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Abstract
Objective—Small integrin-binding ligand N-linked glycoproteins (SIBLINGs) are expressed in
dentin and believed to control dentinogenesis. Five members of SIBLING family include bone
sialoprotein (BSP), osteopontin (OPN), matrix extracellular phosphoglycoprotein (MEPE), dentin
matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP). These genes are clustered on
chromosome 4q in humans and share similar biological features. DSPP and DMP1 are processed
into given structural/functional fragments in rat and porcine. It still remains unclear whether these
evidences occur in mouse and other SIBLING members are also processed into given fragments
from their parent precursors. The aim of this study was to identify expression and processing of
the five proteins in two mouse odontoblastic cell lines.

Design—Two mouse odontoblastic cells were used to study expression and processing of the five
SIBLING proteins by immunohistochemistry and Western blot analyses.

Results—Immunohistochemistry study showed that all of the five SIBLING members were
expressed within the cytoplasm and cellular processes in the mouse odontoblastic cell lines.
Expression levels of DMP1 and DSPP were higher in differentiated mouse odontoblasts than
undifferentiated mouse odontoblasts. Immunolabeling signal of DSP and MEPE was also detected
within the nucleus in the two cell lines. Western blot assay indicated that all five members were
processed into at least two fragments in these cells.
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Conclusions—These results suggest that different processed products and expression levels of
the SIBLING proteins may play distinct biological functions in tooth development and
mineralization.
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1. Introduction
Dentin is one of the major mineralized tissues of tooth and originates from odontoblasts,
which synthesize collageous and non-collagenous proteins (NCPs) (1-4). Among NCPs, a
family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs) consists of
osteopontin (OPN), matrix extracellular phosphoglycoprotein (MEPE, also known as OF45),
bone sialoprotein (BSP), dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein
(DSPP). Genomic structures of the five SIBLING genes are located in chromosomes 4q in
human and 5q in mouse (5-8). They share common gene structure features such as small
non-translational first exon, start codon in exon 2 and large coding segment in the last exon
(5-8). Also, these proteins contain an Arg-Gly-Asp (RGD) motif that mediates cell
attachment/signaling via interaction with cell surface integrins and post-translational
modification of phosphorylation and glycosylation. These SIBLING genes are highly
expressed in mineralizing tissues related to tooth and bone development and mineralization
(9-17).

BSP is a sulfated, phosphorylated and glycosylated protein characterized by its ability to
bind to hydroxyapatite through polyglutamic acid sequences. High BSP expression is
restricted to the mineralized connective tissues and seen at the onset of bone, dentin and
cementum formation, indicating a role of this protein in the initial mineralization of these
tissues (10,18-19). OPN is a secreted adhesive glycoprotein expressed in both mineralized
and non-mineralized tissues (20). In mineralized tissues, this gene expression is relatively
abundant in bone (13) but also found in dentin (9,21-22). Defective OPN gene in mice
increases mineral content and crystallinity (23). MEPE was isolated from a human
oncogenic hypophosphatemic osteomalacia (OHO) tumor cDNA library (24). Mouse and rat
MEPE genes were also cloned (25-26). This protein is rich in aspartate, serine and glutamate
residues and highly expressed in mineralized tissues (12,21,27-28). Increased expression of
MEPE occurs in patients with X-linked hypophosphatemic rickets (27). Targeted disruption
of MEPE gene in mice results in increased bone formation and bone mass, suggesting that
MEPE inhibits mineralization (28).

DMP1 is an acidic phosphoprotein which is predominantly expressed in dentin and bone
(14,29-31). Mutations of DMP1 in human and mice cause profound defects in
mineralization of both dentin and bone (32-35). DSPP is highly expressed in dentin
compared to bone and other tissues (13-14,16-17). DSPP protein is a precursor that is
proteolytically processed into dentin sialoprotein (DSP) and dentin phosphoprotein (DPP) in
rat teeth (36) whereas DSPP protein in porcine teeth is processed into DSP, DPP and a small
segment termed dentin glycoprotein (DGP), which is located between DSP and DPP (37).
Either DSP or DPP domain plays distinct biological functions during tooth development
(38-44). In addition, two major fragments, 37- and 57-kDa originally from DMP1 precursor
were observed in rat bone (45). Although cDNA sequences from mouse DSPP and DMP1
genes have been identified, it remains unknown if DSPP and DMP1 proteins in mouse are
processed into given fragments and those proteolytical fragments are the same expressional
patterns as that of rat and porcine. Furthermore, analysis of other SIBLING protein
sequences shows that several proteinase cleavage sites exist in those proteins (46-47). Thus,
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it is not known whether OPN, MEPE and BSP proteins like DSPP and DMP1 are processed
into given fragments.

Mouse is a comprehensive model for the study of tooth development and formation. Several
mouse immortalized odontoblast-like cell lines have been established and used to study their
biological functions responsible to intrinsic and extrinsic stimulations (17,48-53). As the
processing of SIBLING proteins in mouse odontoblasts has not been documented, in this
study, we used two mouse immortalized odontoblast-like cell lines to investigate expression
and processing of the five SIBLING proteins by immunohistochemistry and Western blot
analyses.

2. Materials and Methods
2.1. Cell lines and cell culture

Mouse differentiated odontoblast-like (MO6-G3) and undifferentiated odontoblast-like
(MD10-F2) cells were obtained from dental papilla mesenchymal cells isolated from the
first mandibular molars of Swiss Webster mice at embryonic day 18 and immortalized by
infection with recombinant defective retrovirus containing the temperature sensitive SV-40
large T-antigen cDNA (48). Both MO6-G3 and MD10-F2 cells express several markers of
the odontoblastic genotype positive in alkaline phosphatase (ALP) staining and form Von
Kossa nodules in vitro (17,48,53). Compared to MD10-F2, MO6-G3 cells express higher
levels of the NCPs (17) and are identified as differentiated odontoblast-like cells by
immunocytochemical and ultrastructural studies (53). MO6-G3 and MD10-F2 cells were
grown at 33°C under 5% CO2 in alpha minimum essential medium (α-MEM) supplemented
with 10% fetal calf serum, 100 units/ml penicillin/streptomycin, 50 μg/ml ascorbic acid, and
10 mM Na β-glycerophosphate (Sigma, St. Louis, MO).

2.2. Antibodies
Polyclonal rabbit anti-mouse DSP and anti-mouse DMP1 were purchased from Alpha
Diagnostic International, San Antonio, TX, USA. The anti-DSP and anti-DMP1 antisera
were raised in rabbit (Alpha Diagnostic International) against recombinant fragments
representing the NH2-terminal portion (amino acid residues Ile18-Lys371) of mouse DSPP
(54) and amino acid residues 1-508 of mouse DMP1, respectively (55). High titer polyclonal
antisera as measured by enzyme-linked immunosorbent assay (ELISA) were obtained and
then further purified by affinity column. Polyclonal rabbit anti-mouse MEPE (kindly
provided by Dr. Peter Rowe, The Kidney Institute, University of Kansas Medical Center,
MS, USA), polyclonal rabbit anti-mouse BSP (a gift from Dr. Larry Fisher, National
Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA), monoclonal
mouse anti-mouse OPN, (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) were used
as primary antibodies. Negative control of mouse IgG I was purchased from
Dakocytomation (Carpinteria, CA, USA).

2.3. Immunohistochemistry
MO6-G3 and MD10-F2 cells were cultured on glass slides, rinsed twice with 1 x cold
phosphate buffer saline (PBS) and fixed for 10 min on ice with methanol/acetone (1:1).
After washing once with 1x PBS, cells were treated with 10% normal goat serum (Sigma)
for 60 min at room temperature and followed by washing three times for 2 min with PBS.
The cells were then incubated with a dilution of 1:100 of primary antibodies specific for
BSP, DMP1, DSP, MEPE and OPN in PBS containing 1% BSA and 10% goat serum.
Negative control of mouse IgG I was purchased from Dakocytomation (Carpinteria). The
cells were incubated at 4°C for overnight and then washed 3 x for 5 min with PBS
containing 0.1% goat serum, followed by a 1 : 1,000 dilution of the secondary antibodies
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(goat-anti rabbit or goat-anti mouse) with Alexa Fluo® 488 (Molecular Probes, Eugene, OR,
USA) for 60 min at room temperature. Excess secondary antibody was removed by washing
the cells three times with PBS. For nucleus staining, the cells were incubated with a 1: 5,000
dilution of Hoechst (Sigma) for 5 min at room temperature. After washing the cells with
PBS, the sections were mounted using Vectashield mounting medium (Vector Laboratory
Inc., Burlingame, CA, USA). Images of Alexa Fluo® 488 staining of the various proteins in
cultures were obtained at the Core Optical Imaging Facility at UTHSCSA under the same
parameters in a Nikon inverted microscope and quantitated by means of NIS-GIEMENTS
software. For each experiment, all slides were simultaneously processed for a specific
antibody, so that homogeneity in the staining procedure was ensured between the samples.
After the capture of these images at the same magnification, the threshold was set and
maintained for each slide in the experiment. The optical density was calculated by use of the
morphometric analysis within the software package.

2.4. Western blot analysis
Western blotting assay was performed as described earlier (17). Briefly, MO6-G3 and
MD10-F2 cells were washed with 1x cold PBS and lysed with RIPA buffer (1x PBS, 1%
Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 10 mg/ml phenylmethylsulfonyl
fluoride, 30 μl/ml aprotinin, 100 mM sodium orthovanadate; Santa Cruz Biotechnology,
Inc.). Whole cell lysates (50 μg/well) were resolved by 7 % SDS-polyacrylamide gel
electrophoreses (SDS-PAGE) and transferred to Trans-Blot membranes (Bio-Rad
Laboratory, Inc. Hercules, CA, USA). For the detection of mouse SIBLING proteins, the
membranes were blocked with 5% non-fat milk in TBST buffer (10 mM Tris-HCl, pH 7.5,
100 mM NaCl, 0.1% Tween-20) for 60 min at room temperature. After washing, the
membranes were incubated with primary antibodies against DSP, DMP1, MEPE, BSP and
OPN with appropriate dilution (1:500-800) for overnight at 4°C. The secondary antibodies
(horseradish peroxidase-conjugated anti-rabbit or anti-mouse IgG) were used a dilution of
1:10,000 at room temperature for 60 min. Immunoreactivity was determined using the ECL
chemiluminescence reagent (Amersham Biosciences, Piscataway, NJ, USA). As a control,
goat anti-mouse β-actin antibody was used (Santa Cruz Biotechnology, Inc.).

3. Results
3.1. BSP

To assess BSP expression in mouse odontoblastic cells, we performed
immunohistochemistry. The results in Figure 1 G-L showed that BSP expression was well
distributed in the cytoplasm and cellular processes in both mouse odontoblastic cells. High
magnification analysis demonstrated that BSP signal appeared more intense in the
perinuclear basis (Fig. 1 K-L). To identify expressional patterns of BSP protein, we
performed Western blot analysis. Data showed that approximately 39 and 27 kDa fragments
of BSP protein were detected in the two odontoblastic cells (Fig.1Y).

3.2. OPN
Like BSP, OPN expression was predominantly detected in the cytoplasm and cellular
processes in MD10-F2 and MO6-G3 cells (Fig.2 G-L). Expressional patterns of OPN in the
mouse odontoblasts were analyzed by Western blot assay using anti-OPN antibody. Figure
2Y showed that three major fragments of OPN polypeptides were seen in a 7% SDS-PAGE
gel.
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3.3. DMP1
DMP1 signal was distributed in the cytoplasm and cellular processes in MD10-F2 and MO6-
G3 cells by immunohistochemical analysis (Fig.3 G-L). Compared to MD10-F2 cells,
DMP1 expression level in MO6-G3 cells was more profound (Fig.3 K-L). The same
processed fragments of DMP1 protein in the two mouse odontoblastic cells were seen at
molecular weight of about 53, 51 and 35 kDa, respectively in a 7 % SDS-PAGE gel using
immunoblotting assay (Fig. 3Y). The processed patterns of mouse DMP1 polypeptides were
similar to that of full-length mouse recombinant DMP1 protein cleaved by BMP1/tolloid-
like proteinases in vitro (56).

3.4. MEPE
To examine MEPE expression in the mouse odontoblastic cells, we performed
immunohistochemistry assay and found MEPE expression within both the cytoplasm and
nucleus in MD10-F2 and MO6-G3 cells (Fig. 4G-L). Expressional patterns of MEPE were
analyzed by Western blot assay. The results showed that three major fragments of MEPE
protein were seen in the mouse odontoblastic cells (Fig.4Y).

3.5. DSP
Like MEPE, DSP signal was present within the cytoplasm and nucleus in the two
odontoblastic cells by immunocytotistochemistry (Fig. 5G-L). However, DSP expression
level in MO6-G3 cells was more intense than that of MD10-F2 cells (Fig.5G-L). To
determine expressional patterns of DSP protein analyzed by Western blot assay, we were
able to detect multiple fragments of DSP polypeptides in MD10-F2 and MO6-G3 cells using
anti-DSP antibody (Fig.5Y). Four major bands were seen at molecular weight of about 250,
170, 70, 15 kDa, respectively.

3.6. Control study
Negative control for SIBLING proteins examined above demonstrated no positive staining
by immunohistochemistry (data not shown). β-actin as internal control was used to detect
whether proteins from the two odontoblastic cells were degraded during protein isolation
process (Fig.5Z).

4. Discussion
SIBLING family is highly expressed in mineralized tissues and shares similar biological
features as well as plays significant roles during dentinogenesis (5-8). It is well known that
DSPP and DMP1 proteins are proteolytically processed into given fragments in tooth and
bone tissues (36-37,45). These processed fragments from DSPP and DMP1 precursors have
their unique biological roles during formation and mineralization of teeth and bones
(38-44,57-58). To determine whether the other members of SIBLING family exhibit the
same phenomena as the DSPP and DMP1, we assessed expression and processing of five
members of the SIBLING family; BSP, OPN, MEPE, DMP1 and DSPP in two mouse
odontoblastic cells. In this study, our results for the first time showed that the five SIBLING
proteins were expressed and processed into given fragments in the two mouse odontoblastic
cells. In addition, sizes and patterns of processed fragments from mouse DSPP and DMP1
precursors were different from that of rat and porcine described earlier (36-37,45,59).

For BSP, immunohistochemistry study indicated that its signal was dominantly seen in
cytoplasm and cellular processes in MD10-F2 and MO6-G3 cells (Fig. 1 G-L) in agreement
with previous reports in vitro and in vivo (10, 18). Expressional patterns of BSP protein
analyzed by Western blot assay demonstrated that two bands were detected at positions,
~39- and 27-kDa, respectively in the two mouse odontoblastic cells (Fig. 1Y). Based on our
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observation, this suggests that intact BSP protein was processed within the mouse
odontoblastic cells before being secreted. However, we have not known what enzymes
catalyze BSP and which positions of BSP are cleaved by the enzymes as well as their
biological roles.

Assessing OPN expression and processing, we found that in addition to OPN expression in
the two mouse odontoblastic cells, two major fragments of OPN were detected at molecular
masses of ~45- and 27-kDa by Western blot analysis (Fig. 2Y). Analysis of OPN protein
sequences indicates that this protein contains a thrombin cleavage site (20). Boukpessi et al.
reported that two fragments of OPN protein exist in human teeth using Western blot assay
(21). However, sizes of the two OPN fragments with ~60- and 46-kDa in human teeth are
different from that we observed. The differences may be due to species-species variations.

Although MEPE is an extracellular matrix protein, it is interesting that its expression was
detectable in both the cytoplasm and nucleus (Fig. 4G-L). However, its role in the nucleus
remains obscure. To examine expressional patterns of MEPE, we observed three major
fragments that were recognized by anti-MEPE antibody in the mouse odontoblastic cells
(Fig. 4Y). Guo et al. found that MEPE protein is cleaved by cathepsin B into several
fragments in vitro (47). For its biological roles, knock-out of MEPE gene in mice increased
bone formation and bone mass, indicating that MEPE inhibits mineralization process (28).
However, recent studies have found that given domains of MEPE protein have different
biological functions. Rowe et al. reported that a small peptide released from COOH-
terminus of MEPE was able to inhibit mineralization processes in vitro (60) whereas another
fragment from N-terminal MEPE with RGD motif accelerated mineralization (61). In this
study, we identified the three major fragments of MEPE polypeptides in the mouse
odontoblastic cells. Which fragment is derived from which portion of MEPE protein needs
to be further investigated.

In the present study, three major fragments of DMP1 were detected in the two mouse
odontoblastic cells (Fig. 3Y). The expressional patterns of the three DMP1 fragments were
similar to that of a full length recombinant mouse DMP1 cleaved by BMP1/tolloid-like
proteinases (56). However, the processed patterns of mouse DMP1 polyepeptides were
different from that of rat and porcine (45,62). Two DMP1 fragments, ~37- and 57-kDa were
detected in rat bone (45) whereas two bands of porcine DMP1 were seen at molecular
masses of ~90- and 60-kDa in porcine pulp-derived cells (62). It is known that rat DSPP is
processed into DSP and DPP (36) whereas porcine DSPP is processed into DSP, DGP and
DPP (37). Like DSPP, whether differences of the DMP1 processed products among mouse,
rat and porcine are due to species-species variation needs to be further investigated. For
DMP1 biological roles, DMP1 null mice showed teeth with failure of maturation of pre-
dentin into dentin, enlarged pulp chambers, increased width of pre-dentin zone with reduced
dentin wall and hypomineralization (35). Recent studies have found that these two fragments
from rat DMP1 play different roles during mineralization processes (57-58). A fragment
from the DMP1 COOH terminus (~57 kDa) isolated from rat bone enhanced the
hydroxyapatite nucleation whereas the other fragment from DMP1 NH2-terminal domain
(~37 kDa) inhibited nucleation of hydroxyapatite. Which fragment (37 kDa or 57 kDa) of
DMP1 plays its dominant role during different stages of tooth and bone development and
mineralization is currently unknown. We also observed that DMP1 was only expressed in
the cytoplasm, but not in the nucleus in the two mouse odontoblastic cells (Fig.3G-L).
Narayanan et al. (63) found that calcium is able to trigger DMP1 protein translocation from
the nucleus into the cytoplasm in mouse pre-osteoblastic (MC3T3-E1) cells. However, the
phenomenon occurred in MC3T3-E1 cells rather than in mouse fibroblast (NIH3T3) cells,
suggesting cell-type specific. In addition, DMP1 expression in MO6-G3 cells was higher
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than MD10-F2 cells (Fig.3G-L). This indicates that its expression is relevant to
odontoblastic differentiation and mineralization (14,29-31).

Like DMP1, higher levels of DSP expression were detected in MO6-G3 cells and
correspond to odontoblastic differentiation (13-14,17). It is interesting to note that DSP
protein signal was also present within the nucleus in the two mouse odontoblastic cells (Fig.
5G-L). However, its role within the nucleus remains unknown. Furthermore, multiple
processed fragments of mouse DSP polypeptides were detected by Western blot analysis
(Fig.5Y). Qin et al. characterized 13 peptides of various regions of DSP peptides from rat
teeth and identified major fragments ending at amino acid residues 409 and 421 (36).
Yamakoshi et al. found that DSPP is processed into DSP, DPP and DGP in porcine teeth
(37). DGP molecular weight on SDS-PAGE is 19 kDa and it contains an 81 amino acid
segment located between the DSP and DPP domain. DGP has not been identified in rat and
mouse teeth so far. DSP and DPP domains play different biological roles during tooth
development and formation. Heterogeneous mutations of DSP domain in human are
associated with dentinogenesis imperfecta type II (DGI-II) and dentin dysplasia type II
(DDII) (38-39,41-42) whereas DPP domain mutations cause dentinogenesis imperfecta type
III (DGI-III) (40). DSPP null mice showed teeth similar to human DGI-III with discolored
teeth, enlarged pulp chambers, a wider pre-dentin zone with thin dentin wall and
hypomineralization (43). In addition to dentinogenesis, DSP and DPP also have distinct
functions in enamel formation. Paine et al. reported that overexpression of DSP in transgenic
mice resulted in increased rate of enamel formation, but DPP overexpression created
“pitted” and “chalky” enamel of non-uniform thickness that is more prone to wear as well as
resulted in abnormal primatic enamel structures (44). Most of studies of DSPP-derived
proteins have been performed in rat and porcine tissues (36-37). In the present study, we
found the four major DSP fragments existed in the two mouse odontoblastic cells and
expressional patterns of mouse DSP were different from that of rat and porcine (36-37). The
differences among mouse, rat and porcine may be due to species-species variations. As a
full-length DSPP protein has not been detected within cells so far, it is speculated that DSPP
is catalyzed by given enzymes within cells before being secreted. Moreover, based on our
observations, it indicates that BSP, OPN and MEPE proteins were processed into given
fragments within the mouse odontoblastic cells.

In conclusions, our first approach was to detect expression of the SIBLING family; BSP,
OPN, MEPE, DMP1, and DSP in the two mouse odontoblastic cells by
immunohistochemistry assay. Besides their expression in cytoplasm, signal of MEPE and
DSP was also seen in the nucleus. The second approach was to investigate processing of the
five SIBLING proteins in the two mouse odontoblastic cells by Western blot analysis. The
results showed that these five proteins were processed into given fragments within the two
odontoblastic cells before being secreted.
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Fig. 1. BSP expression in MD10-F2 and MO6-G3 cells
A-F, MD10-F2 and MO6-G3 cells were photographed under a light microscope using a
Nikon camera. G-L, The BSP expression in these two cells was analyzed by
immunostaining with a specific anti-BSP antibody. M-R, The cells were stained with
Hoechst for the nucleus. S-X, Images were merged. High magnification allows seeing the
BSP localization to most prominent cytoplasm area. A unipolar staining of BSP is present
with a triangular basis on the perinuclear area (arrows). Bar = 100 μm. Y, Western blot
analysis of BSP expression in MD10-F2 and MO6-G3 cells. Two bands of BSP protein were
detected as 39-kDa and 27-kDa on a 7% SDS-PAGE gel using anti-BSP antibody. 10-F2
and 6-G3 indicate MD10-F2 and MO6-G3 cells, respectively.
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Fig. 2. OPN expression in MD10-F2 and MO6-G3 cells
A-F, Cells were photographed under a light microscope. G-L, The OPN expression in the
two cells was analyzed by immunostaining with a primary anti-OPN antibody. M-R, Cells
were stained with Hoechst for the nucleus. S-X, Images were merged from G-L and M-R.
OPN signal was detected in the cytoplasm and cellular processes in both the two cells
(arrows). Bar = 100 μm. Y, Western blot analysis of OPN expression in MD10-F2 and
MO6-G3 cells. Three major bands of OPN protein were detected by protein blot analysis as
55-kDa, 45-kDa and 27-kDa polypeptides in MD10-F2 and MO6-G3 cells on a 7% SDS-
PAGE gel. 10-F2 and 6-G3 denote MD10-F2 and MO6-G3 cells, respectively.
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Fig. 3. DMP1 expression in MD10-F2 and MO6-G3 cells
A-F, MD10-F2 and MO6-G3 cells were photographed under a light microscope using a
Nikon camera. G-L, The DMP1 expression in two odontoblastic cells was analyzed by
immunostaining with a primary anti-DMP1 antibody. M-R, Cells were incubated with
Hoechst dye for the nucleus staining. S-X, Images are composites of G-L and M-R. DMP1
was expressed in the cellular processes and cytoplasm in the two odontoblastic cells. Arrows
represent high DMP1 expression in specific areas in the cells by high magnification. Bar =
100 μm. Y, Western blot analysis of DMP1 expression in MD10-F2 and MO6-G3 cells.
Three major fragments of DMP1 were seen as 53-kDa, 51-kDa and 35-kDa, respectively in
a SDS-PAGE gel using anti-DMP1 antibody. 10-F2 and 6-G3 represent MD10-F2 and
MO6-G3 cells, respectively.
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Fig. 4. MEPE expression in MD10-F2 and MO6-G3 cells
A-F, Cells were photographed under a light microscope. G-L, The MEPE expression in the
two cells was analyzed by immunostaining with a primary anti-MEPE antibody. M-R, Cells
were stained with Hoechst for the nucleus. S-X, Images were merged from G-L and M-R.
MEPE signal was detected in the cytoplasm and nucleus in both mouse odontoblastic cells.
Arrows show MEPE signaling within the nucleus. Bar = 100 μm. Y, Western blot analysis
of MEPE expression in MD10-F2 and MO6-G3 cells. Three major bands of MEPE protein
were detected by protein blot analysis as 70-, 30- and 10-kDa polypeptides in MD10-F2 and
MO6-G3 cells on a 7% SDS-PAGE gel. 10-F2 and 6-G3 denote MD10-F2 and MO6-G3
cells, respectively.
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Fig. 5. DSP expression in MD10-F2 and MO6-G3 cells
A-F, Cells were photographed under a light microscope. G-L, The DSP expression in the
two cells was analyzed by immunostaining with a primary anti-DSP antibody. M-R, Cells
were stained with Hoechst for the nucleus. S-X are composites of G-L and M-R. DSP signal
was seen in both the cytoplasm and nucleus in the two mouse odontoblastic cells. Arrows
indicate DSP signaling within the nucleus. Bar = 100 μm. Y, Western blot analysis of DSP
expression in MD10-F2 and MO6-G3 cells. Multiple fragments of DSP polypeptides were
detected in MD10-F2 and MO6-G3 cells using anti-DSP antibody. Major bands are 260-,
170-, 70- and 15-kDa as indicated by arrows. 10F2 and 6G3 represent MD10-F2 and MO6-
G3 cells, respectively. Z, β-actin was used as control for Western blot assay.
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