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Abstract
PURPOSE—This review highlights the most recent publications addressing the relationship
between bone and vascular calcification in patients with chronic and end-stage kidney disease.

RECENT FINDINGS—The relatively new term “chronic kidney disease - mineral bone disorder”
(CKD-MBD) reflects the growing reach of CKD research into the realm of systems physiology,
involving a triad of renal, skeletal and vascular tissues. Recent studies address underlying
mechanisms of the bone and vascular complications of CKD and point to a variety of biochemical
factors, including phosphatonins [fibroblast growth factor-23, matrix-matrix extracellular
phosphoglycoprotein], bone morphogenetic protein 7, osteoprotegerin, matrix GLA protein,
ectonucleotide pyrophophatase/phosphodiesterase 1, alkaline phosphatase, and lipid oxidation
products. Studies also demonstrate that agents used for treatment of one component of the triad
often act on the other components of the triad - beneficially or adversely. These findings
emphasize the importance of avoiding the subspecialty, single organ viewpoint when treating
individual components of CKD-MBD.

SUMMARY—The consistent synchrony among chronic kidney disease, aortic calcification and
bone loss offers clues to underlying mechanisms for the systemic abnormalities.
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Introduction
In patients with chronic kidney disease (CKD), cardiovascular mineralization co-exists
paradoxically with skeletal demineralization [1-3]. Over half of CKD patients have some
form of cardiovascular calcification even before undergoing dialysis [4]. Towler has
described CKD as the “perfect storm” for cardiovascular calcification [5]. This association is
increasingly recognized among nephrologists, as evidenced by the formal acceptance of the
term “chronic kidney disease-mineral [and] bone disorder (CKD-MBD)” to describe the
systemic disorder that includes soft tissue calcification as well as disordered mineral
metabolism and skeletal bone growth, volume, turnover, mineralization, and/or strength.
Previously, the skeletal abnormalities of CKD were considered in isolation as “renal
osteodystrophy.” The broader clinical syndrome, CKD-MBD, formalized in 2005 at the
Controversies Conference on Renal Osteodystrophy organized by Kidney Disease:
Improving Global Outcomes [6], acknowledges the systemic consequences and damage to
organs beyond bone, primarily cardiovascular calcification. In this review, we focus on
reports published in 2009-10 that address the bone-vascular axis in chronic kidney disease,
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that is, how the cardiovascular calcification and bone disorders are linked in CKD-MBD
patients.

Clinical aspects of CKD-MBD are under investigation by a number of groups, including
Moe and colleagues [7] and London and colleagues [8]. In patients with CKD-MBD,
cardiovascular mineralization predominantly forms within the tunica media or medial layer
of conduit and muscular vessels, termed medial calcification. It often arises along the sheets
of elastin. Even calcification of intimal atherosclerotic plaques and cardiac valves,
particularly the aortic valve and mitral annular ring, may, and often does, arise concurrently
with medial calcification.

Although Shroff and colleagues found that vessels from both predialysis and dialysis
patients have significantly more calcium content than vessels from control patients, it is the
dialysis patients who develop increased aortic stiffness [9], raising questions about possible
differences in the quantity and mechanical quality of calcium deposits under the two
circumstances. They also reported that only dialysis patients have extensive loss, through
apoptosis, of smooth muscle cells (SMC) [9]. Resulting apoptotic bodies, which resemble
matrix vesicles, may provide the nidus for initiation of hydroxyapatite crystal formation.

Whether renal disease contributes to aortic stiffness was addressed by Kis and colleagues
[10], who found that children with CKD, who received renal transplant, had lower aortic
stiffness than those on dialysis, suggesting that dialysis promotes aortic stiffness,
presumably due to aortic calcification.

Calcium deposition imparts the greatest mechanical stiffness to arteries compared with
collagen and elastin. Aortic calcification is positively associated with calcium load and
negatively associated with bone activity. Adynamic bone is independently associated with
greater aortic stiffness regardless of calcium load [11]. In the presence of adynamic bone
disease, calcium load (phosphate binders) has a significantly greater influence on aortic
calcification and stiffening [11].

Prior studies have identified a direct role of inflammation in CKD and its cardiovascular
complications. However, it is not known whether the same cytokines drive both. Barreto and
colleagues [12] showed that at least one key inflammatory mediator, interleukin-6 (IL-6),
corresponded with CKD severity and was a strong predictor of cardiovascular mortality in
patients at various stages of CKD. Interestingly, the authors also found that IL-6 levels did
not correlate with severity of aortic calcification or stiffness [12], suggesting, among many
possibilities, that different cytokines mediate vascular calcification, or that the inflammatory
stimuli for the two disorders are not simultaneous.

It is not clear which aspect or aspects of bone pathology associate with vascular calcification
in hemodialysis patients. Tomiyama and colleagues [4] found an association of vascular
calcification with bone density, volume, and formation rate, but Adragao and colleagues
[13] found the association limited to bone volume, not formation rate, based on a small
cross-sectional study of hemodialysis patients.

Experimental animal models
Previously, rodent models used for CKD were the 5/6th nephrectomy and the adenine diet
models. These models have both vascular and bone disorders representative of acute onset
kidney injury with rapidly developing hyperphosphatemia and hyperparathyroidism.
Recently, Moe and colleagues [14] developed a rat model of slowly progressive CKD, a Cy/
+ rat with autosomal dominant polycystic kidney disease, which spontaneously develops
gradual CKD-MBD with vascular calcification on a normal phosphate diet.
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Potential mechanisms
It remains controversial whether the association between vascular calcification and bone
disorders in CKD is attributable to a causal relationship between the two or a shared cause,
such as aging or obesity. With respect to the role of aging, Tomiyama and colleagues
recently found that the relationship between coronary calcification and low bone formation
rate occurs independently of age in CKD patients not on dialysis [4]. It has generally been
considered that obesity correlates with high bone density due to higher mechanical load on
bones due to weight alone. Recent studies indicate that, when corrected for lean mass,
obesity is actually a risk factor for osteoporosis [15]. More specifically, the recent work of
Benetos and colleagues [16] found that aortic stiffness correlates with fat mass but not lean
mass; conversely bone density correlates with lean mass but not fat mass. These findings
suggest that there are independent regulatory mechanisms by which body composition
governs vascular vs. skeletal mineralization.

To address whether bone loss fuels vascular calcification, Barreto and colleagues [17]
recently confirmed the inverse relationship between bone volume and coronary calcification
in hemodialysis patients. As further evidence that the bone disorder contributes to vascular
calcification, Skolnik and colleagues [18] performed a small observational study comparing
osteoporosis treatment (bisphosphonates, calcitonin, or estrogen receptor modulators) with
echocardiographic progression of calcific aortic stenosis. They found that osteoporosis
treatment was strongly associated with decreased progression of calcific aortic valve
stenosis [18]. Notably, the latter study excluded patients with CKD, and, as an observational
study, it leaves the possibility that patients, who sought and complied with osteoporosis
treatment, also sought and complied with “heart-healthy” regimens that independently
reduced valve disease progression.

Other findings suggest that bone anabolic agents reduce vascular calcification in CKD.
Previously, the Towler laboratory demonstrated that intermittent parathyroid hormone
(PTH) regimen, an anabolic bone treatment for osteoporotic patients, attenuates vascular
calcification in mice [19]. Sebastian and colleagues [20] have now corroborated their
findings in a rat model of renal failure, and further demonstrated that intermittent PTH also
protects against nephrectomy (NPX)-induced vascular calcification. Interestingly, in the
untreated rats, vascular calcification did not develop in animals that underwent both
nephrectomy and parathyroidectomy despite similar serum levels of Pi and of bone
parameters as NPX-only rats [20].

Regulatory factors
During the period covered by this review, investigators have advanced knowledge about the
biochemical factors that regulate the bone-vascular axis in CKD, including phosphatonins
[fibroblast growth factor-23 (FGF-23), matrix-matrix extracellular phosphoglycoprotein
(MEPE)], bone morphogenetic protein 7 (BMP-7), osteoprotegerin (OPG), matrix GLA
protein (MGP), ectonucleotide pyrophophatase/phosphodiesterase 1 (Enpp1), bone/liver/
kidney (“tissue non-specific”) alkaline phosphatase (TNAP), and lipid oxidation products.

FGF-23, a phosphatonin secreted by osteoblasts to regulate kidney excretion of phosphate, is
highest in patients who have received long-term hemodialysis, and among these patients, the
serum level of FGF-23 correlates with vascular calcification and mortality [21]. Nasrallah
and colleagues [22] confirmed that FGF-23 and aortic calcification index were significantly
increased in dialysis patients and further showed that the severity of aortic calcification
correlated significantly and independently with FGF-23, based on stepwise multiple
regression analysis, as did systolic blood pressure; the two parameters explaining
approximately 50% of the variance in aortic calcification. El-Abbadi and colleagues also
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found a correlation of aortic calcification with FGF-23 as well as with osteopontin [23]. In
the latter study, a high phosphate diet was found to cause hyperphosphatemia, but not
hypocalcaemia, and to cause extensive aortic medial calcification in uremic, though not in
normal, mice [23], indicating that normal renal function is required to respond to FGF-23 to
regulate phosphate metabolism. Another phosphatonin, matrix-matrix extracellular
phosphoglycoprotein (MEPE), may also regulate bone and soft tissue calcification; mice
overexpressing MEPE have reduced bone mineralization and are resistant to diet-induced
renal calcification [24].

In most cases, there is a reciprocal relationship between bone and vascular calcification.
Possible common etiological factors that may account for the association between the
vascular calcification and skeletal decalcification include – BMP-7 and products of lipid
oxidation caused by oxidative stress. BMP-7 has been studied extensively by the Hruska
laboratory [25]. The Diabetes Heart Study showed that single nucleotide polymorphisms in
the BMP-7 gene had statistically significant (and reciprocal) effects on vascular calcification
and bone density in a population enriched with diabetes [26]. Lipid oxidation products also
may cause both vascular mineralization and skeletal demineralization [27,28]. Their role in
atherosclerosis and vascular calcification is established, and their contribution to bone
disease is under active investigation. Graham et al. [29] recently found that oxidized lipids
enhance T lymphocyte production of the ligand for receptor activator of nuclear factor-
kappa B (RANKL), which activates osteoclastic differentiation, suggesting a role for
oxidized lipids in bone resorption.

Paradoxically, OPG, a soluble decoy receptor for RANKL, has been associated with
coronary artery disease and vascular calcification [30]. In the Dallas Heart Study of a large
general population, elevated serum OPG levels were associated with greater coronary
calcification [31]. Morena and colleagues [32] found that plasma OPG levels greater than
750 pg/mL may predict coronary calcification in CKD patients. Interestingly, Morony and
colleagues [33] showed that OPG treatment in Ldlr-/- mice attenuates vascular calcification
without affecting the area of atherosclerotic lesions. These studies suggest that OPG may
associate with vascular calcification as a mitigating factor, rather than a causal one.

Extracellular pyrophosphate plays a key role in inhibiting mineralization at the level of
nanocrystal formation in both bone and vasculature. In seminal work, Terkeltaub and
colleagues [34,35] discovered the gene defect, mutation in Enpp1, causing the lethal
congenital disorder “idiopathic infantile arterial calcification,” which is now known as
“generalized arterial calcification of infancy.” The mechanism was identified as deficiency
of pyrophosphate generation by Enpp1. A new report from Babij and colleagues [36]
identifies strains of mice with spontaneous mutations in Enpp1 that have phenotypes of low
bone mass and ectopic calcification in the heart, aorta, and renal arteries and capillaries. In
CKD patients, TNAP, which degrades pyrophosphate, is associated with risk factors for
vascular calcification. CKD severity, TNAP, and the bone resorption marker, tartrate
resistant acid phosphatase, predict cardiovascular events [37]. However, it is not clear
whether loss of pyrophosphate generation by Enpp1 or excess breakdown of pyrophosphate
by alkaline phosphatase have a role in the vascular and bone complications of CKD.

Pharmacological agents
Many hemodialysis patients require life-long anticoagulation treatment, usually with
warfarin, to prevent thrombosis of their vascular shunts. Interestingly, warfarin’s
anticoagulant activity is based on its inhibition of vitamin K-dependent gamma-
carboxylation of glutamic acid residues in proteins of the classical coagulation cascade.
Coagulation proteins and Gas-6 are the only other proteins besides the two bone-related
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proteins, MGP and osteocalcin (also known as bone GLA protein; BGP), that require
vitamin K-dependent gamma-carboxylation. Presumably, the connection is the shared
requirement for calcium binding. Thus, warfarin treatment of rodents is an established
model for vascular calcification [38]. Recently, warfarin was shown to reduce lumbar spine
bone density in children [39]. Based on its inhibitory effect on MGP activity, warfarin is
expected to induce cardiovascular mineralization. In a recent study of almost 200 patients,
Koos and colleagues [40] found that calcific aortic stenosis increased with reduced level of
uncarboxylated MGP levels. Interestingly they also reported that renal dysfunction also
reduced uncarboxylated MGP levels. In mouse studies, warfarin induced aortic calcification
and reduced expression of MGP in aortic tissue and significantly increased cardiac valve
calcification [40].

Therapeutic agents for atherosclerosis, HMG-CoA reductase inhibitors (“statins”), are
reported to have pleiotrophic effects, including functioning as a vitamin D analog. In a
recent retrospective analysis of CKD patients who were using statins, Ashman and
colleagues found that the statins failed to substitute for vitamin D in control of PTH levels
[41].

Therapeutic agents for osteoporosis and hyperparathyroidism also may influence both
vascular and bone mineralization in CKD. Recently, Lomashvili and colleagues [42] found
that, in mice with adenine diet-induced uremia, bisphosphonates inhibited aortic
calcification. This model was unusual in that uremic rats had higher bone formation rate
compared with non-uremic rats and that bisphosphonate treatment reduced bone formation
rate in uremic rats, returning it to the level of non-uremic controls [42]. In the Cy/+ rat
model [43] the calcimimetic R-568 lowered serum PTH and calcium levels but raised
phosphate levels. R-568 with calcium supplements yielded more dramatic improvements in
bone volume, but produced more extraskeletal calcification than R-568 alone [43]. Overall,
this example and others make it clear that treatment of one aspect of CKD-MBD may lead to
undesirable effects on others.

Conclusion
In summary, there are shared mechanisms and regulatory factors governing vascular, bone,
and renal systems. Therefore, phosphate and hormonal dysregulation caused by chronic
kidney disease promote the disorders of vascular and skeletal biomineralization. The
interplay between these organs underscores the importance of systems physiology research
and a systems view in treating these diseases.
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