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Abstract
There is increasing evidence that cerebrovascular dysfunction plays a role not only in vascular
causes of cognitive impairment but also in Alzheimer’s disease (AD). Vascular risk factors and
AD impair the structure and function of cerebral blood vessels and associated cells (neurovascular
unit), effects mediated by vascular oxidative stress and inflammation. Injury to the neurovascular
unit alters cerebral blood flow regulation, depletes vascular reserves, disrupts the blood–brain
barrier, and reduces the brain’s repair potential, effects that amplify the brain dysfunction and
damage exerted by incident ischemia and coexisting neurodegeneration. Clinical-pathological
studies support the notion that vascular lesions aggravate the deleterious effects of AD pathology
by reducing the threshold for cognitive impairment and accelerating the pace of the dementia. In
the absence of mechanism-based approaches to counteract cognitive dysfunction, targeting
vascular risk factors and improving cerebrovascular health offers the opportunity to mitigate the
impact of one of the most disabling human afflictions.

Introduction
Alzheimer’s disease (AD) and vascular dementia are the most common forms of cognitive
impairment in the elderly [28]. The pathogenic mechanisms underlying these two conditions
have traditionally been considered separate, even mutually exclusive [23]. At the time of
Alois Alzheimer, dementia was most often attributed to vascular insufficiency or syphilis
[70]. Over the next several decades, the emergence of AD as a distinct clinical-pathological
entity established this condition as the prevailing cause of dementia. Biochemical, cellular,
and molecular studies provided evidence that AD is caused by a neurodegenerative process
leading to neuronal dysfunction and death related mainly to the amyloid-β peptide (Aβ) and
hyperphosphorylation of the microtubule-associated protein tau [85]. Diagnostic criteria
were drafted and widely applied, establishing AD as the predominant cause of senile
cognitive impairment, a course of action aptly referred to as “alzheimerization” of dementia
[70]. On the other hand, vascular dementia evolved from the concept of “arteriosclerotic
dementia”, in which hardening of cerebral arteries leads to diffuse ischemia and neuronal
loss [70], to “multiinfarct dementia”, caused by multiple infarcts resulting in cognitive
impairment due to progressive brain loss [36]. In the early 1990s, the broader term “vascular
cognitive impairment” (VCI) was introduced to encompass the wide spectrum of cognitive
alterations associated with cerebrovascular pathologies, including more subtle deficits that
would not fulfill AD criteria [35]. Standards for the diagnosis of VCI were established
[13,34,86], and vascular causes of cognitive impairment have regained the attention of the
basic and clinical neuroscience communities [23,49]. In addition, it has become widely
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recognized that a large proportion of dementias is caused by mixed AD and vascular
pathology, especially in older individuals [28,50]. Importantly, coexistence of ischemic and
neurodegenerative pathology was found to have a profound impact on the expression of the
dementia, suggesting reciprocal interactions between ischemia and neurodegeneration
[75,102]. These observations, in concert with epidemiological studies indicating that AD
and cerebrovascular diseases share the same risk factors [10], has revived the interest in the
idea that vascular factors may play a role in the pathogenesis of AD [17,43,56]. This
hypothesis has received support from experimental studies indicating that Aβ has potent
cerebrovascular effects, and that hypoxia–ischemia is a powerful modulator of cerebral
amyloidogenesis [41]. Both Aβ and vascular risk factors target the structure and function of
cerebrovascular cells, glia, and neurons (neurovascular unit), resulting in neurovascular
dysfunction. This brief review examines the neurovascular alterations underlying AD and
VCI, and discusses their implications for the prevention and treatment of vascular and
neurodegenerative dementia.

The neurovascular unit: the guardian of cerebral homeostasis
Neurons, glia, perivascular, and vascular cells, collectively termed the neurovascular unit,
are closely interrelated and work in concert to maintain the homeostasis of the cerebral
microenvironment (Fig. 1). Thus, the neurovascular unit regulates blood flow, controls the
exchange across the blood–brain barrier (BBB), contributes to immune surveillance in the
brain, and provides trophic support to brain cells.

Blood flow regulation
The brain’s structural and functional integrity depends on a continuous and well-regulated
blood supply, and interruption of cerebral blood flow (CBF) leads to brain dysfunction and
death [74]. Consequently, the brain is equipped with control mechanisms that assure that the
brain’s blood supply is well matched to its energetic needs [44]. Thus, neural activity
induces a powerful increase in CBF (functional hyperemia) that is thought to deliver energy
substrates and remove toxic byproducts of brain activity [83]. Astrocytes, whose end-feet
encircle the outer wall of cerebral microvessels (arterioles, capillaries, and venules), act as a
link between synaptic activity and the cerebrovascular cells mediating the increase in CBF
[44]. Cerebrovascular autoregulation holds CBF relatively constant despite changes in
perfusion pressure and protect cerebral perfusion from potentially damaging fluctuations in
arterial pressure [114]. Specialized receptors on the endothelial cell membrane initiate
intracellular signaling cascades in response to mechanical (shear stress), chemical
(neurotransmitters and neuromodulators) and cellular (circulating immune cells) stimuli, and
release potent signaling molecules, like nitric oxide, endothelin, and prostanoids [124].
These endothelial mediators contribute to local flow distribution [3] and to other functions
of the neurovascular unit as well (see below).

Blood–brain barrier exchange
Owing to the tight junctions between cerebral endothelial cell, highly specialized endothelial
membrane transporters regulate the trafficking of macromolecules, ions, amino acids,
peptides, neurotransmitters, and other signaling molecules between the blood and the brain,
which is at the basis of the BBB [1]. Transporters on the abluminal side of the vessel
regulate the removal of metabolic byproducts form the brain. Relevant to the mechanisms of
AD and VCI, the BBB plays a critical role in the transport of Aβ to and from the brain [132].
Thus, circulating Aβ is transported into the brain via receptors for advanced glycation
products (RAGE) on endothelial cells [18]. Intracerebral Aβ, normally produced by synaptic
activity [15], is cleared from the brain through vascular mechanisms involving the
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lipoprotein receptor protein 1 (LRP1) and P-glycoprotein, a process controlled by the serum
response factor and myocardin [8,14,93].

Immune surveillance
Endothelial cells are able to detect blood-borne immune signals and express adhesion
molecules (P- and E-selectin, intercellular adhesion molecule, vascular cell adhesion
molecule, etc.) that recognize cognate molecules on circulating immune cells leading to the
attachment and transmigration of these cells into the brain [118]. Cytokines produced by
perivascular macrophages, endothelium, and glia regulate the expression of adhesion
molecules, cytokines, and chemokines, and promote the trafficking of leukocytes across the
BBB [64]. This process is vital both for immune surveillance in the normal brain and for the
immune response of the brain to injury.

Hemostatic balance
Cells in the neurovascular unit play a critical role also in hemostatic balance. Whereas the
prothrombotic effects of collagen and tissue factor in the vascular wall protect the tissue
from hemorrhage, antithrombotic and profibrinolytic factors in the endothelium (NO,
prostacylin, CD39, plasminogen activators, etc.) prevent vascular occlusion [29].
Furthermore, the cerebrovascular endothelium is involved in the removal of intravascular
clots, a process that may reestablish flow after microvascular embolism [65].

Trophic function
Endothelial cells exert trophic actions that are essential to the well-being of neurons and glia
[128]. In turn, neurons and glia produce growth factors that provide trophic support to
vascular cells. Such reciprocal trophic interaction is critical during development when
ephrins, slit ligands, semaphorins, and netrins act as guiding cues for both migrating axons
and vessels [119]. Furthermore, after brain injury, growth factors released from endothelial
cells like brain derived neurotrophic factor (BDNF), vascular endothelial derived growth
factor (VEGF), stromal-derived factor 1, and angiopoietin-1 orchestrate the migration and
differentiation of neuroblasts [16,78,101]. Therefore, the survival of vascular cells neurons
and glia relies on reciprocal trophic interactions, and the proper functioning of the
neurovascular unit depends on the health of all its cellular constituents.

The neurovascular unit in VCI and AD
The structure and function of the neurovascular unit are profoundly impaired in VCI and AD
[9,41]. These alterations disrupt the homeostasis of the cerebral microenvironment and
promote the neuronal dysfunction underlying the impairment in cognition.

Structural alterations
Both VCI and AD are associated with marked alterations in cerebrovascular structure
[57,92,120]. Large intracranial vessels exhibit atherosclerotic plaques not only in VCI but
also in AD [7,40]. At the microvascular level, arterioles and capillaries are reduced in
number, tortuous, and have thickened basement membranes [11,27,92,125]. The arteriolar
wall exhibits degenerative changes and, in cases associated with hypertension, undergoes
hyaline degeneration (lipohyalinosis), causing microhemorrhages [92]. In the periventricular
white matter, a region prone to injury, reactive astrocytosis and microglial activation are
associated with expression of hypoxia inducible genes, suggesting local energy deficit
[27,99]. In AD or in cerebral amyloid angiopathy (CAA), accumulation of Aβ in the media
of cortical arterioles leads to weakening of the vessel wall, increasing the chance of lobar
hemorrhages [120].
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Cerebrovascular dysregulation
Animal and human studies indicate that risk factors for VCI and AD, such as hypertension,
aging, dyslipidemia, and diabetes, have profound effects on cerebrovascular regulation, and
disrupt endothelium-dependent vasodilatation, functional hyperemia, and autoregulation
[42,53,60,66,73,80,91]. Similarly, Aβ is a potent vasoconstrictor [111], and impairs the
fundamental mechanisms regulating the cerebral circulation [45,76,77]. CBF is reduced, and
functional hyperemia is attenuated in patients with AD [6,47,54,72,84,87,108,117,127].
Furthermore, endothelial-dependent responses are impaired in systemic vessels of patients
with AD [20]. Cerebral smooth muscle cells have a hypercontractile phenotype [12], which
increases the constrictor tone of cerebral arteries and contributes to reduce resting CBF and
its reactivity [41]. Vascular oxidative stress and inflammation have emerged as key
pathogenic factors in neurovascular dysfunction [25,42,98]. In particular, experimental
studies suggest that free radicals produced by the enzyme NADPH oxidase are responsible
for the cerebrovascular alterations induced by VCI risk factors and Aβ [59,61,80,81]. Free
radicals can trigger inflammation by activating redox sensitive transcription factors, like
NFkb and AP1. In addition, the endothelial dysfunction induced by oxidative stress can lead
to release of VEGF and prostanoids, which promote vascular leakage, protein extravasation,
and inflammation [71]. Inflammation, in turn, enhances oxidative stress by upregulating the
expression of free radical-producing enzymes and by downregulating antioxidant defenses
[30]. Inflammation and oxidative stress not only affect CBF regulation, but, as discussed
below, have a profound impact on the other functions of the neurovascular unit as well.

Blood–brain barrier dysfunction
Alteration of the BBB is an early finding in white matter lesions associated with VCI and
AD [26,132]. Extravasation of plasma protein triggers vascular inflammation, oxidative
stress, perivascular edema, and axonal demyelination [26] (Fig. 2). Demyelination slows the
transmission of nerve impulses, and contributes to the neural dysfunction that underlies
cognitive impairment. In addition, in models of multiple sclerosis, the loss of saltatory
conduction between nodes of Ranvier induced by demyelination, coupled with the
expression of leaky Na+ channels on denuded axons, increases the inefficiency of action
potential conduction [113]. Therefore, demyelination increases the oxygen demands of
axons and enhances the local energy deficit and hypoxia [113]. A similar process could take
place in the white matter lesions observed in AD and VCI [28], but additional evidence of
demyelination with axonal preservation is needed to establish this point more firmly,
especially in AD [46].

Alterations in BBB transport processes may also have an impact on the brain accumulation
of Aβ in patients with AD [55,132]. The downregulation of the BBB receptors LRP-1 and P-
glycoprotein promotes vascular Aβ deposition and may worsen the vascular dysfunction [8].
Furthermore, elevated circulating levels of Aβ in patients with VCI and AD could also
promote cerebrovascular insufficiency, inflammation, and oxidative stress, and play a role in
the white matter alterations observed in both conditions [31,33] (Fig. 2).

Loss of trophic support
Vascular oxidative stress, aging, and inflammation disrupt neurovascular trophic function
[16]. Pro-inflammatory cytokines impair growth factor signaling inducing a state of
“neurotrophin resistance” [112,115]. Furthermore, oxidative stress attenuates the growth
factor support provided by endothelial cells to oligodendrocyte precursors [4]. Loss of
trophic support may impede the proliferation, migration, and differentiation of
oligodendrocyte progenitor cells, and compromise the repair of the damaged white matter in
AD and VCI [5,79,96,97] (Fig. 2). Loss of neurovascular trophic support is also observed in
AD. Inflammation and oxidative stress can result in neurotrophin resistance (see above), but
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other factors also contribute to impair trophic support at the microvascular level. For
example, the homeobox gene MEOX, critical for vascular differentiation, is suppressed in
patients with AD and may mediate the cerebral microvascular rarefaction observed in this
disease [125]. Aβ induces endothelial cell autophagy [37], and inhibits vasculogenesis,
effects mediated by inhibition of VEGF signaling [82]. In AD patients, the perivascular
accumulation of endostatin, a neurally derived antiangiogenic factor, may also contribute to
the vascular damage [21]. Although CSF levels of VEGF are increased in AD [109], brain
VEGF is sequestered by amyloid plaques [126], reducing its bioactivity. Furthermore,
BDNF levels are low in AD brains [94]. Collectively, these alterations in growth factors
expression, localization, and signaling are likely to have a major impact not only in the
vascular alterations observed in AD and VCI, but also in the brain atrophy associated with
these conditions [88,106].

Interactions between ischemia and neurodegeneration
The profound effects of cerebrovascular risk factors and Aβ on the neurovascular unit
suggest a pathogenic link between ischemia and neurodegeneration [48]. The pathological
changes characteristic of AD, i.e., amyloid plaques and neurofibrillary tangles, are observed
together with vascular pathology (subcortical white matter lesions, lacunes, infarcts, etc.) in
more than 40% of elderly demented individuals [49]. This finding is not surprising since
both neurodegenerative and ischemic changes are common in the elderly and would be
anticipated to coexist in a large number of cases [48]. Volume of ischemic lesions and their
location play a critical role in the expression of the dementia in mixed cases [49].
Nevertheless, the coexistence of ischemic and neurodegenerative pathologies raises a
number of questions related to their effects on cognition, and has important implications for
the prevention, diagnosis, and treatment of VCI and AD.

Does vascular insufficiency promote neurodegenerative changes and vice versa?
Ischemia may promote Aβ accumulation by reducing the vascular clearance of this peptide,
its major elimination pathway [15,19]. In addition, hypoxia and/or ischemia promote the
cleavage of Aβ from the amyloid precursor protein (APP) by upregulating β-secretase
expression and activity [62,69,107,110,121,131]. These experimental findings indicate that
increased production and reduced clearance could enhance Aβ deposition in brain and favor
the formation of amyloid plaques and CAA (Fig. 3). Indeed, brain Aβ levels and amyloid
plaques are elevated in patients with cerebrovascular insufficiency and VCI [68]. On the
other hand, the cerebrovascular dysfunction induced by Aβ could threaten cerebral
perfusion, reduce vascular reserves, and increase the propensity to ischemic damage.
Consistent with this hypothesis, focal cerebral ischemia produces larger infarcts in mice
overexpressing APP [63,130], an effect associated with Aβ-induced vascular dysregulation,
reduced collateral flow, and more severe ischemia [130]. Similarly, patients with AD have
heavier burden of cerebrovascular lesions [51]. Paradoxically, some cardiovascular risk
factors can increase the risk of AD without aggravating neurodegenerative pathology. For
example, diabetes mellitus doubles the risk of AD without a corresponding increase in
plaques and tangles [58,104]. Rather, a prominent increase in microinfarcts is observed [58],
suggesting that the effect of diabetes on AD risk is related to microvascular lesions that
amplify the consequences of the neurodegenerative pathology [58]. The interaction between
vascular lesions and neurofibrillary tangles is less well understood. Focal cerebral ischemia
promotes tau phosphorylation in animal models [122], and hypertension increases
neurofibrillary tangles in the hippocampus of non-demented elderly persons [105],
suggesting a link between tau hyperphosphorylation and vascular factors. But, in triple
transgenic mice expressing plaques and tangles, transient cerebral hypoperfusion, a more
global yet milder ischemic insult, reduces tau levels [62]. Although this finding is
reminiscent of the reduced neurofibrillary tangles observed in patients with mixed dementia
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[32,75], to what extent ischemia modulates neurofilament dynamics and phosphorylation
remains unclear. Therefore, while there is evidence that ischemia promotes Aβ accumulation
by enhancing production and reducing its clearance, the impact that ischemia exerts on tau
pathology is less well understood.

Does the vascular pathology worsen the cognitive dysfunction in AD?
Ischemic lesions enhance the severity of the dementia in AD patients. Thus, most studies,
with notable exceptions [67], found that moderate AD pathology has a much greater
cognitive impact in patients who also exhibit basal ganglia lacunes, ischemic white matter
lesions, symptomatic, or silent infarcts [39,75,89,102,103,116,123]. The effect of vascular
lesions is more pronounced in patients in the early stages of AD [24,90]. In addition,
ischemic lesions and vascular risk factors also accelerate the tempo of the dementia [38].
AD patients with a reduced cerebrovascular reactivity to hypercapnia, an index of
cerebrovascular function, have a more rapid cognitive decline [95], linking disease
progression with cerebrovascular dysfunction. Therefore, coexisting cerebrovascular disease
or incident ischemic lesions may shorten the preclinical stage of AD and accelerate disease
progression.

Are the cognitive effects of vascular and AD pathology additive or synergistic?
In mixed dementias, the vascular pathology may worsen the cognitive effects of
neurodegeneration by different mechanisms. Neurodegeneration and ischemic lesions could
contribute independently to the dementia, the cumulative cognitive decline being the sum of
the deleterious cognitive effects exerted by each pathology (additive effects). Alternatively,
the vascular pathology could interact synergistically with the neurodegenerative changes
resulting in a cognitive decline greater than that produced by each pathology alone
(synergistic effects). Furthermore, there could be a “pathogenic” synergy between the two
disease processes, such that the tissue damage produced by vascular factors could enhance
the damage produced by neurodegeneration and vice versa. The evidence reviewed above
indicates that synergistic pathogenic interaction between vascular and neurodegenerative
pathologies is biologically plausible because in animal models ischemia promotes Aβ
accumulation and, in turn, Aβ aggravates ischemic injury (Fig. 3). The observation that
patients with AD have more cerebrovascular lesions at autopsy [51] would support this
possibility. Furthermore, with exceptions [2], cerebrovascular insufficiency has been
reported to promote formation of amyloid plaques [52]. On the other hand, synergistic
effects on cognition are suggested by clinical-pathological studies demonstrating that
minimal cerebrovascular pathology worsens the cognitive impact of mild AD pathology
[24,102,129]. However, in patients with more severe vascular and AD lesions, the cognitive
effects seem to be additive [90]. Therefore, it is likely that both additive and synergistic
effects can be observed depending on the magnitude of vascular and neurodegenerative
pathology and the stage of evolution of the disease process.

In conclusion, vascular lesions are detrimental to cognitive function either by directly
damaging neural pathways involved in higher integrated functions or by worsening the
impact of AD pathology. Considering that modifiable vascular risk factors can be controlled,
approaches to treat dementia should rely heavily on strategies to preserve cerebrovascular
health. In support of this approach, treatment of vascular risk factors in AD patients slows
down the cognitive decline [22]. A healthy diet and exercise can help minimize the
deleterious effects of cardiovascular risk factors and have a positive effect on cognition
[16,100]. In the absence of specific interventions targeting the mechanisms of vascular or
neurodegenerative dementia, lifestyle modification and risk factor control may be valuable
initial steps to mitigate the cognitive decline associated both with AD and VCI.
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Fig. 1.
The neurovascular unit is constituted by endothelial cells, myocytes, neurons and their
processes, astrocytes, and perivascular cells (microglia, macrophages, mast cells, etc.). In
arterioles and capillaries, the foot processes of astrocytes envelop the majority of the
abluminal vascular surface. In capillaries, myocytes are replaced by pericytes. The function
of the neurovascular unit is to maintain the homeostasis of the cerebral microenvironment.
Thus, the neurovascular unit is involved in cerebral blood flow regulation, blood–brain
barrier (BBB) exchange, immune surveillance, trophic support, and hemostatic balance.
Cardiovascular risk factors and Aβ alter the structure and function of the neurovascular unit
leading to neurovascular dysfunction
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Fig. 2.
Mechanisms of white matter damage produced by cardiovascular risk factors and Aβ.
Oxidative stress and inflammation induced by these factors are responsible for disruption of
the functions of the neurovascular unit (see Fig. 1), which, in turn, leads to local hypoxia–
ischemia, axonal demyelination, and reduced repair potential of the white matter by altering
oligodendrocyte progenitor cells. Data in autoimmune models of demyelination suggest that
loss of myelin increases the energy consumption of the affected axons and aggravates local
hypoxia. The resulting white matter damage contributes to both VCI and AD
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Fig. 3.
In vascular dementia, cerebrovascular risk factors induce neurovascular dysfunction (see
Fig. 2), leading to cerebrovascular insufficiency, which, in turn, leads to brain dysfunction
and damage. In AD, cleavage of the amyloid precursor protein by β- and γ-secretases leads
to Aβ accumulation, which also causes brain dysfunction and damage. Although
individually these pathways are capable of inducing cognitive impairment, their interaction
enhances their pathogenic effects. Thus, Aβ induces vascular dysregulation and aggravates
the vascular insufficiency, thereby enhancing the brain dysfunction and damage associated
with vascular risk factors. On the other hand, the hypoxia–ischemia resulting from the
vascular insufficiency increases Aβ cleavage from APP and reduces Aβ clearance through
the cerebral vasculature, promoting Aβ accumulation and the attendant deleterious effects on
the brain
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