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Abstract
The need for bone repair has increased as the population ages. Stem cell-scaffold approaches hold
immense promise for bone tissue engineering. However, currently, preformed scaffolds for cell
delivery have drawbacks including the difficulty to seed cells deep into the scaffold, and inability
for injection in minimally invasive surgeries. Current injectable polymeric carriers and hydrogels
are too weak for load-bearing orthopedic application. The objective of this study was to develop
an injectable and mechanically-strong stem cell construct for bone tissue engineering. Calcium
phosphate cement (CPC) paste was combined with hydrogel microbeads encapsulating human
umbilical cord mesenchymal stem cells (hUCMSCs). The hUCMSC-encapsulating composite
paste was fully injectable under small injection forces. Cell viability after injection matched that in
hydrogel without CPC and without injection. Mechanical properties of the construct matched the
reported values of cancellous bone, and were much higher than previous injectable polymeric and
hydrogel carriers. hUCMSCs in the injectable constructs osteodifferentiated, yielding high
alkaline phosphatase, osteocalcin, collagen type I, and osterix gene expressions at 7 d, which were
50–70 fold higher than those at 1 d. Mineralization by the hUCMSCs at 14 d was 100-fold that at
1 d. In conclusion, a fully-injectable, mechanically-strong, stem cell-CPC scaffold construct was
developed. The encapsulated hUCMSCs remained viable, osteodifferentiated, and synthesized
bone minerals. The new injectable stem cell construct with load-bearing capability may enhance
bone regeneration in minimally-invasive and other orthopedic surgeries.
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1. Introduction
Human bone marrow mesenchymal stem cells (hBMSCs) can differentiate into osteoblasts,
adipocytes, chondrocytes, myoblasts, neurons and fibroblasts [1–4]. hBMSCs can be
harvested from the patient, expanded in culture, induced to differentiate and combined with
a scaffold to repair bone defects [5–8]. However, autogenous hBMSCs require an invasive
procedure and have lower self-renewal potential with aging. Recently, human umbilical cord
mesenchymal stem cells (hUCMSCs) were derived for tissue engineering [9–14]. Umbilical
cords can provide an inexpensive and inexhaustible stem cell source, without the invasive
procedure of hBMSCs, and without the controversies of embryonic stem cells (hESCs).
hUCMSCs are primitive MSCs, exhibit a high plasticity and developmental flexibility, and
appear to cause no immunorejection in vivo [10]. Recently, hUCMSCs were cultured with
tissue culture plastic [11], polymer scaffolds [14], and calcium phosphate scaffolds for tissue
engineering [15–17].

Calcium phosphate (CaP) scaffolds are important for bone repair because they are bioactive,
mimic the bone minerals, and can bond to neighboring bone, in contrast to bioinert implants
that can form undesirable fibrous capsules [18–20]. The CaP minerals provide a preferred
substrate for cell attachment and expression of osteoblast phenotype [21,22]. However, for
preformed bioceramic scaffolds to fit in a bone cavity, the surgeon needs to machine the
graft or carve the surgical site, leading to increases in bone loss, trauma, and surgical time
[1]. Preformed scaffolds have other drawbacks including the difficulty in seeding cells deep
into the scaffold, and inability for injection in minimally-invasive surgeries [1,8]. Injectable
scaffolds for cell delivery are advantageous because they can: (i) shorten the surgical
operation time; (ii) minimize the damaging of large muscle retraction; (iii) reduce
postoperative pain and scar size; (iv) achieve rapid recovery; and (v) reduce cost. Several
injectable hydrogel and polymer carriers were meritorious for cell delivery [8,23]. However,
current injectable carriers cannot be used in load-bearing repairs [8,23]. For example, it was
concluded that “Hydrogel scaffolds … do not possess the mechanical strength to be used in
load bearing applications” [23]. Mechanical properties are of crucial importance for the
regeneration of load-bearing tissues such as bone, to withstand stresses to avoid scaffold
fracture, and to maintain the structure to define the shape of the regenerated tissue.
However, to date, an injectable, bioactive, and strong scaffold for stem cell encapsulation
and bone engineering is yet to be developed.

Calcium phosphate cements (CPCs) can set in situ to form a bioactive scaffold that bonds to
bone [24–27]. The first CPC was approved by the Food and Drug Administration (FDA) in
1996 for craniofacial repairs [24,28–30]. CPC has excellent osteoconductivity, is
bioresorbable and can be replaced by new bone [28–30]. In previous studies, alginate
hydrogel beads [17,31,32] and tubular hydrogels [33] were used to encapsulate cells in CPC.
The hydrogel would protect the cells during the CPC mixing and setting reaction. Once the
CPC has set, the hydrogel would dissolve and release the cells throughout the entire CPC
scaffold, while concomitantly creating macroporosity. However, the hydrogel beads had
diameters of 2–3 mm, hence the CPC-beads paste was not suitable for injection in
minimally-invasive surgeries.

Therefore, the objective of this study was to develop a novel injectable and mechanically-
strong stem cell construct, using CPC paste containing small microbeads of hydrogel for
bone tissue engineering. It was hypothesized that: (1) CPC containing hUCMSC-
encapsulating microbeads is fully injectable and mechanically strong, while that with large
beads of previous studies is weak and not injectable; (2) Mechanical properties of the
construct can be improved via chitosan and fibers, while maintaining the injectability for the
paste; (3) The injection process does not harm the hUCMSCs in the paste; (4) hUCMSCs in
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microbead-CPC constructs can remain viable, and be able to osteodifferentiate and
synthesize bone minerals.

2. Materials and methods
2.1 Encapsulating hUCMSCs in alginate hydrogel beads

Alginate was used to encapsulate and protect the cells, selected because it is non-cytotoxic
and can form a crosslinked gel under mild conditions [34]. Alginate is a natural
polysaccharide extracted from seaweed. A 1.2% (mass fraction) sodium alginate solution
was prepared by dissolving alginate (MW = 75,000 to 220,000 g/mol, ProNova, Norway) in
saline (155 mmol/L NaCl) [31,32].

hUCMSCs were generously provided by Dr. M. S. Detamore (University of Kansas,
Lawrence, KS). hUCMSCs were harvested from the Wharton's jelly of umbilical cords as
described previously [9,14]. Briefly, umbilical cords were obtained from an obstetrician and
incubated in a collagenase type I solution containing collagenase type I (300 U/mL),
hyaluronidase (1 mg/mL) and calcium chloride (3 mM) for 30 min at 37 °C. The cords were
minced and plated in a modified Dulbecco's modified Eagle's medium (DMEM) for 1 week
[12]. The cord remnants were then removed and the attached cells were harvested.

The use of hUCMSCs was approved by the University of Maryland. Cells were cultured in a
low-glucose DMEM with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin
(PS) (Invitrogen, Carlsbad, CA) (control media) [15]. At 80–90% confluence, hUCMSCs
were detached by trypsin and passaged. Passage 4 hUCMSCs were used for the experiments.
The osteogenic media contained 100 nM dexamethasone, 10 mM β-glycerophosphate, 0.05
mM ascorbic acid, and 10 nM 1α,25-Dihydroxyvitamin (Sigma) [14,17].

hUCMSCs were encapsulated in alginate at a density of 1 million cells/mL of alginate
solution [17]. Bead formation was accomplished by extruding alginate-cell droplets through
a syringe into a well of 100 mmol/L calcium chloride solution. The alginate droplets
crosslinked and formed beads. This resulted in beads of 2–3 mm in diameter, which were the
same as those synthesized in previous studies [17,31,32]. These beads are referred to as
“large beads”.

To improve the injectability, hUCMSC-encapsulating microbeads were developed in the
present study. The alginate-cell solution was loaded into a syringe which was placed into a
syringe pump and connected to a bead-generating device (Var J1, Nisco, Zurich,
Switzerland), as shown schematically in Fig. 1A. Nitrogen gas was fed to the gas inlet and a
pressure of 10 psi was established to form a coaxial air flow to break up the alginate
droplets. This produced small alginate beads. A microscope (Eclipse TE-2000S, Nikon,
Melville, NY) was used to measure the sizes of the beads. These beads are designated as
“microbeads”.

2.2 CPC, chitosan, and degradable fibers
CPC consisted of tetracalcium phosphate [TTCP: Ca4(PO4)2O] and dicalcium phosphate
anhydrous (DCPA: CaHPO4) [29,30]. TTCP was synthesized from a solid-state reaction
between DCPA and CaCO3, then ground in a blender to obtain particle sizes of 1–80 μm
(median = 17 μm). DCPA was ground to obtain particle sizes of 0.4–3.0 μm (median = 1.0
μm). The TTCP and DCPA powders were mixed at a molar ratio of 1:1 to form the CPC
powder.

Chitosan rendered CPC fast-setting and strong [35]. Chitosan and its derivatives are natural
biopolymers that are biodegradable and osteoconductive [36]. Chitosan lactate (Vanson,
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Redmond, WA) was mixed with water at a chitosan/(chitosan + water) mass fraction of
15%, which was termed “chitosan liquid” [37]. An absorbable suture fiber (Vicryl,
polyglactin 910, Ethicon, Somerville, NJ) was used due to its relatively high strength [38].
The fiber was cut to a length of 3 mm so that the CPC-fiber paste was injectable, based on a
pilot study.

2.3 Injectability
A 10 mL syringe (Free-Flo, Kerr, Romulus, MI) was used with a 10-gauge needle having an
inner diameter of 2.7 mm [39,40]. The 10-gauge needle was similar to spinal needles used in
the augmentation of osteoporotic vertebrae and the management of vertebral compression
fractures [41]. The CPC paste was mixed and filled into the syringe which was pressed via a
computer-controlled Universal Testing Machine (MTS, Eden Prairie, MN). The
compression was started and the paste was extruded until either the paste was entirely
extruded, or a maximum force of 100 N was reached [40]. The percentage of paste extruded
was determined as the mass of the extruded paste divided by the original mass of the paste in
the syringe [39]. The injection force was recorded and the maximum force was used as the
injection force [39].

Four constructs were tested for injectability, all at a CPC powder to liquid ratio of 2/1: (1)
CPC with water (control); (2) CPC with water + 50% volume fraction of hydrogel
microbeads (CPC-microbeads); (3) CPC with chitosan + 50% microbeads (CPC-chitosan-
microbeads); (4) CPC with chitosan + 50% microbeads + 20% fibers (CPC-chitosan-fiber-
microbeads).

The microbead volume fraction of 50% was selected because this could encapsulate a
relatively large amount of cells, and create 50% macroporosity in CPC after bead
dissolution. The 20% fiber volume fraction in CPC was selected because a preliminary study
showed that CPC with 10–20% of fibers were readily injectable, while CPC with 25% fibers
was difficult to inject. CPC with large beads, the same as those in previous studies
[17,31,32], was not included here because it was difficult to mix the large beads
homogeneously with the paste, the paste was difficult to inject, and the large beads broke
when forced through the 10-gauge needle.

2.4 Mechanical testing
CPC specimen of 3 × 4 × 25 mm was set in a humidor for 4 h at 37 °C. The hardened
specimen was demolded and immersed in the culture media for 1 d. A three-point flexural
test was used to fracture the specimens on the Universal Testing Machine [42]. Flexural
strength S = 3FmaxL/(2bh2), where Fmax is the maximum load on the load-displacement (F-
d) curve, L is span, b is specimen width, and h is thickness. Elastic modulus E = (F/d) (L3/
[4bh3]), where load F divided by displacement d is the slope. Work-of-fracture (toughness),
WOF, was calculated as the area under the F-d curve divided by the specimen's cross-
sectional area [38].

2.5 Viability of encapsulated hUCMSCs
hUCMSC viability was compared between: (1) cells in microbeads without injection, and
(2) cells in microbeads in CPC-chitosan-fiber paste after injection. The purpose was to
investigate if the paste mixing and injection process would harm the cells. Each injected
CPC construct was set in a well at 37 °C for 30 min. Then, 2 mL of the osteogenic media
was added to each well. After 1 d, the constructs were carefully broken and the cell-
encapsulating microbeads were collected. Cells were stained with a live/dead kit (Invitrogen,
Carlsbad, CA). The percentage of live cells was: PLive = NLive/(NLive + NDead), where NLive
= the number of live cells, and NDead = the number of dead cells [43]. The live cell density,
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DLive, was calculated: DLive = NLive/A, where A is the area of the view field for NLive
[15,17].

Next, the culture was prolonged to 7 d and 14 d, and the effects of different compositions of
the injectable construct were compared: (1) hUCMSCs in hydrogel microbeads alone; (2)
hUCMSCs in microbeads in CPC; (3) hUCMSCs in microbeads in CPC-chitosan; (4)
hUCMSCs in microbeads in CPC-chitosan-fiber paste. PLive and DLive were measured as
described above.

2.6 Osteogenic differentiation of encapsulated hUCMSCs
For osteodifferentiation, three experiments were performed. Experiment I used the
quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR, 7900HT,
Applied Biosystems, Foster City, CA). The encapsulated hUCMSCs were cultured in the
constructs for 1, 4, 7 and 14 d. The total cellular RNA of the cells were extracted with
TRIzol reagent (Invitrogen) and reverse-transcribed into cDNA using a High-Capacity
cDNA Archive kit. TaqMan gene expression assay kits, including two pre-designed specific
primers and probes, were used to measure the transcript levels of the proposed genes on
human alkaline phosphatase (ALP, Hs00758162_m1), osteocalcin (OC, Hs00609452_g1),
collagen type I (Coll I, Hs00164004), osterix (Hs00541729), and glyceraldehyde 3-
phosphate dehydrogenase (GAPDH, Hs99999905). Relative expression for each target gene
was evaluated using the 2-ΔΔCt method [44]. Ct values of target genes were normalized by
the Ct of the TaqMan human housekeeping gene GAPDH to obtain the ΔCt values. The Ct
of hUCMSCs cultured on tissue culture polystyrene in the control media for 1 d served as
the calibrator [17].

Experiment II measured the hUCMSCs' synthesis of the ALP protein. The cell-
encapsulating microbeads harvested were dissolved by 55 mmol/L sodium citrate tribasic
solution (Sigma). A colorimetric p-nitrophenyl phosphate (pNPP) assay (Stanbio, Boerne
TX) was used to measure the ALP activity. Normal control serum with a known
concentration of ALP served as standard. A microplate reader (M5 SpectraMax, Molecular
Devices, Sunnyvale, CA) was used and the ALP was normalized by the DNA content
[17,43]. DNA was quantified using the Quant-iT PicoGreen Kit (Invitrogen) following
standard protocols [17,43].

Experiment III examined the mineral synthesis by the encapsulated hUCMSCs. Minerals
emit red fluorescence when stained with xylenol orange (Sigma). The minerals synthesized
by the cells in the hydrogel microbeads harvested from the constructs were stained and
examined using both phase contrast and fluorescence images. Following a previous study
[17], the mineral area percentage was calculated as AMineral/ATotal, where AMineral is the
area of mineralization (red fluorescence), and ATotal is the total area of the field of view of
the image.

The cells were typically cultured for 1, 7, and 14 d following previous studies [32,37,43].
An exception was made for the RT-PCR experiment, where day-4 was also studied. This is
because genetic expression occurs in the early stage of osteodifferentiation. A previous
study observed a high ALP expression at 4 d [44]. Another exception was made for the ALP
protein synthesis by the cells, where day-1 was not done but day-21 was added. This is
because the ALP protein synthesis by the cells occurs at a later time; it peaked at 14-d in
previous studies [17,43]. Doing 7, 14 and 21 d would help determine if the ALP protein
synthesis indeed peaks at 14 d.

One-way and two-way ANOVA were performed to detect significant effects of the
variables. Tukey's multiple comparison tests were used at a p value of 0.05.
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3. Results
Fig. 1B shows the diameter histogram of the hUCMSC-encapsulating hydrogel microbeads,
based on the measurement of 211 randomly-selected microbeads. The diameter ranged from
73 to 465 μm, and the mean diameter was 207 μm.

The mechanical properties of CPC constructs containing 50% of hUCMSC-encapsulating
hydrogel beads are plotted in Fig. 1C–E. Compared to the large beads similar to those in
previous studies, the use of the new microbeads increased the flexural strength of the stem
cell-CPC construct by 4-fold, elastic modulus by 5-fold, and work-of-fracture by 7-fold.

The injectability results are shown in Fig. 2. All the pastes were readily extruded at
relatively small injection forces. Compared to CPC control (no chitosan, no beads, no
fibers), CPC + 50% microbeads was extruded under a higher force (p < 0.05). Adding
chitosan rendered the paste more cohesive, which was fully extruded at a much lower force
(p < 0.05). Compared to CPC-microbeads, the injection force for CPC-chitosan-fiber-
microbeads was similar (p > 0.1); therefore, adding chitosan and fibers for reinforcement did
not compromise the injectability.

Mechanical properties of CPC containing 50% of hUCMSC-encapsulating microbeads are
plotted in Fig. 3. Adding chitosan and fibers increased the load-bearing properties (p <
0.05). The CPC-chitosan-fiber-microbead construct reached a flexural strength of 4 MPa.
Compared to CPC-microbeads, the strength of CPC-chitosan-fiber-microbeads was 3-fold
higher, and WOF was 100-fold higher. Elastic modulus decreased because the polyglactin
fibers were flexible and not stiff. The previously-reported strength and modulus for
cancellous bone, injectable polymer and hydrogels for cell delivery are included in Fig. 3, as
described in Discussion.

Fig. 4 compares the hUCMSCs in microbeads alone (without CPC and without injection),
with those mixed in the CPC-chitosan-fiber paste and then injected. Both were cultured for 1
d and then stained. In (D) and (E), the percentage of live cells and cell density indicate that
the paste mixing and injection process did not harm the encapsulated hUCMSCs.

When prolonged to 7 d and 14 d, the cells remained viable and the percentage of live cells
was similar to those at 1 d (p > 0.1). For example, the percentage of live cells at 14 d was
(68 ± 5)% in microbeads alone, (73 ± 6)% in microbeads in CPC, (71 ± 4)% in CPC-
chitosan, and (71 ± 6)% in CPC-chitosan-fiber paste (p > 0.1). Therefore, compared to
hUCMSCs in hydrogel microbeads without CPC, encapsulation in CPC did not compromise
the cell viability.

In Fig. 5, the ALP gene expression was greatly increased at 7 d, and then slightly decreased
at 14 d. The OC, collagen type I, and osterix expressions showed similar trends. Compared
to hUCMSCs in microbeads without CPC, encapsulation in CPC did not adversely affect the
ALP, OC, collagen I, and osterix (p > 0.1).

The ALP protein synthesis (Fig. 6) by the hUCMSCs peaked at 14 d (p < 0.01). The ALP
activity at 14 d was about 6-fold higher than that at 7 d for all the constructs.

The mineral synthesis by hUCMSCs increased from 1 d, to 7 d, and 14 d (Fig. 7). This trend
was the same in all four constructs. The stained mineral area percentage is plotted in (E).
The staining areas at 14 d were nearly 100-fold those at 1 d. The incorporation of chitosan
and fibers, which greatly increased the load-bearing capability of CPC, did not compromise
the mineral synthesis of the hUCMSCs (p > 0.1).
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4. Discussion
Hydroxyapatite and other CaP bioceramics are important for hard tissue repair because of
their excellent biocompatibility [3,6,8,18–22]. When implanted in an osseous site, bone
bioactive materials such as HA and other CaP implants and coatings provide an ideal
environment for cellular reaction and colonization by osteoblasts. This leads to a tissue
response termed osteoconduction in which bone grows on and bonds to the implant,
promoting a functional interface. Many studies have improved HA and other CaP implants
[3,6,8,18–22]. MSCs showed elevated levels of ALP when grown on 45S5 bioactive glass,
as compared to tissue culture plastic [21]. An in vivo study showed that β-tricalcium
phosphate mixed with hMSCs formed new bone in posterolateral spine fusion [45]. Calcium
magnesium silicate induced proliferation and expression of ALP and OC in vitro [46].
hMSCs on HA had excellent osteoinduction [47], and porous HA scaffolds showed an
enhancement of BMSC differentiation [48]. However, sintered HA implants are generally
not resorbable. Another major disadvantage of current orthopaedic implants including
sintered bioceramics is that they exist in hardened forms, require machining, and may leave
gaps when fitted into a bone cavity [1].

CPC can self-set with intimate adaptation to complex-shaped cavities, can be easily shaped
for esthetics in craniofacial repairs, and is osteoconductive and bioresorbable [24-30]. In
previous studies, macroporous CPC was developed [30], fast-setting and washout-resistant
CPC was formulated [35], and the load-bearing properties were improved [38]. Other
studies focused on the injectability of CPCs, the incorporation of a polymeric drug and citric
acid [8,26,49–52], and the use of TGF-β1 loaded gelatin microspheres [27]. Osteoblasts and
BMSCs were cultured on CPC [15,37,43]. In recent studies, cells were encapsulated in
alginate beads which were then mixed with CPC [17,31,32]. The cells were viable and able
to osteodifferentiate [17]. However, the beads had diameters of 2–3 mm, the CPC-bead
paste was difficult to be injected, and the CPC construct containing the large beads was
mechanically weak.

The present study reports an injectable stem cell-CPC construct, via microbeads for
hUCMSC encapsulation and absorbable fibers for reinforcement. Compared to previous
CPC containing large beads [17,31,32], the CPC-microbead-stem cell construct had higher
mechanical properties (Fig. 1C–E), and was readily injectable (Fig. 2). When a powder and
a liquid were mixed into a paste and injected through a cannula, a filter-pressing
phenomenon often occurred in which the liquid was pushed out but a major portion of the
powder remained inside the syringe, leading to a phase separation of the liquid and the solid
[26,49,52]. The addition of chitosan formed a viscous and cohesive paste, and made it more
difficult for the solid and liquid phases to separate, thereby improving the injectability of the
paste. This resulted in the injection force of CPC-chitosan-fiber-microbeads to be
statistically similar to that of CPC-microbeads without fibers (Fig. 2B), while the former
was much stronger (Fig. 3). Therefore, the incorporation of chitosan and fibers greatly
increased the strength and toughness for the stem cell construct, without compromising the
injectability, compared to CPC-microbeads without fibers.

A previous study reported a tensile strength of 3.5 MPa for cancellous bone [53]. Other
studies reported that the strength was 0.7 MPa for injectable polymeric carriers for cell
delivery [54], and 0.1 MPa for hydrogels [55,56]. The elastic modulus was 0.30 GPa for
cancellous bone [57], 0.008 GPa for an injectable polymeric carrier [54], and 0.0001 GPa
for hydrogels [55,56]. These previous injectable carriers are meritorious for tissue
engineering in non-load-bearing locations. In comparison, the new injectable stem cell-CPC-
fiber construct are much stronger (Fig. 3), and may be useful for a wide range of craniofacial
and orthopedic applications.
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hUCMSCs are promising to be an inexhaustible and low-cost alternative to the gold-
standard hBMSCs, which require an invasive procedure to harvest. ALP, osteocalcin,
collagen I, and osterix gene expressions play important roles in the osteogenic
differentiation of MSCs [58–61]. In the present study on injectable hUCMSC-CPC
constructs, the ALP, OC, collagen I, and osterix gene expressions all peaked at 7 d. The
ALP activity via the pNPP assay peaked at 14 d. This is because at the early stage of
differentiation, the genetic expression of ALP is upregulated. This sets off a cascade of
events which lead to the production of the ALP protein. The RT-PCR method measures the
gene expression of ALP which occurs at an earlier time, while the pNPP assay measures the
activity of the ALP protein which occurs at a later time. ALP is an enzyme expressed by
MSCs during osteogenesis and is a well-defined marker for their differentiation [21,60,61].
Previous studies showed that the ALP activity peaked at 14 d [60,61], consistent with the
present study. Regarding the OC expression, a previous study showed that it peaked at 8 d
[44], which is consistent with the OC peak at 7 d of the present study. Furthermore, the
hUCMSCs in all constructs synthesized bone minerals as shown by the xylenol orange
staining. In a previous study, the cell-synthesized minerals were shown to be a poorly-
crystalline apatite similar to those in bone [17]. These results demonstrate that the
hUCMSCs encapsulated in the microbrads in the injectable CPC, in CPC-chitosan, and in
CPC-chitosan-fiber constructs have all differentiated into the osteogenic lineage and
synthesized bone minerals.

5. Conclusions
A fully-injectable, stem cell-encapsulating scaffold was developed with mechanical strength
matching that of cancellous bone. The hUCMSC-microbead-CPC construct was much
stronger than previous CPC containing large alginate beads which was not injectable. The
new hUCMSC-microbead-CPC construct was fully injectable under a small injection force.
The strength and modulus of the new stem cell-CPC construct were much higher than
previous injectable polymers and hydrogels for cell delivery. The injection in this study did
not harm the hUCMSC viability. The encapsulated hUCMSCs differentiated into the
osteogenic lineage, with highly elevated ALP, OC, collagen I and osterix expressions, ALP
protein synthesis, and mineralization. The osteogenic markers and mineralization of
hUCMSCs in the injectable constructs matched those in hydrogel without CPC. These
results support the use of hUCMSCs as an inexhaustible and low-cost alternative to the
gold-standard hBMSCs, which require an invasive procedure to harvest. Furthermore, these
results show that the injectable, strong, stem cell-CPC scaffold is promising for minimally-
invasive and other orthopedic surgeries.
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Figure [1].
Alginate microbead synthesis and mechanical properties of the constructs. (A) Schematic of
the hUCMSC-encapsulating microbead synthesizer. (B) Microbead size. (C) Flexural
strength, (D) elastic modulus, and (E) work-of-fracture (toughness) of CPC containing 50%
of hUCMSC-encapsulating beads (mean ± sd; n = 5). The large beads were the same as
those in previous studies [17,31,32]. The microbeads were made in this study.
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Figure [2].
Injectability of the hUCMSC-CPC constructs (mean ± sd; n = 3). (A) Percent of paste
extruded. (B) Maximum injection force. The injection force for CPC-chitosan-fiber-
microbeads was statistically similar (p > 0.1) to that for CPC-microbeads without fibers.

Zhao et al. Page 14

Biomaterials. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure [3].
Mechanical properties of the injectable stem cell constructs. Each specimen contained 50%
by volume of microbeads that encapsulated 150,000 hUCMSCs. The strength and work-of-
fracture (mean ± sd; n = 5) of the constructs were greatly increased via the incorporation of
chitosan and fibers. Values for cancellous bone, injectable polymer, and hydrogels are
obtained from the literature, as described in the Discussion section.
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Figure [4].
hUCMSC viability without injection or after injection. (A) hUCMSCs in microbeads
(without CPC, without injection). (B) hUCMSCs in microbeads after mixing with CPC-
chitosan-fiber paste and after injection. Live cells (green) were numerous. Dead cells (red)
were very few (C). (D) Percent of live cells (mean ± sd; n = 5). (E) Live cell density. The
CPC mixing and injection process did not significantly harm the encapsulated hUCMSCs.
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Figure [5].
Osteogenic differentiation of the encapsulated hUCMSCs. The RT-PCR results of (A) ALP,
(B) OC, (C) collagen type I, and (D) osterix gene expressions (mean ± sd; n = 5). ALP, OC,
collagen I and osterix were all greatly increased at 7 d, compared to those at 1 d.
Encapsulation in CPC pastes did not adversely affect the bone marker expressions,
compared to hUCMSCs in hydrogel without CPC.
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Figure [6].
Colorimetric pNPP assay of ALP protein synthesis by the encapsulated hUCMSCs. The
ALP enzyme production greatly increased at 14 d over that at 7 d, and then decreased at 21 d
(mean ± sd; n = 5). The ALP activity of hUCMSCs in all the injectable CPC-based
constructs matched that in hydrogel microbeads without CPC.
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Figure [7].
Synthesis of bone minerals by the encapsulated hUCMSCs. (A–D) Mineral staining photos.
Minerals emitted red fluorescence when stained with xylenol orange. The mineralization by
hUCMSCs increased rapidly with time in all four constructs. (E) Mineral area fraction
(mean ± sd; n = 5). hUCMSCs encapsulated in the injectable and mechanically-strong CPC-
based constructs matched the mineralization in hydrogel without CPC.

Zhao et al. Page 19

Biomaterials. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


