area 1 on each person’s health may differ if the area itself
changed between 1970 and 1990—e.g. if a polluting source started to operate—or if the different
ages at which individuals lived in an area meant that they had differential susceptibility to their
environment (e.g. in terms of the development of organs in early life or the time spent in the
area of residence following retirement).

3. Modelling area effects

The data related to men in Oslo and were broken down into four cohorts according to age in
1990: those aged 30–39 years .n=12529/, 40–49 years .n=11357/, 50–59 years .n=9967/ and
60–69 years .n = 15883/. The four cohorts were analysed separately. The mean population in
each area ranged from 144 for those aged 50–59 years to 230 at ages 60–69 years. Differences in
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the size of the study population in each age group—including the potentially surprising finding
that the population is larger for those aged 60–69 years in 1990 than for any of the other age
groups—reflects a combination of differences in the size of the original birth cohorts, differ-
ential probabilities of migration out of Oslo and different survival probabilities into the age of
follow-up. The outcome that was considered was death at any stage during the follow-up. The
response that was used was therefore binary (1, died; 0, did not die). Model estimation was by
Bayesian Markov chain Monte Carlo sampling, necessitating the specification of prior distri-
butions on parameters (see Section 4). All models were fitted using WinBUGS version 1.4.1
(Spiegelhalter et al., 2004) running two parallel chains, discarding the first 10000 replicates and
basing inference on the next 100000 for each chain.

We model the probability of death at any stage during the follow-up period from 1990 to
1998; mortality is sufficiently rare in all four cohorts for the odds ratios to approximate hazard
ratios. We consider several ways of modelling the data; in this section we present the algebraic
description of the models together with the strengths and weaknesses of each. The models that
were considered come under the multiple-membership multiple-classification models that were
developed by Browne et al. (2001). The notation that was developed by them presupposes that
we can distinguish between a cross-classified and a multiple-membership data structure; since
we wish to examine both (together with a combination of the two) we have used slightly different
notation but refer to Browne et al. (2001) where possible. We denote the areas in which indi-
vidual i lived by area60(i) in 1960, area70(i) in 1970, area80(i) in 1980 and area90(i) in 1990.
So for person 1 in Table 1 we have area60(1)=area70(1)=area80(1)=area90(1) (=1) whereas
for person 2 we have area60(2) = area70(2) (= 1) and area80(2) = area90(2) (= 2). Then for all
models we assume a Bernouilli distribution for the response yi for individual i, i.e.

yi ∼binomial.1, πi/: .1/

We assume a logit link from the probability πi, related to a vector of characteristics XT
i , specific

to individual i through a vector of fixed parameters β, and to the random effects denoting
the area of residence at each census. We have restricted covariate information to two dummy
variables indicating to which 5-year age group individual i belongs. For example, when mod-
elling the 30–39 years cohort in 1990 we have a dummy variable x0i which takes the value 1 if
individual i was aged 30–34 years in 1990 and 0 otherwise, and a variable x1i = 1 − x0i which
takes the value 1 if individual i was aged 35–39 years in 1990 and 0 otherwise. We then have a
vector of fixed parameters β = .β0, β1/T. (This is an alternative parameterization to that with
an overall intercept and a dummy variable for one age category which reduces the correlation
between the two fixed parameters being estimated.)

We assume an area effect u
.YR/
areaYR.i/ of living in area areaYR.i/ in year YR on subsequent

mortality. The full model can then be written as

logit.πi/= loge

(
πi

1−πi

)
=Xiβ+u

.60/
area60.i/ +u

.70/
area70.i/ +u

.80/
area80.i/ +u

.90/
area90.i/

i=1, . . . , N, areaYR.i/∈ .1, . . . , J/ .2/

or in matrix notation as

{logit.πi/}=Xβ+ . Z.60/ Z.70/ Z.80/ Z.90/ /

⎛
⎜⎝

U.60/

U.70/

U.80/

U.90/

⎞
⎟⎠ .3/

where X = {Xi} is the fixed part design matrix that is formed by stacking the individual char-
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acteristics Xi, U.YR/ is the vector of the residuals for areas in year YR, {u
.YR/
j }, j = 1, . . . , J ,

and Z.YR/ is the random-part design matrix that identifies the area in which an individual lived
in year YR. The four residuals for any particular area j corresponding to the four different
census years are assumed to have a joint normal distribution, with the exact composition of the
dispersion matrix Σ of order 4 being what differentiates between the models that are presented
below, ⎛

⎜⎜⎜⎝
u

.60/
j

u
.70/
j

u
.80/
j

u
.90/
j

⎞
⎟⎟⎟⎠∼N.0,Σ/ j =1, . . . , J: .4/

Note that we still assume that the residuals for different areas are a priori uncorrelated, regard-
less of the year. This means that the residuals for areas 1 and 2, for example, would have a joint
distribution given by ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
.60/
1

u
.70/
1

u
.80/
1

u
.90/
1

u
.60/
2

u
.70/
2

u
.80/
2

u
.90/
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼N

{(
0
0

)(
Σ 0
0 Σ

)}
: .5/

3.1. Model A.60/ , A.70/ , A.80/ , A.90/ : separate two-level models including the effect of area
of residence at a single year
We include the effect of the area of residence in a single year only. Model A.60/, for example,
considers the effect of the area of residence in 1960 on subsequent mortality. We can rewrite
equation (2) as

logit.πi/=Xiβ+v
.60/
area60.i/ .6/

where

v
.60/
j ∼N.0, σ2

v.60// .7/

by writing

u
.60/
area60.i/ =v

.60/
area60.i/, u

.70/
area70.i/ =0, u

.80/
area80.i/ =0, u

.90/
area90.i/ =0 .8/

so that

Σ=

⎛
⎜⎝

σ2
v.60/ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠: .9/

Throughout this section we illustrate the variances of logit.πi/ that are implied by the vari-
ous models for person 1 and person 5 in Table 1 together with the covariance between them.
Since all five people lived in area 1 in 1960, the variances and covariances are all given by
var.v.60/

area60.i// = σ2
v.60/. This is a simple model which would be appropriate if the area of res-
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idence at one time point only were known (e.g. the area of birth or the most recent area of
residence). If there were no migration between areas between censuses then this model would
also be appropriate; however, since the proportion of the population that is resident in the same
area in all the censuses varied between just 14% (those aged 40–49 years in 1991) and 38% (aged
60–69 years), this model does not make full use of the available data. We can compare the four
models to elucidate information regarding the importance of each year by using either the area
variance or the deviance information criterion (DIC) (Spiegelhalter et al., 2002). (The DIC is
a Bayesian measure of model fit that is penalized for the effective number of parameters in the
model.) However, when considering only residence at one time in each model we cannot par-
tition the variance and therefore cannot quantify the extent to which area of residence at each
time point contributes to mortality. (We cannot, for example, make a statement that is based
on these models such as ‘more than half of the total area variation is associated with the area
of residence in year X ’.)

3.2. Model B: multiple-membership model
Multiple-membership models are used when an individual is simultaneously a member of more
than one higher level unit. These models have been developed in an educational context in which
pupils may receive their education from more than one school (see for example Goldstein (2003)
and Fielding and Goldstein (2006)), although they are also appropriate when group membership
(such as school or class) is unknown (Hill and Goldstein, 1998). More recently they have been
applied to the problem of assessing the effect of area of residence on health, taking population
mobility into account (Chandola et al., 2005). In the case of the Oslo mortality study each
individual has resided in between one and four areas (and is therefore a ‘member’ of between
one and four areas). In Table 1 person 1 is an example of someone who lived in just one area,
person 2 and person 3 lived in two areas, person 4 in three areas and person 5 in four areas.
Multiple-membership models require the specification of weights associated with each higher
level unit; in the absence of further information, and in line with earlier research (Chandola et al.,
2005), we can assign weights that are proportional to the number of times that an individual was
observed to live in each area. In the notation of Browne et al. (2001) we rewrite equation (2) as

logit.πi/=Xiβ+
J∑

j=1
wi,jfÅ

j .10/

where fÅ
j is the effect of living in area j on subsequent mortality, the wi,j are the weights that

are associated with area j for individual i and which sum to 1 for each individual,

J∑
j=1

wi,j =1, .11/

and the area effects are assumed to be independently and normally distributed

fÅ
j ∼N.0, σ2

fÅ/: .12/

(This notation is detailed in Fielding and Goldstein (2006).) Note that the multiple-membership
classification specifies the areas in which a person lived, but not at what census he lived there.
Everyone had an area of residence at all four censuses; setting the weights wi,j to 0 for those
areas in which individual i did not live at any time means that equation (10) can be rewritten as

logit.πi/=Xiβ+wi,area60.i/f
Å
area60.i/ +wi,area70.i/f

Å
area70.i/ +wi,area80.i/f

Å
area80.i/

+wi,area90.i/f
Å
area90.i/ .13/
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with wi,areaYR.i/ =0:25 for each census. The number of distinct areas can range from 1 to 4. For
example, from Table 1 we can see that person 1 lived in just one area, person 2 and person 3
each lived in two areas and person 5 lived in four areas. The total contribution to equation (13)
from the area of residence for person 1 would then be fÅ

1 and would be 0:5fÅ
1 +0:5fÅ

2 for both
person 2 and person 3. We can then simplify equation (13) by writing fj =fÅ

j =4, meaning that
we can rewrite equation (13) as

logit.πi/=Xiβ+farea60.i/ +farea70.i/ +farea80.i/ +farea90.i/ .14/

where

fj ∼N.0, σ2
f /: .15/

This can in turn be expressed in terms of equation (2) by writing

u
.60/
area60.i/ =farea60.i/, u

.70/
area70.i/ =farea70.i/, u

.80/
area80.i/ =farea80.i/, u

.90/
area90.i/ =farea90.i/:

.16/

We also note that if areaYR1.i/ �=areaYR2.i/ for two different census years YR1 and YR2 that
are both elements of {60, 70, 80, 90} then as in distribution (5) the covariance of fareaYR1.i/ and
fareaYR2.i/ is 0. However, where areas are common to censuses we have areaYR1.i/=areaYR2.i/,
and random effects are possibly repeated, this covariance term is σ2

f . Here we are effectively
dealing with the same random effect and so the covariance is equal to the variance. Thus in the
framework of equation (2)

Σ=

⎛
⎜⎜⎝

σ2
f σ2

f σ2
f σ2

f

σ2
f σ2

f σ2
f σ2

f

σ2
f σ2

f σ2
f σ2

f

σ2
f σ2

f σ2
f σ2

f

⎞
⎟⎟⎠: .17/

This model makes the simplifying assumption that area effects are constant over time. This
means that the effect of area j on mortality between 1990 and 1998 is assumed to be the same
regardless of whether an individual lived in that area in 1960 or 1990, i.e. without regard to how
the circumstances of the area might have changed or how the effect of an area may differ at
different stages of the life course. Taking into account the absence of correlation between differ-
ent areas, we can see that the variance arising from the area effects will differ according to the
length of time that is spent in the same area. Returning to Table 1, the area variance in logit.πi/

for person 5 would be 4σ2
f whereas that for person 1 would be 16σ2

f , the higher variability for
someone living in the same area at all censuses reflecting the covariances in equation (17). The
covariance between logit.πi/ for person 1 and person 5 that is induced by the fact that they both
lived in area 1—person 1 at four censuses, and person 5 at one census—is given by 4σ2

f .

3.3. Model C: unconstrained multiple-membership model
The weighting scheme that is used for the multiple-membership model (model B) makes the
assumption that the area of residence is of equal importance at all stages of the life course (since
σ2

u.60/ = σ2
u.70/ = σ2

u.80/ = σ2
u.90/ = σ2

f /. We can relax this assumption by allowing the weights
to be proportional to the square root of the variability in the data. We adapt equation (2)
by writing u

.YR/
areaYR.i/ =f

.YR/
areaYR.i/ where the variance of the area effects differs between censuses:

f
.YR/
j ∼N.0, σ2

f.YR//: .18/
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As with the multiple-membership model that was described in Section 3.2, we maintain a cor-
relation of 1 between area effects in different years by constraining the covariances such that

cov.f
.YR1/
j , f

.YR2/
j /=σf.YR1/σf.YR2/: .19/

This gives

Σ=

⎛
⎜⎜⎜⎝

σ2
f.60/ σf.60/σf.70/ σf.60/σf.80/ σf.60/σf.90/

σf.60/σf.70/ σ2
f.70/ σf.70/σf.80/ σf.70/σf.90/

σf.60/σf.80/ σf.70/σf.80/ σ2
f.80/ σf.80/σf.90/

σf.60/σf.90/ σf.70/σf.90/ σf.80/σf.90/ σ2
f.90/

⎞
⎟⎟⎟⎠ .20/

where σf.60/ =√
σ2

f.60/ etc. The variance of logit.πi/ for person 1 in Table 1 is now given by

σ2
f.60/ +σ2

f.70/ +σ2
f.80/ +σ2

f.90/ +2σf.60/σf.70/ +2σf.60/σf.80/ +2σf.60/σf.90/ +2σf.70/σf.80/

+2σf.70/σf.90/ +2σf.80/σf.90/:

For person 5 the variance is σ2
f.60/ +σ2

f.70/ +σ2
f.80/ +σ2

f.90/ and the covariance between the two
is σ2

f.60/. This model can be expressed in the form of a conventional multiple-membership model
by writing

wi,areaYR.i/ = σf.YR/

σf.60/ +σf.70/ +σf.80/ +σf.90/
.21/

in equation (10) or (13) if individual i lived in area areaYR.i/ in year YR and is 0 otherwise.
This ensures that the weights for each individual sum to 1 as in equation (11). The variance of
logit.πi/ from equation (10) is given by

σ2
fÅ

( ∑
YR∈{60,70,80,90}

w2
i,areaYR.i/ + ∑

areaYR1.i/=areaYR2.i/

wi,areaYR1.i/wi,areaYR2.i/

)

where .YR1 �=YR2/∈{60, 70, 80, 90}. Writing σ2
fÅ = .σf.60/ +σf.70/ +σf.80/ +σf.90//

2 it can be
seen that the variances are the same as for the unconstrained multiple-membership model. Such
a weighting system—with the weights essentially being derived from the data on the basis of
the variances as described above—is an alternative to the exploration of the effects of different
weighting systems that were described by Goldstein et al. (2007). Although this model now
enables an estimation of the contribution of area of residence at each stage of the life course to
mortality, it is still based on the assumption that area effects are perfectly correlated over time.
Although we might expect some positive correlation—areas that are more damaging to health
than average are unlikely to become areas that benefit health over a short time period—it is
likely that there will have been some change to the relative merits of areas over a period of 30
years.

3.4. Model D: cross-classified model
Cross-classified models are used when there is no strict hierarchical structure to higher level
units (Goldstein, 1994). Such models typically comprise individuals who are nested within a
cross-classification of two differing hierarchies such as students nested within a cross-classifi-
cation of schools and neighbourhoods. In our model we have four classifications relating to the
areas at each census year, i.e. we have four classifications referring to what is essentially the same
hierarchy (the 69 areas in Oslo). We adapt equation (2) by writing u

.YR/
areaYR.i/ =v

.YR/
areaYR.i/ where
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the variance of the area effects differs between censuses:

v
.YR/
j ∼N.0, σ2

v.YR//: .22/

This model is distinguished from the unconstrained multiple-membership model—model C—by
the assumption that the residuals are independent. So we have

Σ=

⎛
⎜⎜⎝

σ2
v.60/ 0 0 0

0 σ2
v.70/ 0 0

0 0 σ2
v.80/ 0

0 0 0 σ2
v.90/

⎞
⎟⎟⎠: .23/

For both person 1 and person 5 in Table 1 the variance of logit.πi/ is σ2
v.60/ +σ2

v.70/ +σ2
v.80/ +

σ2
v.90/, and the covariance between the two is σ2

v.60/. The variance that is associated with each
year is now freely estimated, giving us the relative contribution of the four time points. The
correlation between areas over time is assumed to be zero such that there is no relationship
between the effect of the same area at different time points. This is unlikely to be so, and to
an extent the cross-classified model therefore lacks realism. A comparison of equations (20)
and (23) shows that both model C and model D require the estimation of four variances; the
covariances in equation (23) are all constrained to be 0 and those in equation (20) are dependent
on the variances, being constrained to give a correlation of 1 between all variance pairs.

3.5. Model E: correlated cross-classified model
We can combine the cross-classified model D and the unconstrained multiple-membership model
C such that there will be correlations between areas at different time points. These correlations
are induced by the assumed perfectly correlated effects of areas (from the multiple-membership
model), which are additional to independent (uncorrelated) area effects (from the cross-clas-
sified model). Substantively, this model can be thought of as combining constant area effects
that vary in magnitude according to the year or stage of the life course with area effects that
represent the ways in which areas change over time (and are therefore uncorrelated). We now
write

u
.YR/
areaYR.i/ =f

.YR/
areaYR.i/ +v

.YR/
areaYR.i/ .24/

with distributional assumptions given by expressions (18), (19) and (22). This means that

Σ=

⎛
⎜⎜⎜⎝

σ2
f.60/ +σ2

v.60/ σf.60/σf.70/ σf.60/σf.80/ σf.60/σf.90/

σf.60/σf.70/ σ2
f.70/ +σ2

v.70/ σf.70/σf.80/ σf.70/σf.90/

σf.60/σf.80/ σf.70/σf.80/ σ2
f.80/ +σ2

v.80/ σf.80/σf.90/

σf.60/σf.90/ σf.70/σf.90/ σf.80/σf.90/ σ2
f.90/ +σ2

v.90/

⎞
⎟⎟⎟⎠ .25/

where σf.60/ =√
σ2

f.60/ etc. The variance of logit.πi/ for person 1 in Table 1 is now given by

σ2
f.60/ +σ2

f.70/ +σ2
f.80/ +σ2

f.90/ +σ2
v.60/ +σ2

v.70/ +σ2
v.80/ +σ2

v.90/ +2σf.60/σf.70/ +2σf.60/σf.80/

+2σf.60/σf.90/ +2σf.70/σf.80/ +2σf.70/σf.90/ +2σf.80/σf.90/:

For person 5 the variance is

σ2
f.60/ +σ2

f.70/ +σ2
f.80/ +σ2

f.90/ +σ2
v.60/ +σ2

v.70/ +σ2
v.80/ +σ2

v.90/,

and the covariance between the two is σ2
f.60/ +σ2

v.60/. The variances are not constrained to be
equal, meaning that we can estimate the proportion of the total variance that is associated with
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each time point, and the correlation between areas over time will be non-negative. There are
now eight parameters to be estimated in Σ—the eight variances—since specification of these will
determine the covariances. This compares with 10 parameters in the full multivariate model (see
below). The potential gain in efficiency (through fewer parameters) comes at the expense of the
constraint that the correlations in equation (25) cannot be negative; this gain will become larger
as the dimension of Σ—i.e. the number of occasions on which we know where each individual
lives—increases.

3.6. Model F: multivariate model
Finally, we consider a model in which we assume that the random effects have a full multivariate
normal distribution. We adapt equation (2) by writing u

.YR/
areaYR.i/ = v

.YR/
areaYR.i/, estimating a full

covariance matrix such that

Σ=

⎛
⎜⎜⎝

σ2
v.60/ σv.60,70/ σv.60,80/ σv.60,90/

σv.60,70/ σ2
v.70/ σv.70,80/ σv.70,90/

σv.60,80/ σv.70,80/ σ2
v.80/ σv.80,90/

σv.60,90/ σv.70,90/ σv.80,90/ σ2
v.90/

⎞
⎟⎟⎠: .26/

All the variances and covariances in this model are now freely estimated, subject to the usual
constraints on a covariance matrix. For person 1 in Table 1 the variance of logit.πi/ is

σ2
v.60/ +σ2

v.70/ +σ2
v.80/ +σ2

v.90/ +2σv.60,70/ +2σv.60,80/ +2σv.60,90/ +2σv.70,80/ +2σv.70,90/

+2σv.80,90/;

for person 5 the variance is σ2
v.60/ +σ2

v.70/ +σ2
v.80/ +σ2

v.90/ and the covariance is σ2
v.60/.

4. Specification of priors

For all models we assume flat (improper) priors for the fixed effects of age

β0, β1 ∼U.−∞, ∞/:

In general we assume uniform priors for the square root of the area variances; in this section we
detail how these priors were operationalized. Throughout we have used uniform priors with a
lower bound of 0 and an upper bound of 5; although not truly uninformative, the upper bound
would correspond to a variance between areas of 25 on the log-odds scale. Assuming a threshold
model, as described in Snijders and Bosker (1999), this would equate to a variance partition
coefficient of 0.87; we felt it unlikely that the variances would be anywhere near this size. An
alternative way of quantifying the magnitude of the variance in a multilevel logistic regression
model is to use the median odds ratio that was proposed by Larsen and Merlo (2005); a variance
of 25 implies that the median of the (ordered) odds ratios between individuals with identical
covariates sampled randomly from two different areas would be an unfeasibly large 117.9.

4.1. Model A.60/ , A.70/ , A.80/ , A.90/ : separate two-level models including the effect of area
of residence at a single year
We assume a normal distribution for the area level residuals with standard deviation σv.YR/ to
which we assign a uniform prior. For example for 1960 we have

v
.60/
j ∼N.0, σ2

v.60//,

σv.60/ ∼U.0, 5/:
.27/



566 A. H. Leyland and Ø. Næss

4.2. Model B: multiple-membership model
Again we assume a normal distribution for the area level residuals, this time with standard
deviation σf to which we assign a uniform prior:

fj ∼N.0, σ2
f /,

σf ∼U.0, 5/:
.28/

4.3. Model C: unconstrained multiple-membership model
We assume a standard normal N.0, 1/ distribution for the area level residuals and scale these
by multiplying by the appropriate standard deviation σf.YR/. This ensures that the correlations
between the effects for one area at two different times are constrained to be 1. The σf.YR/ are
assigned uniform priors:

gj ∼N.0, 1/,

f
.YR/
j ∼σf.YR/gj,

σf.YR/ ∼U.0, 5/:

⎫⎪⎬
⎪⎭ .29/

4.4. Model D: cross-classified model
We assume a normal distribution for the area level residuals with standard deviation σv.YR/ to
which we assign a uniform prior:

v
.YR/
j ∼N.0, σ2

v.YR//,

σv.YR/ ∼U.0, 5/:
.30/

4.5. Model E: correlated cross-classified model
We use the prior specifications from Sections 4.3 and 4.4, combining the unconstrained multiple-
membership model and the cross-classified model.

4.6. Model F: multivariate model
The priors that were used in the multivariate normal model differ from the priors that were
listed in Sections 4.1–4.5 as implemented in WinBUGS (Spiegelhalter et al., 2004). We assume
a multivariate normal distribution for the four residuals (corresponding to the four censuses)
for each area with inverse covariance matrix Σ−1 to which we assign a Wishart distribution:

Σ−1 ∼W.R, k/,

⎛
⎜⎜⎜⎝

v
.60/
j

v
.70/
j

v
.80/
j

v
.90/
j

⎞
⎟⎟⎟⎠∼N

⎧⎪⎨
⎪⎩
⎛
⎜⎝

0
0
0
0

⎞
⎟⎠,Σ

⎫⎪⎬
⎪⎭: .31/

We chose the degrees of freedom for the Wishart distribution to be as small as possible (4, the
rank of Σ−1/. We considered three specifications of the scale matrix R: I, the identity matrix,
0.1I and 0.4I. R can be thought of as an estimate of the order of magnitude of kΣ (Browne,
2005), and the choice of R can have a substantial effect on the results. Throughout we present
only the results taking R = 0:4I—a ‘good’ guess that the area variance that is associated with
each year is approximately 0.1—but also discuss the results from the other two priors.
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5. Results of modelling

Table 2 compares the estimated DIC for models A–F for each of the four cohorts. Under model
A we see a clear preference for information on area of residence in 1990 for two of the cohorts
(ages 30–39 and 50–59 years in 1990), for 1980 for one cohort (60–69 years) and no clear pref-
erence between 1980 and 1990 for the remaining cohort (40–49 years). For the cohorts of the
three youngest ages (30–59 years) the DIC indicates a preference for the unconstrained multiple-
membership model C over the (constrained) multiple-membership model B, with little to choose
between the unconstrained multiple-membership model and the cross-classified model D. The
correlated cross-classified model E proved to be an improvement on both multiple-membership
models and the cross-classified model for these three cohorts. In the oldest ages cohort there
was little to choose between the correlated cross-classified model E and the multiple-member-
ship model B, with poorer fits evident for the unconstrained multiple-membership model C and
cross-classified model D. Since the value of pD, the effective number of parameters, is dependent
on the prior information (Spiegelhalter et al., 2002), the DIC for the multivariate model F is
also influenced by the change in prior compared with the other models but is presented here
for completeness. pD is calculated by subtracting the deviance of the posterior means, D̂, from
the mean of the deviance. (The DIC also varies markedly according to the choice of the scale
parameter of the Wishart distribution, R.)

Table 3 shows the estimated proportion of the total area variation that is associated with each
time point for models B–F together with 95% credible intervals. These proportions are estimated
as the contribution of the relevant variance associated with one time point to the sum of the
diagonal elements of Σ. For the general multivariate model (model F) with Σ given by equa-
tion (26), the proportion of the area variation that is associated with area of residence in 1960
would be σ2

v.60/=.σ2
v.60/ +σ2

v.70/ +σ2
v.80/ +σ2

v.90//; as such it ignores the covariances and strictly
refers to those individuals who lived in four different areas. (The estimates of the variances,
however, are derived from the entire data set and not just those who move between censuses.)
The multiple-membership model with equal weights constrains this proportion to be 0.25 for

Table 2. Comparison of D̂ , pD and the DIC

Model Results for the following ages:

30–39 years 40–49 years 50–59 years 60–69 years

D̂ pD DIC D̂ pD DIC D̂ pD DIC D̂ pD DIC

A.60/, area 1960 2848 12.0 2872 4205 10.4 4226 6978 16.8 7012 18249 38.5 18326
A.70/, area 1970 2859 7.5 2874 4206 10.0 4226 6926 29.0 6984 18182 44.8 18271
A.80/, area 1980 2846 12.8 2871 4125 32.1 4189 6908 31.7 6971 18157 45.7 18249
A.90/, area 1990 2782 28.0 2838 4123 32.0 4187 6880 35.9 6952 18188 43.0 18274
B, multiple 2820 21.2 2862 4151 26.6 4204 6895 32.9 6961 18143 46.3 18236

membership
C, unconstrained 2782 30.5 2842 4108 38.4 4184 6874 40.5 6955 18133 53.6 18240

multiple
membership

D, cross-classified 2754 43.3 2840 4077 53.4 4184 6842 56.1 6954 18087 79.6 18246
E, correlated 2751 42.2 2835 4082 47.9 4178 6849 50.3 6949 18098 67.3 18233

cross-classified
F, multivariate 2737 54.7 2846 4061 65.6 4192 6806 77.1 6960 18047 99.8 18247
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each time point; we described this above as one of the weaknesses of such a model. The pos-
terior means from the correlated cross-classified model (model E)—which had the lowest DIC
of models A–E in Table 2—suggest that the area of residence in 1990 makes the largest single
contribution to the variance for the three younger ages cohorts. The credible intervals indicate
substantial overlap for these proportions; apart from those aged 30–39 years in 1990 it is diffi-
cult to be sure that the area of residence in 1990 was more important than the areas for each
of the preceding time periods. The pattern is slightly different for the oldest ages cohort; the
posterior means indicate heightened importance of the area of residence in 1980 but the total
variation in mortality appears to be much more evenly distributed across the four time periods.
The importance that is given to residence in 1990 for the three younger ages cohorts—and in
1980 for the oldest ages cohort—is supported by the findings from the models for single years
(model A) in Table 2, for which the low values of the DIC suggest that these years provide the
best fit. The multivariate priors generally provide estimates of this proportion that are much
more evenly distributed over the four time points; for example, models C–E estimate the mean
proportions that are associated with area of residence in 1990 for the youngest ages cohort to
be between 0.68 (model E) and 0.89 (model C) compared with 0.48 for model F (and 0.39 or
0.56 when the alternative multivariate prior is used).

Table 4 shows, for each cohort and under each of models B–F, the posterior means of the
correlations between the area effects across the four census years implied by the model, i.e. from
the estimated covariances and variances (above the diagonal) and the correlations between the
posterior mean estimates of the area residuals (below the diagonal). For the general multivariate
model (model F) the correlation between the area effects for 1960 and 1970 that is implied by
equation (26) is σv.60,70/=

√
.σ2

v.60/σ
2
v.70//. Under both multiple-membership models (models B

and C) the correlations are constrained to be 1. In contrast the cross-classified model D mod-
els the area effects independently under the assumption that they are uncorrelated over time.
The observed correlations between all pairs of residual sets for each cohort were positive under
models D and E. Other notable features were that the correlations tended to be higher when
they referred to years that were closer in time and tended to be higher for the older ages cohorts
than for the younger ages cohorts. In all cases for model E the observed correlations between
pairs of residual sets were higher than the implied correlations. In contrast many of the correla-
tions—both modelled and observed—were negative for the multivariate model F, although the
observed correlations did tend to become larger and were more likely to be positive as those in
the cohorts aged and the proportion of deaths increased. It is possible that the negative modelled
correlations—which were more abundant for the two alternative priors—at least in part reflect
negative correlations in the joint posterior between the variances rather than the residuals, with
a finite total area variance being split into four parts corresponding to the different time points.

Table 5 presents the posterior means of the variances between areas together with 95% credible
intervals, under each of models B–F and for each cohort, for two distinct groups of individuals:
those who moved from one area to another between censuses and lived in four different areas
(movers—person 5 in Table 1) and those who lived in the same area at the time of all four cen-
suses (stayers—person 1 in Table 1). The variances that were monitored were those described
algebraically following the description of each model in Section 3. The movers comprised 6.8%
of the total population, ranging from 2.1% in the oldest ages cohort to 11.0% of those aged
40–49 years in 1990. The stayers made up 22.8% of the total population, ranging from 14.1%
among those aged 40–49 years in 1990 to 37.9% of those aged 60–69 years. All the variances are
on a log-odds scale. For each model the variances consistently decrease with increasing cohort
ages (and consequently with increasing mortality rates in the cohorts). The independence of the
variances at different time points that were assumed under the cross-classified model D means
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Table 5. Estimated variance of logit.πi / for movers and stayers

Model Ages (years) Results for movers Results for stayers

Variance 95% credible Variance 95% credible
interval interval

B, multiple 30–39 0.067 (0.003,0.170) 0.268 (0.012,0.679)
membership 40–49 0.060 (0.018,0.127) 0.241 (0.071,0.508)

50–59 0.045 (0.022,0.081) 0.182 (0.087,0.326)
60–69 0.038 (0.021,0.063) 0.152 (0.086,0.251)

C, unconstrained 30–39 0.253 (0.093,0.513) 0.457 (0.181,0.911)
multiple 40–49 0.176 (0.073,0.344) 0.411 (0.177,0.781)
membership 50–59 0.092 (0.040,0.182) 0.219 (0.108,0.389)

60–69 0.056 (0.029,0.101) 0.163 (0.091,0.270)
D, cross-classified 30–39 0.345 (0.152,0.634) 0.345 (0.152,0.634)

40–49 0.290 (0.136,0.517) 0.290 (0.136,0.517)
50–59 0.168 (0.086,0.286) 0.168 (0.086,0.286)
60–69 0.113 (0.068,0.175) 0.113 (0.068,0.175)

E, correlated 30–39 0.395 (0.181,0.708) 0.551 (0.249,1.030)
cross-classified 40–49 0.286 (0.129,0.517) 0.440 (0.208,0.807)

50–59 0.150 (0.071,0.268) 0.235 (0.122,0.407)
60–69 0.088 (0.047,0.148) 0.170 (0.097,0.278)

F, multivariate 30–39 0.430 (0.240,0.709) 0.334 (0.131,0.685)
40–49 0.319 (0.188,0.513) 0.325 (0.146,0.612)
50–59 0.235 (0.146,0.374) 0.210 (0.113,0.359)
60–69 0.158 (0.108,0.228) 0.168 (0.100,0.268)

that the variances are the same for the movers and stayers (and for any other migration pattern).
In models B, C and E the positive correlation between area effects at different times meant that
the variances in the contribution of areas to mortality were higher among those who had lived in
the same area at all four censuses (and who therefore had had, we assume, continuous exposure
to that area) than among those who had moved, albeit such differences were small relative to
the credible intervals. The negative correlations between area effects at different times that are
seen in Table 4 for model F meant that in two of the cohorts (ages 30–39 years and 50–59 years
in 1990) the mean posterior total area variance was larger for movers than for stayers. For the
other two cohorts the variance was larger for the stayers.

The variance partition coefficient is a commonly used means of expressing the proportion of
the total variance that is attributable to each level of a multilevel model. A variety of methods
of estimating the variance partition coefficient have been proposed (Goldstein et al., 2002); here
we consider only that based on the assumption of a threshold model as described by Snijders
and Bosker (1999), knowing that this ignores the effect of individual covariates but aware of the
computational requirements of the simulation-based approach (Browne et al., 2005). The vari-
ances for the correlated cross-classified model E in Table 5 suggest that in the oldest ages cohort
2.6% (95% credible interval 1.4–4.3%) of the total variance among movers and 4.9% (95% cred-
ible interval 2.9–7.8%) among stayers are due to the effects of the areas in which they have lived,
with these figures increasing to 10.7% (95% credible interval 5.2–17.7%) and 14.3% (95% cred-
ible interval 7.0–23.8%) for movers and stayers respectively in the youngest ages cohort. Fig. 1
shows the extent of the correlation between composite area residuals at each time point
u

.YR/
j estimated under each of the multiple-membership model B and the cross-classified model

D with the correlated cross-classified model E for the youngest ages cohort. The estimates under
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(a) (b)

(f)(e)

Fig. 1. Comparison of residuals from (a)–(d) model B (multiple membership) and (e)–(h) model D
(cross-classified) with model E (correlated cross-classified) associated with the four different years, ages
30–39 years in 1990: (a), (e) 1960; (b), (f) 1970; (c), (g) 1980; (d), (h) 1990

the different models are in general strongly correlated, but the estimates that were obtained un-
der model D are closer to those for model E. Fig. 2 repeats these plots for the oldest ages cohort;
although the correlations between the estimates made under different models at this age are not
as strong as in the younger ages cohort, the absolute size of the area effects tends to be smaller
at older ages (the variances in Table 5 tend to decrease as cohort ages increase). The degree
of scatter along the axes in each figure is indicative of the magnitude of the area variance that
is associated with that year. For the multiple-membership models the estimated area variance
is the same in each year, whereas both the cross-classified and the correlated cross-classified
models suggest a larger variance associated with the area of residence in 1990 for the youngest
ages cohort and a more equal distribution of the variance in the oldest ages cohort (with a
slight increase seen for 1980). In this sense these figures are illustrative of the proportions that
are given in Table 3. The strong correlations mean that a ranking of the estimated area effects
would not differ substantially according to the model chosen.
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(g) (h)

(c) (d)

Fig. 1 (continued )

The standard deviations of the composite area effects at each census, u
.YR/
j , provide an indi-

cation of the certainty with which each can be estimated. The means of the posterior estimates
of the standard deviations ΣJ

j=1SD.u
.YR/
j /=J , which are obtained from the summary statistics

of the composite residuals, are given in Table 6, for models B–F and for each cohort and time
point. Also shown are the means of the posterior estimates of the standard deviations for stayers
in each area. Since the estimates for model B are the same at each time point, it is difficult to
make comparisons between this and the other models. The other models show a tendency for
standard deviations to be larger for residence in 1990, with the exception of the oldest ages
cohort for which standard deviations are greatest in 1980. In this sense the standard deviations
clearly follow the pattern of the area variances (and, by implication, the area residuals them-
selves)—as the residual variance increases, so does the uncertainty that is associated with the
estimate of each. Standard deviations for models D and E are broadly equivalent and larger
than those for the unconstrained multiple-membership model C. Standard deviations for the
multivariate model F reflect the more even distribution of the area variance across time points
that is seen in Table 3. The mean standard deviations of the area estimates for ‘stayers’ are
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(a) (b)

(e) (f)

Fig. 2. Comparison of residuals from (a)–(d) model B (multiple membership) and (e)–(h) model D
(cross-classified) with model E (correlated cross-classified) associated with the four different years, ages
60–69 years, in 1990: (a), (e) 1960; (b), (f) 1970; (c), (g) 1980; (d), (h) 1990

slightly larger under the correlated cross-classified model E than under the other models, again
reflecting larger absolute values for the residuals.

The mean posterior estimates of the fixed parameters β and their standard deviations were
similar for all models.

6. Conclusions

Comparing the fit of the various models to the data, as assessed by the DIC, suggested that
the correlated cross-classified model provided an improvement over the other models consid-
ered for those aged 40–49 years in 1990. For the oldest ages cohort there was little to choose
between that model and the multiple-membership model whereas for those aged 30–39 and
50–59 years in 1990 the simple model including only area of residence in 1990 proved com-
parable with the correlated cross-classified model. However, neither the multiple-membership
model nor the models including only the area of residence at one time point had the ability to
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(g) (h)

(c) (d)

Fig. 2. (continued )

address our substantive research question about the relative importance of area of residence
at each time point. The differences that were apparent between models suggested that those
models that might be considered to be obvious alternatives to the correlated cross-classified
approach that we propose—the multiple-membership and cross-classified models—may both
tend to underestimate variances for certain groups of people. The results that were obtained
for the model with a full multivariate normal prior on the covariance matrix were strongly
influenced by the prior specification of the scale matrix; as such it was difficult to make di-
rect comparisons with the other models although the results did appear to be broadly in
line.

In this paper we have introduced an extension to the multiple-membership model by show-
ing how weights may in effect be estimated empirically from the data as an alternative to an
a priori specification. This is of particular importance in areas of research such as life course
epidemiology in which the classifications are ordered sequentially. Living in area X in 1960 and
area Y in 1990 may have a different effect on health from living in area Y in 1960 and area X
in 1990 because area X may have changed between 1960 and 1990 or because 1990 may coin-
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Table 6. Mean standard deviations of composite area effects associated with resi-
dence at each census

Model Age (years) Mean standard deviations for the Mean standard
following years: deviations

for stayers

1960 1970 1980 1990

B, multiple 30–39 0.109 0.109 0.109 0.109 0.435
membership 40–49 0.097 0.097 0.097 0.097 0.387

50–59 0.077 0.077 0.077 0.077 0.307
60–69 0.055 0.055 0.055 0.055 0.221

C, unconstrained 30–39 0.081 0.057 0.079 0.362 0.510
multiple 40–49 0.047 0.048 0.202 0.220 0.448
membership 50–59 0.044 0.070 0.080 0.182 0.318

60–69 0.054 0.056 0.110 0.053 0.223
D, cross-classified 30–39 0.191 0.127 0.154 0.395 0.464

40–49 0.101 0.100 0.292 0.305 0.400
50–59 0.091 0.132 0.146 0.253 0.293
60–69 0.079 0.141 0.177 0.127 0.202

E, correlated 30–39 0.213 0.148 0.185 0.396 0.557
cross-classified 40–49 0.116 0.115 0.272 0.287 0.464

50–59 0.099 0.128 0.143 0.224 0.330
60–69 0.080 0.114 0.135 0.116 0.227

F, multivariate 30–39 0.257 0.243 0.236 0.371 0.471
40–49 0.192 0.198 0.266 0.278 0.426
50–59 0.167 0.195 0.202 0.238 0.324
60–69 0.123 0.159 0.171 0.164 0.231

cide with a more important (possibly just more recent) stage of the life course. The fit of the
unconstrained multiple-membership model—as assessed by the DIC—proved similar to that
for the cross-classified model. But, just as the cross-classified model makes the assumption that
the area effects are uncorrelated over time, the unconstrained multiple-membership model still
assumes that there is perfect correlation between area effects at one time point and another.
The data suggested that area effects were positively correlated over time but with correlation
less than 1. We have shown how such correlations between classifications can be modelled by
combining the independent effects of the cross-classified model with the correlated effects of
the (unconstrained) multiple-membership model. Such models have widespread potential as
a modelling framework when repeated observations are made on the environment or context
which influences individual outcomes.

The differences between the results that were provided by the various models were not large
and did not materially affect the substantive conclusions that we drew—namely that the most
recent areas of residence (1990 or, in the case of those aged 40–49 years in 1990, 1980 and
1990) were most influential in determining mortality for the youngest ages cohorts aged 30–59
years in 1990 whereas the oldest ages cohort showed more evidence of having accumulated risk
from areas of residence across the life course. These findings are consistent with earlier findings
based on these data in which cause-specific analyses have shown that there is a cumulative effect
across the life course for chronic diseases such as coronary heart disease, chronic obstructive
lung disease and smoking-related cancers, which are more common at older ages, and a critical
period effect of more recent circumstances for violent and psychiatric causes of death, which are
more common at younger ages. Such findings held when either individual level socio-economic
life course factors (Næss et al., 2004) or area influences (Næss et al., 2008) were considered.
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Our observation that the correlations between area effects tended to be greater in the older
ages cohorts may indicate that the contextual factors influencing health differ according to the
age of the individual. The general differences in the causes of death at different ages may be
the mechanism through which such different contextual factors exert their influence, with fac-
tors affecting violent and psychiatric deaths subject to greater changes over time (and hence
the smaller correlations) than those area characteristics affecting chronic diseases. This paper
provides the framework for subsequent detailed evaluation of the relative contribution of
individual and area characteristics across the life course on mortality.
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