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The May threshold and
life-history allometry
One of Robert May’s classic results was finding
that population dynamics become chaotic when
the average lifetime rate of reproduction exceeds
a certain value. Populations whose reproductive
rates exceed this May threshold probably
become extinct. The May threshold in each
case depends upon the shape of the density-
dependence curve, which differs among models
of population growth. However, species of
different sizes and generation times that share a
roughly similar density-dependence curve will
also share a similar May threshold. Here, we
argue that this fact predicts a striking allometric
regularity among animal taxa: lifetime reproduc-
tive rate should be roughly independent of body
size. Such independence has been observed in
diverse taxa, but has usually been ascribed to a
fortuitous combination of physiologically based
life-history allometries. We suggest, instead,
that the ecological elimination of unstable popu-
lations within groups that share a value of the
May threshold is a likely cause of this allometry.
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1. INTRODUCTION
Robert May’s classic work demonstrated that unstable
dynamics occur in some simple, discrete single-species
population models when the average lifetime reproduc-
tive rate (Rmax) exceeds a specific critical value (May
1974; May & Oster 1976). Rmax is the net reproductive
rate for a population in the absence of density-
dependent feedbacks and thus represents a maximum
potential generational growth rate for that population.
May & Oster (1976) and others (Berryman & Millstein
1989; Thomas et al. 1980) suggested that the
likelihood of population extinction is elevated when a
population’s Rmax is high enough to lead to instability,
and, in particular, chaos. Thus, there may be a practi-
cal upper limit to the rate at which populations can
grow. However, it is unclear whether such an extinc-
tion process underlies other general patterns in
biology. Here we argue that the existence of this critical
value for Rmax, which we call the May threshold, pre-
dicts a widely observed allometric invariance in life
history.

The specific value of the May threshold in single-
species models depends on the density-dependence
curve defined by the model, and how the shape of
that curve changes with model parameters. Plotting
Ntþ1 versus Nt for a single model, and varying the
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parameter(s) determining population growth rates,
illustrates the curve and its changing shape associated
with different values of Rmax (figure 1a). May showed
that the tangent to this curve at the point where it
intersects the 458 line (population equilibrium) deter-
mines the stability behaviour. When this tangent is
shallower than 21.0, the population attains a stable
equilibrium at carrying capacity; if steeper than
21.0, the population begins to cycle and, as steepness
increases, chaotic behaviour ensues.

Different models of density-dependent population
growth generally have differently shaped curves, and
reach the May threshold at different values of Rmax

(figure 1b) (Getz 1996). Unfortunately, the actual
shape of density dependence is usually not precisely
known in each population, and it is likely that it varies
among species. If the shape of density dependence
varies among taxa, the specific value of the May
threshold varies as well (figure 1a,b). Abrams’ (2009)
generalization of the concept of density dependence
accounts as well for the underlying dynamic properties
of the population’s resources, and leads to a variety of
shapes far away from usual logistic-like curves. Our
examples here are based on widely used, simpler
models. Even within this narrow class, there is appreci-
able variation in shape and behaviour. Our assumption
here is only that related species are likely to have gener-
ally similar curves, or at least that the curves’ shapes do
not vary consistently with body size (Fowler 1981,
1988; Sibly et al. 2005).

May’s (1974) results were based on models with non-
overlapping generations. This important element has
been largely forgotten in favour of a discrete time for-
mulation, which does not refer to any particular time
unit. Returning to the original biologically meaningful
generational time scale is critical for our argument.
May’s results have been generalized for the case of over-
lapping generations by Levin & Goodyear (1980) and
more recently by Tuljapurkar et al. (1994). Instabilities
have been shown to appear in these more complex
models just as they do in the simpler ones. Recent fish-
eries data suggest that instability in populations under
exploitation results from changes in demographic
variables, consistent with modelling results (Anderson
et al. 2008; Hsieh et al. 2006).

The exact range of values for instability, and
whether the instability is periodic or chaotic, is not
consequential for our argument. For our purposes,
the more important aspect of May’s discovery is
simply the existence of an approximate critical value
for Rmax. Populations will generally have Rmax values
that are near or below the transition to unstable
dynamics predicted by the value of the May
threshold. Species that share similar density-
dependence curves will share similar values of the
May threshold.

These considerations immediately lead to the pre-
diction of a general allometric regularity. Rmax is
measured in units of generation time and generation
time scales positively with body size (e.g. Calder
1984). This means that organisms of different sizes
(generation times) that have the same-shaped density-
dependence curve have the same relationship between
Rmax and the stability criteria. They thus have the
same May threshold. If Rmax is limited to values near
to but not exceeding the May threshold, then for any
This journal is q 2010 The Royal Society
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Figure 1. Plots of Ntþ1 versus Nt , illustrating the May
threshold. (a) The May threshold is the value of Rmax at
the transition to unstable dynamics (see electronic sup-

plementary material, appendix SA for details). (b). The
May threshold (M) for several well-known one- and two-
parameter models of density-dependent population growth,
evaluated approximately at the point where chaotic behaviour
begins (as observed in simulations using these equations, see

electronic supplementary material, appendix SA for details);
R¼Ricker (May 1974; Ricker 1954); L¼logistic May (1974);
TR¼u-Ricker (Thomas et al. 1980), r¼4.62, u¼0.585;
TL¼u-logistic (Thomas et al. 1980; Gilpin & Ayala 1973),
r¼0.50, u¼5.50. The two-parameter examples in the figure

represent pairs of parameters that result in marked asymme-
try of the density-dependence curve, chosen to illustrate the
wide range in variation in M that is possible even with these
simple models.
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Figure 2. Maximum generational growth rate (Rmax) versus
body mass (B, in g), for groups of vertebrates spanning a
large range of sizes and for which species Rmax values are avail-
able from the literature. Both variables are log10-transformed,
since our prediction is that the ordinary least-squares slope of

such a relationship will not differ from 0. For three indepen-
dent tests, a Bonferroni corrected p-value of �0.017 is
required to indicate a significant departure from 0 at the
0.05 level (Rice 1989). (a) Mammals, log Rmax¼0.5520.03
(log B), p¼0.17, n¼58; Rmax estimated as the product of

annual birthrate and average female lifespan; adapted from
Purvis & Harvey (1995). (b) Birds, log Rmax¼0.8920.10(log
B), p¼0.023, n¼36; Rmax estimated as average lifetime pro-
duction of female fledglings; see electronic supplementary

material, appendix SC for data and sources. (c) Fishes, log
Rmax ¼0.68þ0.068(log B), p¼0.34, n¼38; estimates of
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group of similar species, there should be no relation-
ship between body size and Rmax. Moreover, this
size invariance would be observed within groups of
similar organisms even if among such groups density-
dependence curves differ such that the permitted
range of Rmax is different.
Rmax based on empirical spawner-recruitment curves
(number of reproducing females per generation; Myers et al.
1999); maximum reproductive rate is the slope at the origin

for the fit of a Ricker-like model to the data.

2. EMPIRICAL PATTERNS
Plots of estimated Rmax versus body mass for mam-
mals, birds and fishes support both of these points
(figure 2 and electronic supplementary material,
appendix SB). Across many orders of magnitude in
body mass there is little or no relationship with Rmax
Biol. Lett. (2010)
within these taxa. However, the mean Rmax values for
mammals (3.2) and birds (2.7) are similar, but that
for fishes is considerably higher (17.0), although
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among fishes there is still no trend with size. Substan-
tial variation of Rmax within groups presumably reflects
variation in the population dynamics of different
species, as well as the difficulty of estimating Rmax

accurately in natural populations. In addition, because
species may differ in the frequency or degree to which
they experience K versus r selection, species may vary
in the degree to which they typically approach the
May threshold for their group. However, in spite of
the observed variation, the absence of any strong
trend across such wide ranges of size is striking for
the allometry of a life-history variable.
3. DISCUSSION
The size invariance of Rmax has been noticed in mam-
mals since at least the early 1980s (Calder 1984;
Fowler 1988; Charnov et al. 2007). Students of allo-
metry usually describe this invariance as the result of
taking the product of a lifespan variable and another
life-history variable that scales with body mass to the
same power but of opposite sign (Calder 1984;
Fowler 1988; Charnov 1993). For instance, Calder
noticed that the number of births in a lifetime is the
product of lifespan, a þ1/4 power allometry of body
size (B), and annual birthrate, a 21/4 power (i.e.
Bþ1/4�B21/4¼B0). Fowler’s observation was similar
but based on the maximum intrinsic rate of increase,
rmax (21/4 power of mass) and generation length in
years (þ1/4 power of mass). In general, average life-
time reproduction rate has been thought of as a
consequence of such independent matching allometric
relationships, with lifespan or generation time expected
to scale as þ1/4, because the times associated with
purely physiological processes usually scale that way.
However, it is not obvious why physiological function-
ing per se should also determine the number of births
across the lifespan, which has population and
demographic implications that may not be wholly
constrained by the physiological performance of an
individual.

We believe that the size invariance of lifetime repro-
duction within taxa (and the variation in absolute
values among them) is less likely to be a coincidental
by-product of two independent allometries and more
likely to be the result of the size independence of the
May threshold among similar species. Rmax cannot
exceed the May threshold; species that cross this
value go extinct owing to unstable dynamics (May &
Oster 1976; Thomas et al. 1980). Today, we observe
the set of species that persist under the ceiling imposed
by their May threshold values. Ellner & Turchin
(1995) investigated time-series data on population
abundances to see whether the series were dominated
by stable, oscillatory or chaotic behaviour. They
found, consistent with our suggestion here, a concen-
tration of data series with parameters close to but not
over the threshold of chaos (see also Doebeli &
Koella 1995).

Some additional considerations suggest directions
for future research. Our argument applies only to
species experiencing scramble competition (e.g.
most vertebrates and insects). Species experiencing
primarily contest competition, such as most plants
Biol. Lett. (2010)
and sessile animals, have population dynamics that
are not subject to the instabilities discussed here.
Thus, we predict that contest-competing taxa will
not show size independence of average lifetime repro-
ductive success. Also, carrying capacity (K) should
affect the chance of extinction, independently of
unstable dynamics. We thus expect that high-K
species would be more resistant to extinction and be
able to tolerate higher Rmax values, other things
being equal.

The selective process of elimination of unstable
populations is one that operates on a level above indi-
vidual organisms; ordinarily individual selection
should favour fast growth rates and thus oppose it. In
fact, one could consider the process to represent the
differential mortality component of population or
species selection. However, selective elimination
alone does not fulfil the usual definitions of group
selection (see Okasha 2006 for a recent review). In
any case, we feel that the process implied by the exist-
ence of the May threshold should be uncontroversial
and is of compelling generality. To avoid misunder-
standing, we call this kind of selective process
ecological elimination (cf. Ginzburg & Colyvan 2004,
p.112), which is simply the elimination of
ecologically unstable configurations.

If ecological elimination has shaped sets of extant
species to contain only those that reproduce below
the May Threshold for their group, we have a simple
long-term evolutionary explanation of the size
invariance of lifetime reproduction.

We thank Peter A. Abrams, James H. Brown, Eric Charnov,
Tim Coulson and Marcus Hamilton for comments.
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