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Abstract

During chicken cardiac development the proepicardium (PE) forms the epicardium (Epi), which contributes to several non-
myocardial lineages within the heart. In contrast to Epi-explant cultures, PE explants can differentiate into a cardiomyocyte
phenotype. By temporal microarray expression profiles of PE-explant cultures and maturing Epi cells, we identified genes
specifically associated with differentiation towards either of these lineages and genes that are associated with the Epi-
lineage restriction. We found a central role for Wnt signaling in the determination of the different cell lineages.
Immunofluorescent staining after recombinant-protein incubation in PE-explant cultures indicated that the early
upregulated Wnt inhibitory factor-1 (Wif1), stimulates cardiomyocyte differentiation in a similar manner as Wnt stimulation.
Concordingly, in the mouse pluripotent embryogenic carcinoma cell line p19cl6, early and late Wif1 exposure enhances and
attenuates differentiation, respectively. In ovo exposure of the HH12 chicken embryonic heart to Wif1 increases the Tbx18-
positive cardiac progenitor pool. These data indicate that Wif1 enhances cardiomyogenesis.
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Introduction

The mammalian heart has a limited regenerative capacity. As a

direct consequence, restoration of proper cardiac function

following cardiomyocyte loss, due to myocardial infarction or

ischaemic heart disease, is severely impaired. Many research

projects have explored the means to re-populate damaged cardiac

tissue with functional cardiomyocytes using stem cells from either

endogenous or exogenous sources which have the potential to

differentiate into cardiomyocytes. Various signal transduction

pathways have been implicated in cardiogenesis like the Tgfb [1]

and Wnt [2] cascades. However, crosstalk between signal

transduction pathways is extensive and the exact mechanism by

which precursor cells differentiate into the myocardial lineage

remains largely unknown.

Several groups have used temporal microarray gene-expression

profiling using in vitro pluripotent cell models in order to identify

genes and processes associated with cardiomyocyte differentiation.

Peng et al. [3] were the first to use cDNA microarrays to study the

mouse pluripotent embryogenic carcinoma cell line p19cl6

differentiating towards cardiomyocytes, while more recently

Beqqali et al. [4] determined time-dependent gene-expression

profiles during human embryonic stem cells differentiation.

Although multiple technical and biological differences exist

between these two studies, a literature-aided meta-analysis [5]

on these data, indicated several common biological processes and

functional concepts to be associated with the observed differen-

tially-expressed genes in these two studies. The top contributing

concepts being Wnt signaling (Lef1, Axin2, Vangl1, Wnt3A, Dkk1)

and cardiac transcription factors (Gata4, Hand1, Mef2c, Lhx1)

(Buermans et al., unpublished results), demonstrating cardiogenic

differentiation is largely conserved across species.

The proepicardium (PE) is a second heart field derived, villous

non-myocardial outgrowth protruding into the pericardial cavity

adjacent to the inflow tract. During subsequent embryonic

development, the PE attaches to and covers the embryonic heart

tube, giving rise to the embryonic Epicardium (Epi). The Epi in

turn contributes precursors for several non-myocardial lineages

within the heart including coronary smooth muscle cells, coronary

endothelium and cardiac fibroblasts. Spontaneous myocardial

differentiation in chicken PE-explant cultures was first described

by Langford et al. [6]. More recent studies yielded more definite

insights into the processes involved [7–9]. The formation of the PE

from the pericardial mesoderm is regulated by a delicate spatial

distribution of members of the Bmp and Fgf growth factor family

[9]. Although epicardial lineage analysis have suggested a small

myocardial contribution of epicardial origin, cultured epicardial

cells do not differentiate into myocardial cells. Cultured proepi-

cardial cells, in contrast, spontaneously differentiate into myocar-

dial cells. Thus, in the short period of time between the emergence

of the PE and the subsequent formation of the Epi, these cells loose

the potential to differentiate towards the cardiomyocyte lineage.

This implies major changes in the gene-expression profile that

restricts the myocardial differentiation potential upon attachment
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of the PE to the embryonic myocardium. We refer to these

changes as the ‘‘epicardial lock’’. The Epi is maintained in this

state in the adult heart. The PE and its derived cell types are of

particular interest for adult cardiac regeneration due to their

innate ability to contribute to all major cardiovascular lineages.

Identifying genes and processes that underlie the ‘‘epicardial lock’’

may provide insight towards cardiac regeneration therapies in

which epicardial and/or epicardial derived cells are repro-

grammed such that the myocardial differentiation potential is

reactivated.

Chicken have been used as a model for cardiac developmental

biology for many years mainly due to the fact that the embryos can

be manipulated in ovo, the heart initially develops outside the

pericardial cavity, cardiac development can be precisely timed

[10], and tissue and organ size is overall larger than for their

mouse or rat counterparts. With the recent release of the

WASCHUC 2006 genome and the development of chicken

oligonucleotide microarrays, genome-wide gene-expression analy-

ses have become feasible. In the present study we determined

gene-expression profiles in PE-explant cultures during cardiomy-

ocyte differentiation as well as in various stages of epicardial

maturation using chicken oligonucleotide microarrays represent-

ing 20460 transcripts. We identified several groups of co-regulated

genes associated with different stages during cardiomyocyte

differentiation. We also show that the early stages during Epi cell

maturation are associated with a relatively low number of

differentially-expressed genes. Furthermore, by integrating these

two data sets we assessed divergent gene-expression profiles

between the myocardial and Epi lineages and found a central

role for Wnt signaling to be associated with the ‘‘epicardial lock’’.

We next performed a series of functional interventions in chicken

embryos, PE-explant cultures and mouse p19cl6 cells to show that

Wnt inhibitory factor-1 enhances cardiomyocyte differentiation by

increasing the cardiac progenitor pool.

Results

Dynamic changes in gene expression during
proepicardial to cardiomyocyte differentiation

PE were explanted on collagen gels and cultured for up to five

days to allow differentiation into the cardiomyocyte lineage. qPCR

analysis showed that the expression of the myocardial markers

Atp2a2, Myh6 and Myh7 reached maximum levels at 48 hours

(Figure 1A). From 72 hours onward spontaneously-beating

cardiomyocytes were observed. These data confirmed successful

in vitro cardiomyocyte differentiation from chicken PE cells.

Gene-expression profiles were determined prior to explanting

and after 14, 24, 36, 48, 60, 72 and 120 hours in culture. We

chose a 2-color dye-swapped looped experiment design (Figure S1)

which allows for a more accurate comparison between samples

than the common-reference approach does when applied to time-

course experiments [11]. Moreover, we applied the temporal

Hotelling T2-test [12,13] to robustly detect small but consistent

changes in temporal gene expression. This analysis indicated 1530

probes to be differentially expressed in time. K-means clustering

discerned distinct groups of genes with correlated profiles

(Figure 2). Many microarray studies subsequently rely on Gene

Ontology (GO) annotation [14], i.e., relationships between genes

and processes, to identify perturbed processes between experi-

mental conditions at a higher information level. Although GO-

annotation data for the chicken genome has improved consider-

ably over the years, it is still behind on Human, Mouse or Rat. We

found that the GO-annotation performs poorly when applied to

chicken specific or chicken-to-human ortholog GO annotation.

Moreover, the GO-annotation is potentially lagging behind on the

current literature knowledge and has limited coverage of cardiac

related processes and pathways. Instead, we used the Anni-v2 tool

[15] to identify groups of genes with common biological functions.

This tool is based on concept profiles, that summarize the

literature context in which the gene is mentioned, and are

compiled directly from the Pubmed records. The system is

completely transparent, allowing the user to trace back the actual

Pubmed records the inferred associations are based upon.

Genes in cluster 1 of the k-means clustering (Figure 2) were

progressively downregulated over time. Common concepts

associated with the genes in this cluster included cell-cycle

progression [AurkA, Cdc2, Cdc16, Ccnb2] and DNA mainte-

nance [Msh2, Exo1]. In contrast, genes in clusters 4 and 6 showed

progressively increased expression. As expected genes in these two

clusters were mainly basal cardiogenic factors implicated in

myocardial differentiation. Concept analysis identified genes

involved in extracellular collagen composition and maintenance

[Col1A2, Col3A1 and Col6A2 in cluster 4 and Col2A1, Sparc,

Tgfb3, Mmp23B and Mmp2 in cluster 6]. Also alterations in

proteoglycan composition [Lum & Dcn in cluster 4], Tgfb [Tgfb3

and TgfbR1 in cluster 4] and Ras signaling [Rab9, Rab6a and

Rab3gap2 in cluster 6] were indicated.

A distinction between early (cluster 3 & 7), intermediate (cluster

2) and late (cluster 5) changes in expression could be discerned

representing cardiac specification, maintenance and maturation,

respectively. Cluster 3 shows a transient increase in expression up

to 24–48 hours in culture that coincides with the specification

phase that precedes commitment to the cardiomyocyte lineage.

This cluster contains Bmp2, a known factor involved in cardiac

induction and specification [1]. Genes with correlated expression

profiles are speculated to have related biological properties.

Therefore, Wif1 and Fgf12, also in this cluster, represent candidate

genes for cardiomyocyte specification. Cluster 2 contains genes

associated with the dystrophin-glycoprotein complex and myosin

light chains [Sgcb, Tpm1, Myl1,2,3, MylK] and suppressor of

cytokine signaling proteins [Lifr, Cish, Socs1]. Several Wnt-

signaling related genes can be found in cluster 5 which display a

sharp increase in expression at day 5, e.g., two members of the

secreted Wnt antagonist family, Dkk3 and Frzb, and two members

of the Frizzled related receptor family, Fzd2 and Fzd7. Given the

large number of differentially-expressed genes identified in this

paper an in depth description of all genes in the individual clusters

is not possible. A list with all differentially expressed genes is

available in the Table S1.

Taken together, these data indicate that different phases during

cardiomyocyte differentiation from chicken PE cells can be

distinguished. Moreover, the differentially expressed genes in

cluster 3 may represent previously unknown modulators for

cardiac specification.

Divergent expression profiles between PE and Epi
differentiation

In contrast to PE explants, explanted Epi cells cannot

differentiate into a cardiomyocyte phenotype. In order to gain

more insight into the processes underlying this Epi-to-myocardial-

lock, we compared the PE explant expression data with gene

expression profiles derived from a series of different stages of

epicardial development, i.e., prior to vessel formation (HH25),

when intra-cardiac vessels have started to form (HH29), when the

coronary circulation has matured but is not yet perfused (HH32)

and when coronary circulation is functional (HH37). In line with

previous reports, expression levels of Aldh1a2 [16] and Tcf21 [17],

determined by qPCR, significantly decreased as maturation

PE Cardiomyocyte Differentiation
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progressed, while the endothelial progenitor marker Cd34 was

significantly increased at stage HH37 (Figure 1B). This indicates

that our samples represent the native development of embryonic

towards adult epicardium [18].

Genes with divergent expression profiles between the PE and

Epi differentiation series were considered to be associated with the

Epicardial lock. In total 258 genes were identified that showed

these divergent expression profiles, and these genes were clustered

into 6 discrete expression profiles (Figure 3). Interestingly, for the

PE explant data (blue lines), genes in cluster 2 of this combined

analysis contains genes with a similar transient expression profile

as was observed for the gene cluster associated with the cardiac

specification from the PE explant analysis from the previous

section (Figure 2; cluster3). Moreover, for these genes, the

transient upregulated expression profiles during PE explant

differentiation coincides with downregulated expression during

Epi differentiation (yellow lines), indicating these to be associated

with the Epicardial lock. Concept analyses on all genes in this

cluster and on the overlapping subset of genes with Figure 2;

cluster 3, showed a prominent association with Wnt signaling. A

table with concept analyses for all 6 clusters is available in Table

S2.

Although Wnt signaling has repeatedly been shown to be

involved at distinct stages of cardiovascular differentiation and

disease [2,19], and was prominently associated with distinct

clusters of differentially expressed genes in our analyses, many of

the individual Wnt signaling components do not have clearly

defined roles in cardiomyocyte differentiation. Upon further

inspection of the overlapping genes of these two clusters, the

extracellular wnt signaling antagonist Wif1 was selected as a

candidate for functional intervention studies in order to define its

role during cardiomyocyte differentiation. Moreover, Wif1 is an

extracellular acting factor, which makes it an excellent candidate

for exogenous manipulation of cellular fate. Therefore, for the

remainder of this manuscript we will focus on delineating roles of

Wif1 during cardiomyocyte differentiation. qPCR confirmed the

Figure 1. PE-Epi explant qPCR. Expression levels for hallmark genes during PE (A; Atp2a2, Myh6 & Myh7) and Epi (B; Raldh2, Tcf21 & Cd34)
cultures. Correction was applied to the relative expression values in order to remove multiplicative between-session variation [52]. Stage HH16 PE
expression has been set to 1. Bars represent mean expression levels + SD. * indicates a significant difference in gene expression relative to HH16 PE.
Confirmation of microarray gene-expression profiles for Wif1 (C&D) with qPCR. Y-axis represents log2-transformed mean-expression levels + SEM.
Stage HH16 PE expression has been set to 0. PE-explant cultures at 24, 48, 72 and 120 hours were compared with all four Epi stages. NADH
dehydrogenase (ubiquinone) Fe-S protein 3, 30kDa (NADH-coenzyme Q reductase)(Ndufb3) was used as an internal control to normalize gene
expression. Gene expression profiles for Wif1 (E) during p19cl6 differentiation towards a cardiac-myocyte phenotype. Hypoxanthine-guanine
phosphoribosyltransferase (Hprt) was used as an internal control to normalize qPCR gene-expression levels. Lines represent mean gene-expression
levels + SD calculated relative to time matched controls. * indicates a significant difference in gene expression relative to control conditions.
doi:10.1371/journal.pone.0015504.g001

PE Cardiomyocyte Differentiation
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differences in expression level for Wif1 (Figure 1 C&D) between

the PE and Epi series as well as for several other genes, e.g., Tll1,

Spry2, Cyr61 (Figure S2A). Overall, over 90% of all gene-

expression profiles could be confirmed by qPCR, although

quantitative differences between the methods were observed (this

paper & data not shown).

Wif1 stimulates cardiomyocyte differentiation in PE-
explant cultures

To establish the role of Wif1 in cardiomyocyte differentiation,

PE-explants were cultured for 5 days in the presence of either

human recombinant Wif1, pharmacological canonical Wnt-

signaling agonist (Cat# 681665, Calbiochem) or Gsk3b antagonist

Figure 2. Kmeans clusters. Kmean clustering of significantly differentially-expressed genes during PE-explant cardiomyogenesis. Zscore
transformed expression levels were clustered on Pearson correlation.
doi:10.1371/journal.pone.0015504.g002

Figure 3. EpiLock. Expression profiles for genes with divergent expression between the Epi and cardiomyogenic lineages. Y-axis represents Zscore-
transformed expression levels. Blue and yellow lines represent expression patterns for Epi and PE explant cultures, respectively.
doi:10.1371/journal.pone.0015504.g003

PE Cardiomyocyte Differentiation
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SB415286. Representative examples of immunofluorescently

stained explants are shown in Figure 4A through D. In these

cultures the total myocardial cell area, total number of cells and

the fraction of cardiomyocyte were quantified. A significant

reduction in the myocyte area compared to control explants was

observed in cultures treated with Wnt agonist while no

significant effects were observed for Gsk3b antagonist

SB415286 or Wif-1 recombinant protein (Figure 4E). Although

the total number of cells was less for all three treatments

compared to control (Figure 4F), the fraction of cells within the

myocardial area was significantly increased upon treatment with

Wif1 and both the Wnt agonist and Gsk3b antagonist compared

to control (Figure 4G). Taken together, these data indicate that

Wif1 stimulates cardiomyocyte differentiation in PE-explant

cultures.

Wif1 exhibits biphasic effects on cardiomyocyte
differentiation in p19cl6 cells

In parallel to the analyses in PE-explants, we also performed a

series of signal transduction perturbations to investigate the role of

Wif1 during first heart field cardiomyogenesis using the DMSO-

induced cardiomyocyte differentiation in the mouse pluripotent

embryogenic carcinoma cell line p19cl6. Cardiomyocyte differen-

tiation was evident from increased Atp2a2, Gata4 and Myl2

expression (Figure S2B). Expression of Mesp1, an early cardiac

mesodermal marker, peaked at 2 days after the onset of

differentiation and was maintained at approximately 5-fold higher

expression levels relative to control conditions from day 4 onward

(Figure S2B). From day 10, spontaneously beating clusters of cells

were observed in all DMSO treated cultures (data not shown).

Wif1 gene-expression was significantly increased during differen-

tiation albeit with different expression patterns in time than were

observed for the chicken PE cultures (Figure 1 C–E).

P19cl6 cells were stimulated with recombinant Wif1 at distinct

time intervals in the presence or absence of 1% DMSO.

Evaluating cardiomyocyte differentiation in these cultures showed

that stimulation with Wif1 in the absence of DMSO did not

significantly alter the expression level of Gata4 or Mesp1 after 4 or

8 days of culture compared to controls (data not shown). When

p19cl6 cells were treated with Wif1 during the first 4 days of the

culture in the presence of DMSO, a significant increase in Mesp1

gene expression was found at day 4 of the culture (Figure 5A) and

in Gata4 expression at 8 days of culture (Figure 5B). However,

when the cultures were stimulated with Wif1 for 8 days in the

presence of DMSO the increase in Gata4 expression observed at 4

days was no longer found (Figure 5B). This biphasic effect of Wif1

on the induction of myocyte differentiation was also observed for

the protein level of sarcomeric myosin heavy chain protein

(Figure 5C). Quantification of myosin heavy chain expression

levels after 12 days of culture in the presence of DMSO, showed a

5-fold increase compared to controls. Stimulating these cultures

with Wif1 during the first 4 days of culture resulted in an almost 3-

fold higher expression level (12-fold relative to control), whereas

addition of Wif1 from day 4 until 8 did not result in an attenuation

of the expression level of myosin heavy chain.

To further substantiate these observations Wif1 expression was

knocked down using gene-specific siRNA. Wif1 knockdown was

confirmed at 2 days after transfection (Figure S2C). At 4 days after

transfection, Wif1 gene knockdown could still be observed,

although at a reduced level (data not shown). The effects of

reduced Wif1 levels on cardiomyocyte differentiation were

evaluated at four days after transfection. In line with the

stimulatory effect of Wif1 protein supplemented to the culture,

siRNA mediated Wif1 gene knockdown resulted in a significant

reduction of Nppa gene expression in the presence of DMSO

(Figure 5D), however, no effects on Mesp1 or Gata4 expression

levels were observed (Figure S2C). These relatively mild effects of

Figure 4. Recombinant protein PE. Immunofluorescent staining for cardiomyocytes (red) and nuclei (green) in control PE-explant cultures (A,
n = 5 ) or explant cultures incubated with Gsk3b antagonist (B; 5 mM, n = 7), Wnt-signaling agonist (C; 5 mM, n = 6) or Wif1 (D; 50 ng/mL, n = 11).
Compounds were added to the cultures in both the collagen gel and M199 medium. Cultures were fixed and analyzed at day 5. The yellow bar at the
right bottom represents 500 mm. Quantified cardiomyocyte area, myocardial vs non myocardial cellular distribution and the fraction of myocardial
cells from these explant cultures are plotted in Figure E through G, respectively. Bars represent means + SEM. * indicates a significant difference
relative to untreated control conditions.
doi:10.1371/journal.pone.0015504.g004
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Wif1 knockdown at the early stages during cardiomyogenesis may

be explained by the fact that endogenous Wif1 in p19cl6 cells is

upregulated from day 8 onward (Figure 1E).

A previous study using p19cl6 cells [20] has shown that Wnt

antagonism and Wnt stimulation operating via the canonical

Wnt/b-catenin pathway, blocks or augments cardiomyocyte

differentiation, respectively. By contrast, our data shows that

Wnt inhibition by Wif1 augments differentiation. This opposite

effect may be explained by differences in the incubation timing

and/or the Wnt signaling modulators used. In order to

characterize Wif1 mediated effects on canonical Wnt signaling,

we performed a series of b-catenin/TCF-responsive Luciferase

reporter assays [21] and calculated the Top (46 TCF4 binding

sites) to Fop (mutated TCF4 binding sites) ratio as a measure for

nuclear activity of endogenous b-catenin (Figure 6). Incubation of

p19cl6 cells with 20 mM LiCl, which induces stabilization and

nuclear translocation of b-catenin via inhibition of Gsk3b, leads to

an expected increase in the Top/Fop ratio at both 48 and

96 hours. Although a small but statistically insignificant increase

was found after 48 hours of differentiation in the presence of 1%

DMSO, 96 hours of incubation resulted in a 14-fold increase in

the Top/Fop ratio relative to control conditions. Wif1 incubation

for 48 hours in presence of 1% DMSO leads to a significant 42%

reduction of the Top/Fop ratio and completely abolished the

increase in the Top/Fop ratio at 96 hours.

Taken together, the siRNA transfection and the protein incubation

data point to a biphasic effect of Wif1 via b-catenin signaling on

cardiomyogenesis in which early exposure enhances and late

exposure attenuates cardiomyocyte differentiation in p19cl6 cells.

Wif1 modulates cardiac development in vivo
The results from both the PE-explant cultures and the p19cl6

experiments argue for a prominent role of Wif1 in cardiomyogen-

esis. In order to confirm these findings in vivo, we treated chicken

Figure 5. p19cl6 intervention studies. Mesp1 and Gata4 gene expression in p19cl6 cells treated with Wif1 recombinant proteins (A&B). Time of
harvest, DMSO exposure and protein exposure time intervals (prot time) are indicated at the x-axis. Bars represent mean expression + SEM. C:
Representative western Blot analysis with MF20 and aTubulin at day 12, and quantification of the western blot analysis. Y-axis represents average MF20
to aTubulin ratio + SEM of six independent samples. Day 12 samples without DMSO were set to 1. D: Nppa gene-expression levels following siRNA-
mediated knockdown of Wif1 compared to control siRNA conditions. * indicates a significant difference between conditions as indicated in the graphs.
doi:10.1371/journal.pone.0015504.g005

Figure 6. Luciferase assay Wif1. Luciferase assays measuring the Top
(46 TCF4 binding sites) to Fop (mutated TCF4 binding sites) ratio as a
measure for nuclear activity of endogenous b-catenin at 48 and 96 hours
incubation with the assigned experimental conditions. * indicates a
significant difference between conditions as indicated in the graphs.
doi:10.1371/journal.pone.0015504.g006

PE Cardiomyocyte Differentiation
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embryos in ovo from HH12 until HH19-20 with Wif1 recombi-

nant protein. The development of the cardiovascular system and

liver was severely impaired (Figure 7 and Figure S3). The

ventricular chamber expanded dextro-laterally instead of caudo-

ventrally, causing the outflow tract to have a sharp hinge to the

right. The three pairs of pharyngeal arch arteries were present and

connected to the dorsal aortae. Throughout the heart the

myocardium was very thin and small trabeculae were present at

the detro-lateral side, indicating that ventricular chamber

formation was induced. At the dorsal side of the heart the vessels

patterned normally. The PE (Figure 7; green) was normally

formed on both the left and right sinus horns. However, at this

stage of development the PE villi at the left sinus horn would have

disappeared. The bilateral PE villi had expanded and reached the

dorsal aspect of the heart, but did not cover the myocardium of the

heart as is observed in controls (Figure 7 D,E). Using Tbx18

mRNA expression as a marker for the progenitor population at the

inflow of the heart, the Tbx18-expressing domain was much more

Figure 7. In ovo Wif1. Expression pattern of VMHC and Tbx18 in the hearts of control and Wif1 treated embryos after four days of incubations
(stage HH19-20). Wif1 exposure lead to an expansion of the Tbx18 expression domain upstream of the heart. Interestingly, also the Tbx182 and
VMHC-positive domain upstream of the heart is much more extensive than observed in controls (B vs G). Moreover, it is evident that in the WIF1
treated embryos no embryonic epicardium is formed resulting in a thinning of the ventricular myocardium (A,A9 vs F,F9). Ventral (C,H) and dorsal,
(D,E,I,J) views of 3D cardiac reconstructions indicating VMHC+/Tbx182 (gray), VMHC+/Tbx18+ (red), VMHC2/Tbx18+ (green) and lumen (yellow)
compartments. Dashed lines indicate the position of the respective sections. Abbreviations: oft indicates outflow tract; A, atrium; ift, inflow tract; avc,
atrioventricular canal; li, liver; V, ventricle; pe, proepicardium.
doi:10.1371/journal.pone.0015504.g007
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extensive in Wif1-treated compared to control embryos

(Figure 7B,E vs 7G,J). Basically all mesothelium and underlying

mesenchyme covering the large veins that flank the pericardial

cavity were Tbx18-positive in Wif1-treated embryos. As this

Tbx18-positive progenitor pool also contributes to the inflow

myocardium, the cardiomyocytes were visualized using a probe to

ventricular myosin heavy chain (VMHC, MYH7) mRNA

(Figure 7A,A9,F,F9). A large part of the Tbx18-expressing cells

upstream of the heart expressed VMHC. The Tbx182 and

VMHC-expressing cells were found directly adjacent to the

VMHC-positive and Tbx18-negative myocardium of the heart

and below the PE; Tbx18 was only expressed in the villous part of

the PE. The Tbx182, VMHC-expressing area was surrounded by

a region of Tbx18-positive and VMHC-negative cells. These

findings suggest that the Tbx18 progenitor pool upstream of the

heart expands and differentiates into cardiomyocytes, but are not

integrated into the heart, resulting in a myocardial sleeve covering

the inflow vessels.

Discussion

Epicardial lock
Cardiomyocytes that are lost during disease are not sufficiently

replaced, due to the limited regenerative capacity of the heart.

Supplementing additional cardiomyocytes to the heart would be

an option to strengthen the heart. However, thus far, approaches

supplementing stem cells of different origins have only resulted in

slight transient improvement of cardiac function [22]. An

alternative approach would be to reprogram epicardial-derived

cells that replace the lost cardiomyocytes in such a way that they

can differentiate into cardiomyocytes. Although the epicardial-

derived cells have the potential to differentiate in another cell type

[23], the factors to redirect their differentiation into cardiomyo-

cytes are not known. Because the epicardial-derived cells have

been suggested to comprise a stem cell like population [24] and it

has previously been shown that part of the proepicardial cells

spontaneously differentiate into cardiomyocytes and embryonic

epicardial cells do not upon culturing [7–9,25], these cell

populations might be a source to identify genes that prevent

differentiation of epicardial(-derived) cells into cardiomyocytes,

i.e., the epicardial lock.

Recently, claims have been made that an Tbx18-positive

epicardial-derived cell population contribution to the myocardial

compartment in mice [26,27]. This, however, has been disputed

by others [28] as Tbx18 is expressed early in the myocardium.

Nevertheless, no epicardial derived myocardial compartment has

been described during chicken cardiogenesis [25], advocating the

chicken as a legitimate model system to investigate processes

associated with PE -Epi lineage divergence.

By comparing the changes in gene-expression profiles of the

different stages of cultured proepicardial cells with the different

stages of embryonic epicardial cells, we were able to identify many

genes in these two lineages that had divergent profiles and

therefore may be associated with the epicardial lock. Of particular

interest are genes that, in addition to displaying divergent

expression profiles, are also associated with cardiac specification.

i.e., that show a transient increase in expression early during PE

differentiation towards cardiomyocytes in explant cultures. Our

analyses showed that Wnt signaling components were one group

of molecules that were prominently present in this subset of genes,

in addition to the many other Wnt-related components that our

array analysis had identified, like Wnt2a and Wnt5b, Frizzled

receptors Fzd1, 2 and 7, Frzb, dickkopf homolog 1, Wnt1

inducible signaling pathway protein-1 and b-catenin. Specifically,

the extracellular Wnt antagonist Wif1, was chosen as a follow-up

candidate to delineate its role during cardiomyogenesis in models

for the first and second heart fields using the p19cl6 cell line and

PE explant cultures, respectively.

Wif1 functional interventions
Little is known about the role of Wif1 in cardiogenesis.

Schneider et al. found that injecting mRNA coding for Wif1 in

Xenopus ventral marginal zone explants only weakly induced

Nkx2.5 expression [29]. In our p19cl6 intervention studies,

limiting Wif1 exposure to the first 4 days during during culture,

lead to induced Gata4 expression at day 8 of culture, while the

prolonged exposure up to day 8 blocked the increase in Gata4,

suggesting an increase in the cardiomyocyte progenitor pool

through early exposure. Western blot analysis for sarcomeric

myosin on day 12 samples confirmed this biphasic effect at the

protein level. Moreover, in vivo Wif1 incubation indicated that the

Tbx18 positive cardiac progenitor pool upstream of the heart

expands and differentiates into cardiomyocytes precociously.

Studies have shown canonical Wnt signaling to be biphasic in

nature in embryonic stem cell like models, i.e., early Wnt

activation stimulates while late Wnt activation inhibits cardiomy-

ocyte differentiation [30,31]. The Gata4 and Mesp1 expression

profiles in response to Wif1 in p19cl6 cells would indeed imply an

early phase of activated Wnt signaling, followed by a phase of Wnt

signaling inhibition. In the chicken PE-explant cultures we

observed that both Wnt activation and Wif1 incubation resulted

in a significant increase in the fraction of cardiomyocytes after 5

days in culture. This was unexpected since Wif1 was described by

Hsieh et al. [32] as an extracellular inhibitor of Wnt signaling

through sequestration of Wnt proteins and our Top/Fop

Luciferase reporter assays clearly established that Wif1 is able to

block b-catenin signaling (Figure 6). Thus, in addition to the

biphasic nature of the Wnt response, there may also be a dual

response to Wif1 exposure. It is possible that this biphasic and dual

response relate to the differences in response to canonical and non-

canonical Wnt signaling. While early and late Wnt activation

stimulates and inhibits cardiomyocyte differentiation, respectively

[30,31], non-canonical Wnt signaling, via Wnt11 has been shown

to enhance cardiomyogenic differentiation through PKC and

JNK-mediated signaling (reviewed in [33]). In addition, Afouda et

al. indicated that the GATA transcription factors reside at a

central position in between the Wnt signaling cascades during

cardiomyogenesis [34]. Moreover, extensive cross-talk between

canonical and non-canonical has been described and it is

becoming more evident that the Wnt signaling cascades can no

longer be regarded as linear or stand alone signaling entities

[35,36]. Therefore, it could be that Wif1, next to its Wnt

sequestration property, stimulates the calcium and/or JNK

dependent non-canonical pathways. This could explain Wif1’s

dual properties by manipulating the balance between canonical

and non-canonical Wnt signaling for enhancing cardiomyocyte

differentiation.

General conclusion
In summary, our study provides a thorough description of gene-

expression alterations that are associated with PE to cardiomyo-

cyte differentiation. Moreover, we are the first to deliver a detailed

description of gene-expression alterations that are associated with

the processes that constrain the embryonic, and adult, Epi from

differentiating into the cardiomyocyte lineage. The data is publicly

available for data mining via the GEO database (GSE13923).

Functional genomics will be required to ascertain whether any of

these genes could unlock the cardiogenic potential in epicardial(-
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derived) cells in order to use these cells for cardiac regeneration

therapy. Many factors are implicated in establishing the Epi-Lock

suggesting broad acting mechanisms underlie the lineage restric-

tion, potentially with Wnt signaling residing at a central position.

Still, it is unlikely that any individual factor will be able to fully

reinstate the cardiogenic capacity in epicardial(-derived) cells.

Identifying and targeting common features of the differentially-

expressed genes will be pivotal in these efforts. Additional

experiments focusing on DNA methylation, histone modifications

and microRNA expression may be necessary to fully appreciate

and to break the epicardial lineage restriction. In addition, for one

of the factors involved in the Epicardial lock, Wif1, we show with

model systems for the first and second heart fields that it enhances

cardiomyocyte differentiation in chicken PE explant cultures,

increases the Tbx18-positive cardiomyocyte progenitor pool in

chicken embryos stimulates cardiomyocyte differentiation in the

mouse p19cl6 cell line.

Materials and Methods

Chicken embryos, proepicardial and epicardial explant
cultures

Fertilized chicken eggs were obtained from a local hatchery

(Drost BV, Nieuw Loosdrecht, The Netherlands), incubated at

390C in a moist atmosphere, and automatically turned every hour.

After the appropriate incubation times, embryos were isolated in

Earl’s balanced salt solution without phenol red (EBBS, MP

Biochemicals) and staged according to Hamburger and Hamilton

[10]. Collagen gels were prepared and PE were isolated and

cultured as previously described [9,37]. In short, PE from stage

HH16-17 embryos were cut at the base to prevent liver

primordium or sinus venosus contamination. Up to 20 individual

PE were placed on a drained collagen gel and allowed to attach

overnight after which complete M199 medium (M199 medium

containing penicillin/streptomycin (Life Technologies), 5 mg/mL

insulin, 5 mg/mL transferrin and 5 ng/mL selenium (ITS,

Collaborative Research Inc.), 2 mM glutamine (Life Technolo-

gies), and 1% chicken serum) was added. At 14 hours in culture,

prematurely beating explants, indicative of myocardial cell

contamination, were removed. Embryonic Epi tissue samples

from chicken embryos at stages HH25 (n = 20), HH29 (n = 16),

HH32 (n = 20) or HH37 (n = 9) were processed as previously

described [9]. In short, the isolated hearts were placed on collagen

gels, allowed to attach overnight after which the hearts were

removed leaving the formed Epi monolayers on the collagen

surface and complete M199 medium was added. Human

recombinant growth factor Wif-1 (R&D systems) was added to

PE cultures at a concentration of 50 ng/mL in both the collagen

gel and M199 medium. Pharmacological Wnt-signaling agonist

(Cat# 681665, Calbiochem) [38] or Gsk3b antagonist SB415286

[39] was added at 5 mM. PE and Epi-explant cultures were

maintained until the indicated time points at which they were

either lysed for RNA isolation for array hybridization or real-time

PCR analyses or fixed and immunofluorescently stained. Myocytes

were visualized using MF20 antibody (Hybridoma bank, Iowa

City, IA, USA) and Goat anti Mouse Alexa488 (Molecular Probes)

and nuclei using SytoxOrange (Molecular Probes). The total area

occupied by cardiomyocytes and the total number of nuclei were

determined using an user-written macro in Image Pro-Plus 5.0

(measure_myo_fraction_v02), as previously described [7].

Wif1 in vivo assay and 3D cardiac reconstructions
After 48h of incubation, the eggs were windowed and if the

embryo had developed to stage 12, Wif1 was injected directly in

the yolk below the embryo to a final concentration of 50 ng/mL,

taking into account the diluent volume of the egg. Control

embryos were injected with growth factor solvent. After 24 hours

the embryos were again injected with the same amount of Wif1,

and re-incubated for another 24 hours (stage 19–20). Upon

isolation the embryos were staged, fixed in 4% paraformaldehyde

in PBS and embedded in paraplast. Upon sectioning (10 mm) the

mRNA of Tbx18 [7] and VMHC [40] was visualized using in situ

hybridization [41]. As the morphology and patterns of gene

expression were similar in all six embryos, one was 3D-

reconstructed using AMIRA as described previously [42].

RNA isolation, amplification and fluorescent labeling
Total RNA for array analyses was isolated from separate pools

of PE at stage HH16, PE explants at 14, 24, 36, 48, 60, 72 and

120 hours in culture and from Epi at stages HH25, HH29, HH32

and HH37 at two days in culture. Cells were lysed in excess RA1

buffer containing 1% (v/v) b-mercaptoethanol and further

processed according to the manufacturers protocol including a

DNase I treatment (NucleoSpin RNA L, Macherey-Nagel). RNA

concentration was determined using a Nanodrop 1000 (Thermo

Scientific) and RNA integrity was checked on a Agilent 2100

Bioanalyzer. 500 ng total RNA was amplified using the

MessageAmpTM kit (Ambion) with incorporation of 5-(3-aminoal-

lyl)-UTP (aaUTP) and UTP in a ratio of 2:3 as previously

described [43]. For each array channel 1.5 mg amplified RNA was

labeled with either mono-reactive fluorescent Cy3 or Cy5 dye

(Amersham) and stored at 2800C prior to array hybridization.

Array hybridization & image processing
Chicken oligo arrays representing 20460 long oligonucleotide

probe sequences printed in singlets on Corning Epoxide Coated

Slides were purchased from ARK-Genomics, Scotland, UK. Slides

were pre-hybridized (56SSC, 25% (v/v) formamide, 0.1% (w/v)

SDS, 1% (w/v) bovine serum albumin, fraction V (Sigma)) for

45 minutes at 420C to block the remaining reactive epoxide

groups and reduce background signal. Cy3 and Cy5 labeled RNA

samples were combined as described in Figure S1 and mixed with

26hybridization mixture to a final concentration of 56SSC, 25%

(v/v) formamide, 0.1% (w/v) SDS, 0.2 mg/mL herring sperm

DNA (Invitrogen). Target-RNA mix was denatured for 5 minutes

at 700C and incubated at 420C for 30 minutes. Hybridization was

done in a GeneTAC hybridization station (Genomic Solutions) for

16 hours at 420C with agitation. The arrays were washed at room

temperature in 5 successive buffers, i.e., 16SSC+0.2% SDS, 0.16
SSC+0.2% SDS, 16SSC, 0.16SSC and 0.0016SSC, each step

lasting 4 minutes. The slides were finally pressure-air dried and

stored in the dark. Slides were scanned using an Agilent G2565BA

microarray scanner on a 10 mm resolution. The resulting images

were split into the red and green channels prior to feature

extraction with the GenePix Pro 6.1.0.2 (Axon Instruments Inc.)

software. Spots with high local background or aberrant spot shape

were flagged by the software and manually checked.

Array data transformation and statistics
All array data was processed using Bioconductor packages [44]

in R-statistics. Median spot intensities were imported from the

genepix results files using the Limma package. Flagged spots were

assigned a weight of 0.1, control spots were removed and the

remaining data were normalized with lowess (parameters:

span = 0.25, iterations = 2) and aquantile transformations [45].

The raw microarray data have been deposited in the MIAME

compliant GEO database [46] as GSE13923. Significant differ-

ences in gene expression for the Epi series were determined by
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fitting the linear model Epi stage+dye followed by testing all

possible pair-wise comparisons between the four time points in

Limma [47]. Probes with Benjamini-Hochberg linear step-up false

discovery rate (BH-FDR) [48] corrected p-values below 0.01%

were considered to be significantly differentially regulated. The PE

differentiation time-course series was analysed using a temporal

Hotelling T2-test [12,13]. A second degree-polynomial curve was

fitted through the 16 data points while conserving the temporal

order and correcting for the dye effect. A probe was considered to

show differential regulation in time when any of the individual

parameters of the polynomial, except for the intercept, are

significantly different from zero at a BH-FDR of 15%.

Significantly-regulated genes were K-means clustered [49] into 7

clusters, each of which was further analysed to explore functional

associations between the differentially-expressed genes with Anni

2.0 [15]. Official gene names were retrieved for each probe and

matched to their corresponding concept profiles in the Anni

program. Probes that display divergent expression profiles between

the Epi and PE differentiation series were identified by correlating

gene-expression levels to a set of predefined divergent expression

profiles. Probes with a statistically significant Pearson correlation

(BH-FDR,1%, absolute Pearson coefficient above 0.6) were

considered to display significantly divergent expression profiles

between the PE and Epi series. Array probe annotations used in

the analyses described in this manuscript were a merge of those

obtained from the GEISHA resource website [50] and a custom

annotation package compiled using R/AnnBuilder package.

Mouse pluripotent embryogenic carcinoma cell culture
p19cl6 cells expressing Green Fluorescent Protein (GFP) under

the transcriptional control of the 250 bp MLC-2v promoter [51], a

kind gift from Christine Mummery, were cultured in DMEM:F12

(1:1) media (Invitrogen) supplemented with 7.5% fetal calf serum

(HyClone), 0.05 mM non-essential amino acids, 100 mg/mL

Streptomycin, 100 U/mL Penicillin and 600 mg/mL G418

(Invitrogen). Medium was refreshed every other day. For

cardiomyocyte differentiation series, cells were plated at 2000

cells per well in TC treated 6 wells plates (Corning) and allowed to

attach overnight. Differentiation was induced by 1% DMSO for

four days. Gene specific Silencer select siRNA sequences targeting

Wif1 (s76937, s76939) and siRNA Negative Control #2 were

obtained from Ambion. Both siRNA sequences per gene were

tested on their ability to reduce target expression levels. The best

performing one was used in the described experiments. Transfec-

tion using Lipofectamine2000 (Invitrogen) was performed accord-

ing to the manufacturers protocol. Optimal siRNA:Lipofecta-

mine2000 ratios were determined to be 0.2 mL Lipofectamine2000

per pmol siRNA (data not shown). All experiments were

performed at a 10 nM siRNA concentration. Recombinant

protein Wif1 was added to the culture medium at a final

concentration of 3nM at the indicated time intervals. Differenti-

ation cultures were maintained up to 12 days.

Quantitative Real-Time PCR
For qPCR measurements complementary DNA strands were

generated from 250–500 ng total RNA in a 20 mL reaction

volume using either Superscript III with an anchored oligo(dT)

reverse transcription primer (Invitrogen) or RevertAid H Minus

M-MuLV Reverse Transcriptase with random hexamer primer

(Fermentas) for PE and p19cl6 samples, respectively. An

equivalent of 1 ng total RNA was used in the PCR amplification

with 100 nM gene-specific primers and 4 mL iQ SYBR Green

Supermix (bioRad) in an 8 mL reaction using standard cycle

parameters on an LightCycler480 (Roche). Gene-specific primers

(Invitrogen) were designed using Primer Express v2.0 (Applied

Biosystems) to be in close proximity to the array probe sequence,

to span exon-exon junctions and to have an annealing temperature

of 600C and with an amplicon Tm range between 80 and 850C.

Sequences are available upon request. Threshold values were

determined using the 2nd Derivative MaxFactor method in the

LightCycler480 software package.

Western-blot
Cells were washed in cold HBSS and lysed in RIPA buffer

(25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium

deoxycholate, 0.1% SDS). Equal amounts of protein (BCA kit,

Thermo scientific) were separated on a 5% SDS-PAGE gel and

transferred to polyvinylidene-fluoride membranes. Protein transfer

was confirmed by Ponceau staining. Membranes were blocked o/n

with 5% non-fat milk in TBS-T at room temperature and were

probed with MF20 (Hybridoma bank, Iowa City, IA, USA, 1/200

dilution) to stain sarcomeric myosin and aTubulin (Clone DM1A,

Sigma, 1/10.000 dilution) as a loading control. Antibodies were

incubated in TBS-T containing 5% nonfat milk for 1 hour at room

temperature. Membranes were washed with TBS-T, incubated with

the appropriate secondary antibody conjugated to horseradish

peroxidase for 30 minutes at room temperature, washed 26 in

TBST and 16 in TBS before the bands were visualized by

enhanced chemiluminescence (Amersham Biosciences).

Luciferase assay
p19cl6 cells were seeded at 40k per well in 12 wells plates and

allowed to attach overnight. Per well, 25 ng Renilla with 500 ng

TOP or FOP [21] expression plasmids were co-transfected using

1.5 mL Lipofectamine2000 in Optimem for 6 hours. After

transfection, medium was added to the wells regain standard

culture conditions. Cells were treated with 3nM Wif1 recombinant

protein or 20 mM LiCl with and without 1% DMSO. Cells were

washed with HBSS and lysed in passive lysis buffer (Dual luciferase

system, Promega) at 48 and 96 hours incubation. Firefly

Luciferase activity (TOP and FOP) was normalized to Renilla

luciferase activity per well (Dual-Glo Luciferase Assay system,

Promega). Four biological replicates per condition per time point

were used in these assays and Luciferase and Renilla activity were

measured in triplicate per sample.

Statistics for real-time PCR, immunohistochemistry and
luciferase assays

Differences between experiment conditions for the p19cl6

studies were tested using a students t-test with Bonferroni multiple

testing corrections. Cardiomyocyte area and cells count in PE

explants were compared using a Kruskal-Wallis nonparametric

Anova. Differences with a p-value smaller than 0.05 were

considered significant.

Supporting Information

Figure S1 Experiment design. Experiment design for the

chicken oligonucleotide microarrays. The 8 PE-explant differenti-

ation samples were hybridized in a 2-color looped experiment

design, i.e., hybridization of successive time-points per array, with

dye swaps, resulting in four technical replicates for each time point.

The four Epi samples were hybridized in all possible pair-wise

combinations, with dye-swaps, leading to 6 replicates per time point.

To allow for valid comparisons between the Epi and PE

differentiation, the two array series were connected via hybridiza-

tion of both Epi stage HH25 and HH29 with the PE explant at

48 hours in culture, with dye swaps. Each double edged arrow
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represents two dye-swapped hybridizations. In total 32 arrays were

used in this study.

(TIF)

Figure S2 qPCR data. A: Confirmation of microarray gene-

expression profiles for Tll1, Spry2 and Cyr61 with qPCR. Y-axis

represents log2-transformed mean expression levels. Stage HH16

PE expression was set to 0. PE-explant cultures at 24, 48, 72 and

120 hours were compared with all four Epi stages. Ndufb3 was

used as an internal control to normalize qPCR gene-expression

levels. B: Gene-expression profiles for Mesp1, Gata4, Myl2 and

Atp2a2 during p19cl6 differentiation towards a cardiomyocyte

phenotype. Hypoxanthine-guanine phosphoribosyltransferase

(Hprt) was used as an internal control to normalize qPCR

expression levels. Lines represent mean expression levels + SEM

calculated relative to time matched controls. * indicates a

significant difference in expression relative to control conditions.C:

Evaluation of siRNA mediated knockdown of gene expression at

day 2 after transfection for the two individual siRNA sequences for

Wif1, i.e.,s76937, and s76939. Hprt was used as an internal

control to normalize qPCR gene-expression levels. Bars represent

mean gene-expression levels + SEM. Expression levels were

calculated relative to siRNA Negative Control #2 without

DMSO. The best performing siRNA sequence was used in the

described experiments, i.e., s76937.

(TIF)

Figure S3 Interactive 3D cardiac reconstruction. Interactive

3D reconstructions of control and Wif1 treated hearts. In both

reconstruction the myocardium (gray), the Tbx18-positive myocardi-

um (red), the Tbx18 positive non-myocardium (green) and the cardiac

lumen (yellow) is shown. At the left side the control panel allows to

change each structure to be made transparent or to be removed. For

convenience four informative preset views have been prepared that can

be selected by pushing the respective button. Settings for proper

handling of 3D interactive PDF files is Acrobat Reader 9.x can be

found under the button marked with a question mark.

(TIF)

Table S1 Differentially expressed genes. Differentially-

expressed genes for all analyses. Values represent log2 expression

levels. The Kmeans clusters to which a gene belongs are indicated

in the last two columns.

(XLS)

Table S2 Concepts Summary. Concept analysis summary

tables for the individual gene lists described. The analyses on the

PE Kmean clustering (PE_c1-7), PE-Epi divergence (div_c1-6) and

the overlap between PE_c3 and div_c2 (overlap_cPE_c3_div_c2)

are described in separate Tab-sheets. Genes with overlapping

concept profiles are grouped in sub-clusters indicated in the sc-N

format in column1. Individual genes present in the specific list are

indicated by gene symbol and their associated concept-identifiers

in columns B and C, respectively. Column E describes the top

concepts that underlie the clustering of the genes in column B,

with their associated concept-identifiers (column F) and the

individual contributions (column G) to the clustering. Only

concepts with a contribution above 1% are listed.

(XLS)
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