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Abstract
An important function of the endothelium is to regulate the transport of liquid and solutes across
the semi-permeable vascular endothelial barrier. Two cellular pathways have been identified
controlling endothelial barrier function. The normally restrictive paracellular pathway, which can
become “leaky” during inflammation when gaps are induced between endothelial cells at the level
of adherens and tight junctional complexes, and the transcellular pathway, which transports
plasma proteins the size of albumin via transcytosis in vesicle carriers originating from cell surface
caveolae. During non-inflammatory conditions, caveolae-mediated transport may be the primary
mechanism of vascular permeability regulation of fluid phase molecules as well as lipids,
hormones, and peptides that bind avidly to albumin. Src family protein tyrosine kinases have been
implicated in the upstream signaling pathways that lead to endothelial hyperpermeability through
both the paracellular and transcellular pathways. Endothelial barrier dysfunction not only affects
vascular homeostasis and cell metabolism, but also governs drug delivery to underlying cells and
tissues. In this review of the field, we discuss the current understanding of Src signaling in
regulating paracellular and transcellular endothelial permeability pathways and effects on
endogenous macromolecule and drug delivery.
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1. Introduction
The vascular endothelium lining the blood vessels functions as a barrier between the blood
and interstitial compartments that controls and restricts the transendothelial flux of fluid and
macromolecules [1]. Increased endothelial permeability to plasma proteins resulting from
endothelial barrier dysfunction leads to an abnormal extravasation of blood components and
accumulation of fluid in the extravascular space. Vascular leakage not only causes multi-
organ dysfunction, but also compromises the normal pharmacokinetics of therapeutic drugs.
In such areas with increased vascular permeability, drugs can extravasate and accumulate
inside the interstitial space. The bioavailability and effectiveness is therefore reduced and
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systemic toxicity can increase. Strategies which prevent vascular leakage therefore reduce
drug dosages and side effects, and improve the efficacy of therapeutic interventions.

The pathological process of endothelial hyperpermeability is a common characteristic
feature of many diseases, including inflammation, trauma, sepsis, ischemia-reperfusion
injury, diabetes, and atherosclerosis. The homeostatic barrier function of the endothelium is
ultimately maintained by the dynamic regulation of endothelial cell shape, endothelial cell-
cell adherence, and endothelial-extracellular matrix adherence [2]. Compromised barrier
function of the endothelium in response to proinflammatory mediators is accompanied by
intercellular gap formation, which is the main mechanism of vascular leakage. Recently,
evidence has emerged to support a role for the vesicular pathway in mediating
macromolecular transport across the endothelium [1]. In particular, protein transport via
caveolae has been reported to play a key role in maintaining endothelial barrier function and
normal oncotic pressure gradient across the vessel wall [1,2].

Multiple signaling molecules have been identified in the mechanism of vascular endothelial
permeability regulation [1] which trigger structural changes in endothelial barrier and/or
induce transcellular protein transport by endothelial cells. Src protein tyrosine kinases
regulate many cellular processes, such as cell morphology, motility, proliferation, and
survival. Intracellular signal transduction via Src protein tyrosine kinases is also involved in
acute inflammatory responses [1]. Recent experimental evidence points to the importance of
Src family protein tyrosine kinases (SFK) signaling in the regulation of microvascular
barrier function and various endothelial responses including hyperpermeability to different
proinflammatory mediators [3-6]. Src family protein tyrosine kinases have been implicated
in upstream signaling pathways that lead to endothelial hyperpermeability through both
intercellular gap formation and increased transendothelial protein transport [1]. Elevated
SFK activaty results in changes in gene expression which also affects endothelial
permeability [7]. Over the last decade, some exhaustive and basic reviews addressing the
regulation of endothelial permeability have been published [1]. However, a comprehensive
review on the role of SFK signaling in modulation of endothelial barrier is still lacking. This
review addresses the potential mechanisms of Src protein tyrosine kinases in regulating
endothelial permeability and microvascular barrier function.

2. Basics of Src family tyrosine kinases
SFKs are nonreceptor, cytoplasmic, protein tyrosine kinases. They have been implicated in
the regulation of diverse processes including cell growth and differentiation, cell adhesion
and motility, carcinogenesis, immune cell function, and endothelial permeability. This
broad-spectrum role of SFKs in regulating biological responses is associated with their
ability to interact with a large number of different receptors and many distinct cellular
targets [8]. The structural and functional interaction between SFKs and cellular receptors
integrates a large amount of upstream signaling that coordinately regulates cellular
activities.

2.1 The structure of SFKs
The SFKs are 52-62 kDa enzymes composed of eight distinct functional regions (Figure 1).
From the N- to C-terminus, these regions include a myristylated site, Src homology (SH)4
domain, unique region, SH3 domain, SH2 domain, linker, the kinase/catalytic domain (SH1
domain), and regulatory domain. The glycine at position 2 is important for addition of a
myristic acid moiety, and the myristoylated site along with the SH4 domain are associated
with cell membrane binding. The unique region is specific for different Src family members
and it may mediate the interaction between SFKs and other proteins. The three major
domains, the kinase/catalytic domain (SH1 domain), SH2 domain, and SH3 domain,
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represent the modular structure of Src family kinases. SH3 and SH2 domains are protein-
protein interaction domains shared not only with other Src family kinases but also with
many other signaling proteins. The SH2 domain binds phosphotyrosine motifs in either an
inter- or intramolecular fashion. The SH1 domain is the site of tyrosine kinase activity.
There are two major phosphorylation sites on Src: on Tyr 416 located in the SH1 domain
and at Tyr 527 in the regulatory domain near the carboxyl terminus. Tyr 416 can be auto-
phosphorylated, whereas Tyr 527 can be phosphorylated and dephosphorylated by various
proteins, such as Csk (carboxy-terminal Src kinase) which phosphorylates Src, and SHP-1
(Src-homology 2 domain containing phosphatase 1), SHP-2, or PTP1 (protein tyrosine
phosphatase 1) which dephosphorylate Src (8,12). Both phosphorylation sites play a key role
in regulating the activity of Src family kinases [7].

2.2 Activation of Src family kinases
SFKs are phosphorylated on tyrosine residues, suggesting that Src activity and biological
function might be regulated by phosphorylation. The inactive state of the Src kinases is
maintained by an autoinhibitory interaction between the SH2 domain and Tyr527 (chicken
c- Src) and also the interaction of the SH3 domain and a polyproline type II helix in the SH2
to SH1 linker domain (7). SFKs can switch from an inactive to an active state through
control of its phosphorylation state, or through protein-protein interactions. They are
activated by phosphorylation at Tyr 416 and dephosphorylation at Tyr 527 [9-11]. In
contrast, the activity of SFKs is decreased by dephosphorylation at Tyr416 and
phosphorylation at Tyr 527 (Figure 2). Under physiological conditions, 90–95% of c-Src is
phosphorylated at Tyr 527 [12], and phosphotyrosine 527 binds intramolecularly with the
SH2 domain [13], indicating that SFKs have low basal activity. This inhibitory interaction
can also be displaced by a phosphotyrosine ligand with a higher affinity for the SH2 domain
(7).

Protein interactions also act to regulate Src by either directly activating them, or by moving
SFKs to sites of action. SFKs can be activated by receptor protein-tyrosine kinases, integrin
receptors, G-protein coupled receptors (GPCR), antigen- and Fc-coupled receptors, cytokine
receptors, and steroid hormone receptors [10]. Many proinflammatory cytokines activate
SFKs via different GPCR signaling pathways that include Gi- and Gq-coupled receptors.
Stimulation of Gi-coupled receptor is known to activate Src in a Gβγ-dependent manner [14].

2.3 Expression and substrates of Src family kinases in endothelial cells
There are nine members of the Src family including c- Src, Fyn, Yes, Yrk, Lyn, Lck, Hck,
Fgr and Blk (Table 1). c-Src, Fyn, Yes and Yrk are widely coexpressed in many cell types,
including vascular endothelial cells [9,15,16], whereas Lyn, Lck, Hck, Fgr and Blk are
found primarily in hematopoietic cells [8]. SFKs localize to numerous areas of the cell rather
than in any one particular subcellular location. It appears that the subcellular location of
SFKs can affect their function. SFKs can associate with cellular membranes, such as the
plasma membrane, the perinuclear membrane, and the endosomal membrane. SFKs are also
found in the cytoplasm and at adherens junctions, where they take on different roles. The
function of SFKs in endothelial cells is complicated by the pleiotropic activities, as well as
their targeting molecules. A variety of SFK target molecules (substrates) are related to the
regulation of endothelial permeability (Table 2).

3. Src family kinase signaling in vascular endothelial permeability
The route of solute flux across the vascular endothelium has been debated for decades. The
transendothelial movement of solutes, ions and water can occur via both transcellular and
paracellular pathways, through or between cells, respectively. The transcellular pathway
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consists of a highly mobile set of vesicles that shuttle across the endothelial barrier from its
luminal aspect to the abluminal side [52]. The paracellular pathway, in contrast, offers a
purely passive pathway for the diffusion of protein and other small solutes. Vascular
permeability is determined primarily by multi-protein complexes, the tight and adherens
junctions, that link adjacent endothelial cells. In absence of a pathological insult, these
junctions are normally impermeable to albumin and other plasma proteins. Electron
micrographic studies have shown that this pathway is closed (restricted) and excludes
macromolecule tracers [53-57]. The transport of albumin and other macromolecules across
the endothelium under non-inflammatory physiological conditions can be fully explained by
transcytosis involving the plasma membrane vesicular structures or caveolae [54,58].

SFKs have been implicated in upstream signaling pathways that lead to endothelial
hyperpermeability [4,9,20]. The regulatory role of SFKs in endothelial permeability is two
fold. SFK phosphorylation of proteins may directly modulate the function of these proteins.
It phosphorylates substrates in the cytosol and at the inner face of the plasma membrane, or
at cell–matrix or cell–cell adhesions. In addition, phosphotyrosyl residues serve as docking
sites for the binding of signaling proteins containing SH2 domains. These signaling
complexes initiate pathways that regulate protein synthesis, gene expression, cytoskeletal
assembly, and many other aspects of cell function. Low levels of SFK activity is required in
normal tissues to maintain integrity of the endothelial barrier. However, elevated Src activity
induced by a wide spectrum of inflammatory mediators causes a marked increase in
endothelial permeability [59-61].

3.1 Role of Src in paracellular permeability
3.1.1 Structural basis of paracellular permeability—The microvascular barrier
consists of the endothelial monolayer, intercellular contacts between adjacent endothelial
cells, and focal adhesions anchoring the endothelial lining to its surrounding matrices in the
vascular wall. The integrity of these structural elements is necessary to maintain normal
barrier function. The disintegration of endothelial cell-cell contact (junctions) and cell-
matrix contact (focal adhesions) leads to increased endothelial permeability through the
opening of paracellular pathways, enhancing macromolecular transport [62-68]. Paracellular
permeability is regulated by interendothelial junctional complexes, the adherens junctions
(AJ) and tight junctions (TJ), and through interaction of these complexes with the actin
cytoskeleton [2].

Inter-endothelial cell contacts: Endothelial cells form junctional complexes consisting of
TJs and AJs, which are the sites of diffusional transport of solutes. The integrity of
interendothelial junctions can be impaired by endothelial cell retraction and shape change.
Actin and myosin are the major contractile components in the cytoskeleton [63]. The signal
transduction pathways that disrupt interendothelial junctions involve a complex series of
signaling events leading ultimately to rapid and sustained phosphorylation of myosin light
chain (MLC) and simultaneous inhibition of MLC-associated phosphatase (the function of
which is to prevent dephosphorylation of MLC and prolong the contractile response)
[46,69,70]. Phosphorylation of MLC by Ca2+-calmodulin dependent myosin light chain
kinase (MLCK) is required for actin-myosin interaction and engagement of the endothelial
contractile apparatus. Endothelial cell retraction is likely precipitated by disruption of
endothelial AJs [46,71]. Filamentous actin within endothelial cells also associates with the
cytoplasmic tail of the major AJ protein vascular endothelial (VE)-cadherin [72]. Contractile
force may “unhinge” AJs resulting in formation of gaps [71]. VE-cadherin is localized in
intercellular AJs where they are linked in the cytoplasm to β-, γ-, and p120-catenins, and in
turn to α-catenin and the actin cytoskeleton [25,26]. Dissociation of VE-cadherin from the
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catenins can cause intercellular gap formation leading to an increase in endothelial
permeability [27,73].

Endothelial cell-matrix contacts: Focal adhesions are mainly composed of integrins,
transmembrane receptors that facilitate the actin cytoskeleton connection to the extracellular
matrix (ECM) via cytoplasmic linker proteins. The cell-matrix interaction is dynamically
controlled through assembly and disassembly of focal adhesions [74]. The linkage between
proteins of the ECM with the cell is mediated mainly by transmembrane integrins which not
only function as adhesion receptors but also transmit chemical signals and mechanical forces
between the matrix and cytoskeleton [75,76]. The adhesive interactions between integrins
and their extracellular ligands at focal adhesion complexes regulate endothelial cell shape
and serves to maintain endothelial barrier properties [2]. Integrin-mediated attachment of
endothelial cells to the substratum is an important component of paracellular permeability. A
recent study demonstrated that inhibition of integrin binding to either fibronectin or
vitronectin with specific peptides containing the arginine-glycine-aspartate (RGD) sequence
motif increased venular permeability 2- to 3-fold in a concentration-dependent manner [77].

Focal adhesion kinase (FAK) is a protein tyrosine kinase which is recruited at an early stage
to focal adhesions and which mediates many of the downstream signaling reactions leading
to integrin engagement and focal adhesion assembly that ultimately affects barrier function
[78-80]. The modulatory effect of FAK on endothelial permeability involves complex
mechanisms depending on the chemical/physical states of the endothelium. In the basal
condition, the constitutive activity of FAK is an essential component of the barrier structure.
However, FAK can be further activated in response to inflammatory signals and stimulate
paracellular transport of fluid and macromolecules through cell contraction and intercellular
gap formation.

3.1.2 Src regulation in intercellular junctions—SFK-dependent tyrosine
phosphorylation is considered to play an important role in regulating structural changes
occurring in the endothelium [20,81]. The integrity of intercellular junctions can be
regulated through phosphorylation of MLCK and AJ protein VE-cadherin by c-Src kinase
[64,82-84]. Recent studies have identified sites of Src tyrosine phosphorylation in the unique
N-terminus of endothelial MLCK-1. Phosporylation of MLCK-1 by Src results in a 2-3 fold
increase in MLCK activity. MLCK activation is linked to increased MLCK tyrosine
phosphorylation and stable association of MLCK with Src in pulmonary endothelial cells
[9,23,85]. Thus, Src binding to MLCK causes the activation of MLCK under submaximal
calcium concentrations, providing a mechanism to orchestrate critical cytoskeletal
rearrangements and cellular contraction [85]. Src regulates endothelial monolayer
permeability at the cytoskeletal level by affecting myosin light chain phosphorylation [81].
These biochemical events induce actin-myosin contractility that leads to shape change of
endothelial cells and interendothelial gap formation resulting in endothelial
hyperpermeability. Alternatively, Src phosphorylation of both β-catenin and VE-cadherin
can serve as important signaling mechanisms altering interactions between junctional and
cytoskeletal proteins. Src tyrosine phosphorylation can also cause the dissociation of these
junctional proteins from their cytoskeletal anchors [27,77,86,87]. Src kinase was found
constitutively associated with VE-cadherin in both quiescent and angiogenic tissues [81].
VE-cadherin may serve as an anchor to maintain Src at endothelial cell junctions, where it
could exert its activity on junctional components [81]. Src-VE-cadherin association in
cultured endothelial cells is independent of VE-cadherin phosphorylation state and Src
activation.

3.1.3 Src regulation at endothelial cell-matrix contacts—Both FAK and paxillin
located in focal adhesion complexes are Src substrates. The activity of FAK and paxillin are
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mainly regulated through phosphorylation by the SFKs [10,17,84]. Association of c-Src with
FAK may facilitate Src-mediated phosphorylation of tyrosine residues on FAK, some of
which serve as binding sites for additional SH2-containing proteins [18,79]. Src is also
involved in integrin-induced tyrosine phosphorylation [3]. Integrin engagement induces
tyrosine phosphorylation of focal adhesion proteins found in focal adhesion complexes [4].
Src-dependent tyrosine phosphorylation is a critical requirement for the functional formation
of integrin-dependent focal adhesion attachment to actin stress fibers [88]. Crosstalk
between Src and focal adhesion kinase regulates vascular permeability by interfering with
integrin adhesion and signaling [19,84].

3.2 Role of Src in transcellular permeability
3.2.1 Vesicle transport and transcellular permeability

Transport of the plasma protein albumin from the blood to underlying tissues is an important
function of the endothelium. Under physiological conditions, the microvascular endothelium
establishes a tight barrier (semipermeable cell-cell junctions) via AJs and TJs between
neighboring cells. This keeps paracellular permeability of macromolecules, such as albumin,
very low. Movement of these macromolecules does occur, however, through the vesicular or
transcellular pathway involving caveolae. Recent data have shown convincingly that uptake
and transport of albumin across the endothelial barrier in situ can be fully accounted for by
the formation, fission and transport of caveolae [89-91].

Transendothelial transport is rapid (~30 sec), the cargo is predominantly in the fluid phase
rather than receptor-bound, and requires SFK signaling to activate vesicle shuttling between
apical and basal surfaces [92]. Transcytosis can be regulated by albumin via both
constitutive (eg, fluid phase transport) or receptor mediated processes (the molecule
transported requires the presence of its cognate receptor in caveolae) [93]. Caveolin-1, an
integral membrane protein (20-22 kDa), is a specific marker and the primary structural
component of endothelial caveolae. Evidence has accumulated suggesting that caveolin-1
regulates endothelial transcellular transport of albumin. First, the recent generation of
caveolin-1 null mice has revealed the absence of caveolae and defective uptake and transport
of albumin, which could be reversed by transduction of caveolin-1 cDNA [33-35].
Furthermore, we [36-38] and others [39-43] have demonstrated that phosphorylation of
caveolin-1 on tyrosine residue 14 by SFKs initiates plasmalemmal vesicle fission and
transendothelial vesicular transport, and that this facilitates the uptake and transport of
albumin through endothelial cells (Figure 3).

3.2.2 Src regulation of transcellular permeability
The mechanism by which endothelial cells internalize and transport albumin from the
luminal to abluminal side is not completely understood. Studies demonstrated that
phosphorylation of caveolin-1 on tyrosine 14 by c-Src is a key switch initiating caveolar
fission from the plasma membrane [36-41,43]. It is known that albumin binding to the 60
kDa glycoprotein (gp60) on the endothelial cell surface induces clustering of gp60 and its
physical interaction with caveolin-1 [36]. c-Src can bind to the caveolin-1 scaffolding
domain [41], palmitoylated C-terminal cysteine residue, and N-terminal phosphorylated
tyrosine residue [36,41], and Src is activated upon albumin binding to cell surface gp60 [39].
Activated Src, in turn, phosphorylates caveolin-1, gp60, and dynamin-2 to initiate
plasmalemmal vesicle fission and transendothelial vesicular transport of albumin (Figure 3)
[37-39].
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4. Role of Src signaling in proinflammatory mediator- and neutrophil-
induced vascular hyperpermeability
4.1 Oxidants

Studies have shown that H2O2 increases the activity of c-Src and other SFKs, including Lck
[94-96]. H2O2 directly activates Src via oxidization at two cysteine residues and indirectly
through the dephosphorylation of Tyr 527 [97,98]. Exposure of endothelial cells to H2O2
increased Src activity in association with increased endothelial permeability [99]. Src kinase
inhibitors, herbimycin A and PP1, prolonged the onset of increased permeability and
attenuated H2O2-mediated increase in endothelial permeability [99]. However, Src family
kinases do not appear to be involved in H2O2-mediated rearrangement of junctional proteins
since H2O2-induced loss of VE-cadherin junctional staining along with concomitant gap
formation was not affected by PP1 [100]. Although Src kinase activation has been shown to
phosphorylate β-catenin and result in disorganization of the adherens junction complex
[6,28,29], H2O2-induced decrease in the amount of β-catenin associated with the actin
cytoskeleton was not blocked by PP1, suggesting that Src kinase activity is not involved in
H2O2-mediated dissociation of β-catenin from the endothelial cell cytoskeleton. These
findings raise the possibility that H2O2-mediated permeability stimulates both endothelial
junctional disorganization and increased caveolae-mediated transcellular transport, and that
inhibition of Src kinase ablates the vesicle trafficking-mediated permeability pathway [36].

4.2 TNFα
Tumor necrosis factor-α (TNFα) can induce increased endothelial permeability via
intercellular gap formation [101]. A potential target for TNFα-induced endothelial
permeability is VE-cadherin, a major component of endothelial AJs. TNFα activates Src
kinases which results in tyrosine phosphorylation of VE-cadherin, redistribution of VE
cadherin, and gap formation [27,87,102]. Confocal studies indicated that Src inhibitor PP2
prevented TNFα-induced phosphorylation of VE cadherin and intercellular gap formation,
suggesting that a SFK activated by TNFα acts upstream of VE cadherin to affect changes in
endothelial permeability [102]. The mechanism of Src activation stimulated by TNFα is
unclear. It was suggested that TNFα-mediated oxidant generation in endothelial cells
induces Src activation [103-106].

4.3 VEGF
Recent studies demonstrated that vascular endothelial growth factor (VEGF)-induced
increased vascular permeability requires SFKs [107,108]. Mice lacking c-Src or Yes (but not
Fyn) lacked a VEGF-mediated vascular permeability response [108]. The mechanism by
which VEGF increases endothelial permeability through Src remains poorly understood.
Unstimulated blood vessels contain a protein complex composed of VEGF receptor-1
(Flk-1), VE-cadherin, and β-catenin that is involved in maintenance of endothelial barrier
integrity [31,39]. This molecular complex immediately dissociates following VEGF
stimulation, an event that depends on Src kinase activity [109,110]. Src in its active form is
recruited to Flk-1 following VEGF stimulation [111]. Therefore, it is conceivable that active
Src associated with Flk-1 may account for the tyrosine phosphorylation of VE-cadherin and
β-catenin, leading to dissociation of the junctional complex [112]. VEGF also promotes VE-
cadherin endocytosis by regulating Vav2, a GEF, through c-Src [113]. VEGF stimulation
results in the enhanced tyrosine phosphorylation of Vav2, together with Src and VEGF
receptor-2, which was abolished by VEGF receptor-2 and SFK inhibitors. Src has an
important function in linking VEGF receptor-2 activation to the stimulation of Vav2,
thereby activating Rac and resulting in the endocytosis of VE-cadherin and the disruption of
endothelial junctions. In addition, β-arrestin-2 may also aid VE-cadherin endocytosis based
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on its ability to interact with Src [114]. In this scenario, β-arrestin-2 may recruit Src to the
vicinity of VE-cadherin, thus facilitating Src-dependent phosphorylation of cadherin–catenin
complexes [110,115]. Therefore, the tyrosine phosphorylation of VE-cadherin and its
associated molecules may be coordinated with the Src-dependent activation of Vav2 and
Rac to regulate the dynamic disassembly and reassembly of adherens junctions. This process
leads to the disassembly of endothelial-cell junctions, resulting in the enhanced permeability
of the blood-vessel wall. In addition, Src kinase also regulates VEGF-induced assembly of a
FAK/αvβ5 integrin complex in cultured endothelial cells. This complex was significantly
reduced in endothelial cells from c-Src-deficient mice [2]. Pharmacological inhibition of
SFKs with PP1 or retroviral delivery of kinase-defective c-Src suppressed VEGF-induced
assembly of the FAK/αvβ5 complex. These findings indicate that the VEGF-induced
formation of the FAK/αvβ5-complex via Src may be an important mechanism for
coordinating growth factor-dependent integrin signaling in the regulation of vascular
permeability [2,116].

4.4 Thrombin
Thrombin, a pro-coagulant serine protease, is well known to increase vascular endothelial
permeability [1]. Thrombin-induced Ca2+ influx is regulated by Src activation. Ca2+

signaling is critical in the mechanism of thrombin-induced myosin light chain
phosphorylation and subsequent actinomyosin cross bridging (which induces actin stress
fiber formation) [62,65,71,116-118]. The mechanism by which Src regulates Ca2+ influx is
unclear. Src may phosphorylate plasma membrane transient receptor potential channels
expressed in endothelial cells [119,120] that mediate Ca2+ influx during inositol
trisphosphate-sensitive intracellular store depletion [121,122]. Thrombin increased the
tyrosine phosphorylation of junctional proteins and the formation of interendothelial gaps
that are characteristically associated with the loss of barrier function [2,11,66,67,123].
Tyrosine phosphorylation of adherens junction proteins is dependent on the augmented Ca2+

influx. These results suggest that the Src activation-dependent Ca2+ influx is an important
factor signaling thrombin-induced endothelial barrier dysfunction [124]. Src is also involved
in thrombin-mediated changes in endothelial cell adherens junctions. Thrombin treatment of
human umbilical vein endothelial cells promotes Src-dependent SHP-2 phosphorylation and
dissociation from VE-cadherin complexes. The loss of SHP-2 from the cadherin complex
correlates with a dramatic increase in the tyrosine phosphorylation of β-, γ-, and p120-
catenins complexed with VE-cadherin. Thrombin regulates the tyrosine phosphorylation of
VE-cadherin-associated β-catenin, γ-catenin, and p120-catenin by modulating the quantity
of SHP-2 associated with VE-cadherin complexes. This event promotes cell-cell junction
disassembly and intercellular gap formation, detected in endothelial cell monolayers after
thrombin treatment, and the resulting increase in monolayer permeability [48].

4.5 Neutrophils
It is well known that activated polymorphonuclear neutrophils (PMNs) increase the
permeability of the endothelium to albumin, thus promoting fluid loss into the interstitial
space. Although the precise mechanisms have not been completely elucidated, studies have
implicated an increase in paracellular permeability via opening of interendothelial junctions
caused by PMN adherence and oxidant generation by PMNs and endothelial cells which
leads to increased solute (mainly albumin) and fluid transport across the vessel wall
[1,125,126]. Accumulating evidence has demonstrated that Src activation is linked to the
mechanism of increased endothelial permeability caused by PMNs [4,23,127]. Activation of
PMNs with complement peptide C5a induced endothelial cell Src activation and increased
endothelial permeability. This PMN-induced hyperpermeability in both microvessels and
endothelial cells could be greatly attenuated by Src inhibition [127]. Moreover, cross-linking
of endothelial cell surface intercellular adhesion molecule (ICAM)-1 with a monoclonal
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antibody also increased the activity of Src kinase (128-131), suggesting that PMN adhesion
via CD18/ICAM-1 interaction may be important in the regulation of Src activity. The
mechanism by which activated PMNs increase Src activity is not clear. Activation of PMNs
may increase Src Tyr416 phosphorylation and reduce Src Tyr527 phosphorylation [127]. Src
and β-catenin interaction and phosphorylation are necessary for PMN-induced endothelial
barrier dysfunction. The inhibition of Src caused Src/β-catenin disassociation and blocked
PMN-induced β-catenin tyrosine phosphorylation in cultured endothelial cells. Src kinase
may directly phosphorylate β-catenin in response to activated PMNs; this event leads to the
disorganization of cell-to-cell adherens junction and ultimately endothelial barrier
dysfunction [127]. Although Src activation is involved in increased endothelial permeability
[4,23,127], its role in activating endothelial transcytosis following PMN activation remains
unclear. Since Src-dependent caveolin-1 phosphorylation is a key switch in albumin
endocytosis and transcytosis through the endothelium, it is likely that activation of PMNs
may stimulate transcellular albumin transport via the Src dependent pathway. The
contribution of endothelial transcytosis in the mechanism of increased lung microvessel
permeability remains to be addressed.

5. Pharmacological perspectives and conclusion
In recent years, investigations of Src signaling in vascular endothelial permeability
regulation have led to newer and more sophisticated methods to probe the molecular
mechanisms involved. Indeed, as discussed above, there is now evidence to support the
concept that SFKs are key regulators of the vascular endothelial barrier. This area of
research warrants further investigation, as pharmacological inhibitors that selectively block
individual Src family members may represent novel therapeutic approaches for limiting
vascular leakage. However, due to the lack of selectivity of inhibitors of SFKs and the
involvement of SFKs in many cellular activities, a strategy for the treatment of Src-mediated
vascular leakage is not yet available. For instance, c-Src-and Yes-deficient mice show a
negligible VEGF-induced vascular permeability response, yet Fyn-deficient mice display
normal permeability responses [132]. Gene knockout and selective siRNA targeting of
different isoforms of Src are needed to elucidate the role of SFKs in different types of
inflammatory vascular leakage and in various cell types.

Transcellular transport is the primary mechanism by which albumin, lipids, steroid
hormones, fat-soluble vitamins, and other substances that bind avidly to albumin cross the
normally restrictive microvessel barrier lined with continuous endothelia. However, the
importance of this pathway as a mechanism of protein leakage in pathological conditions
remains to be investigated. Src signaling may play a critical role in proinflammatory
mediator-induced transvascular hyperpermeability. In this regard, strategies directed against
preventing Src-mediated increase in transcellular permeability via caveolae may be useful in
reversing the accumulation of protein-rich fluid in the lung extravascular space. These
studies could also lead to novel drug therapies for treatment of many diseases including
acute lung injury and ARDS that target the transcellular permeability pathway in endothelial
cells.

In summary, we believe that further insight into the regulatory mechanisms of Src signaling
that contribute to endothelial hyperpermeability will help us to understand how this
pathologic process can be treated. Understanding the role of Src in the various forms of
vascular leakage that occurs during the different stages of inflammation will provide novel
targets against increased paracellular and/or transcellular permeability for therapeutic
intervention in inflammatory diseases.
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Figure 1. Src family kinase domain structure
Chicken (c)-Src is shown.
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Figure 2. Activation of c-Src
Panel (A) represents the inactive state of Src, when Src assumes a “closed” conformation
stabilized by the interaction between Tyr527 and the SH2 domain, and SH3 domain-linker-
catalytic domain interaction. Panel (B) represents the the “open” or active state of Src.
Adapted from REF. 7.
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Figure 3. Src signaling mechanism regulating transcytosis of albumin
Abbreviations: gp60, glycoprotein; Srci, inactive Src; Srca, active Src; pY, phosphorylated
tyrosine.
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Table 1

Expression of Src family kinases

Src family kinases Expression

Src Ubiquitous

Fyn Ubiquitous

Yes Ubiquitous

Yrk Ubiquitous, only in chickens

Lyn Myeloid cells, B-cells, Brain

Hck Myeloid cells

Fgr Myeloid cells, B-cells

Blk B-cells

Lck T-cells, NK cells, brain
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Table 2

Src family kinase target proteins that regulate endothelial permeability

Substrates References

FAK 17-19

paxillin 20

vinculin 21

talin 21

ezrin/radixin/moesin 22

cortactin 23,24

catenins (β, γ and p120) 25-31

connexin 43 32

caveolin-1 33-43

PKCδ 44

PLC-γ 45

MLCK 46

PI-3K 47

SHP-2 48

PP2A 49

p190RhoGAP 50,51

p120rasGAP 51

Abbreviations: FAK, focal adhesion kinase; PKC, protein kinase C; PLC, Phospholipase C; MLCK, myosinlight chain kinase; PI3K,
phosphatidylinositol 3-kinase; SHP-2, protein tyrosine phosphatase 2, PP2A, protein phosphatase 2A
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