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Introduction

Carnivory in plants is a relatively rare phenomenon: there are 
believed to be a little more than 600 species, the majority of 
which belong to the Orders Caryophyllales and Lamiales.1 The 
monotypic Nepenthaceae (Caryophyllales) contains >100 spe-
cies, making it the largest Family of pitcher plants. Nepenthes 
pitcher plants are restricted to the Palaeotropics, ranging from 
Madagascar eastwards to New Caledonia and a small number of 
outlying western Pacific islands.2 The center of diversity lies in 
the Indonesian archipelago, with the Philippines, Sulawesi and 
the Greater Sunda islands of Borneo and Sumatra being particu-
larly species-rich.3,4

Most Nepenthes are vines or subscandent shrubs in habit, 
attaching themselves to adjacent vegetation by the use of looped 
tendrils which develop from the tips of the leaf blades. The pitch-
ers are in turn produced at the tips of the tendrils. The major-
ity of species are terrestrial, but a small number of species grow 
epiphytically, primarily in montane habitats.4,5 In general, the 
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Nepenthes is the largest genus of pitcher plants, with its center 
of diversity in Se Asia. The plants grow in substrates that are 
deficient in N and offset this deficiency by trapping animal 
prey, primarily arthropods. recent research has provided new 
insights into the function of the pitchers, particularly with 
regard to prey tapping and retention. Species examined to 
date use combinations of wettable peristomes, wax layers 
and viscoelastic fluid to trap and retain prey. in many respects, 
this has redefined our understanding of the functioning of 
Nepenthes pitchers. in addition, recent research has shown 
that several Nepenthes species target specific groups of prey 
animals, or are even evolving away from a strictly carnivorous 
mode of operation. Future research into nutrient sequestration 
strategies and mechanisms of prey attraction would no 
doubt further enhance our knowledge of the ecology of this 
remarkable genus.

fluid-filled pitchers are produced to trap and digest invertebrate 
prey,6,7 and Nepenthes are notable for their dimorphism, i.e., the 
 production of two distinct pitcher types.5 Young plants produce 
rosettes of  “terrestrial” or “lower” pitchers. These are usually 
ovoid or globose in form, rest on the substrate, and are character-
ized by the presence of a pair of vertically-oriented, wing-like pro-
cesses. It is popularly held that these structures serve to channel 
prey from the pitcher base into the mouth, facilitating capture. 
However, this has been found not to be the case with Nepenthes 
rafflesiana Jack, the only species in which this idea appears to 
have been tested to date.8 As the plant grows, it may then pro-
duce a second pitcher type, the “aerial” or “upper” form. These 
pitchers are normally funnel-shaped or cylindrical, and lack the 
wing-like structures. Occasionally, pitchers of intermediate form 
are produced. In some species, the two pitcher types have been 
shown to target different prey taxa.9-12

Scientific interest in Nepenthes biology has grown steadily 
over the last two decades: from one or two peer-reviewed papers 
published annually in the early 1990s, the number has increased 
more than five-fold in the last two years.13 New insights into the 
genetics, physiology, structure and ecology of the Nepenthaceae 
are now being gained at an increasingly rapid rate. This increase 
in our understanding of the biology of these fascinating plants 
suggests that a review of the current state of knowledge may now 
be in order. It is our intention to provide a brief overview of the 
carnivorous syndrome in the Nepenthaceae, and to suggest some 
potentially fruitful directions for future investigation.

Prey Attraction

Nepenthes pitchers are passive, gravity-driven traps that show 
distinct functional zonation on their inner surfaces.14-17 The 
pitcher lid and peristome (a collar-shaped structure surrounding 
and overhanging the mouth) are the sites of the highest density of 
extrafloral nectaries (Fig. 1A). In some species, the aerial pitchers 
produce fragrance; this has been demonstrated to attract anthoph-
ilous (flower-visiting) insects.9,11 In addition, color patterns may 
serve to attract prey in some species. For example, pitchers of 
N. rafflesiana possess peristomes that stand out in high contrast 
against the pitcher body in the ultraviolet, blue and green wave-
bands (350–370, 430–470 and 490–540 nm, respectively). These 
regions correspond to insect visual sensitivity maxima, making 
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A series of elegant studies has identified the role of the peristome 
in the mechanics of prey capture itself.21-23 The surface of the 
peristome comprises rows of overlapping epidermal cells aligned 
in radial ridges (Fig. 1B). This arrangement confers two charac-
teristics that contribute to prey capture. The first is anisotropy: 
the  individual epidermal cells all overlap in the same direction,  
i.e., from the outer edge of the peristome inwards. Thus, although 
it is relatively easy for an insect to gain purchase with its claws 
while traveling towards the pitcher mouth (and capture), it finds 
difficulty in maintaining a grip while traveling in the opposite 
direction. The second characteristic is wettability via capillary 
action. The peristome may be wetted by moisture in the environ-
ment (e.g., condensation or rainfall), or by the nectar produced 
at the inner rim of the peristome itself (see Fig. 1A); under these 
conditions it becomes highly slippery, causing invertebrates to 
lose traction and fall towards the pitcher mouth. The research 
was carried out on N. rafflesiana and Nepenthes bicalcarata Hook. 
f; however, given the near universality of the typical peristome 
structure among Nepenthes, it is likely that the mechanisms out-
lined above are prevalent throughout the genus.

Once the prey has slipped from the peristome and entered the 
pitcher proper, it encounters additional features that facilitate its 
downward trajectory. Depending upon species, the upper region 
of the inner pitcher surface may or may not possess large numbers 
of lunate cells. These are modified stomatal guard cells that are 
oriented to overhang the pitcher wall, denying traction to the 
claws of invertebrates travelling in an upward direction16,17,24-27 
(Fig. 1C). The second feature of this zone (again, depend-
ing on species) is the presence of layered epicuticular waxes 
(Fig. 1C). Although the chemical composition may vary between 
species, the waxes all comprise very-long-chain aldehydes 
(C

30
 to C

32
) and primary alcohols.28,29 The waxy zone inhibits 

traction in two ways: firstly, the wax crystals of the outermost 
layer clog the claws, reducing their effectiveness, and secondly, 
the wax surface presents a surface of low free surface energy. This 
renders the inner pitcher wall unwettable, and prevents insects 
that possess hairy pulvillae from gaining traction via capillary 
action.17,25,27,30-33 Eventually, the prey will fall into the fluid that 
collects in the lower part of the pitcher. In N. rafflesiana, this fluid 
is highly viscoelastic, preventing the prey from extricating itself, 
and ensuring that it is held securely until it drowns.11,34 A recent 
study suggests that in this species, viscoelasticity of the pitcher 
fluid may play a greater role in prey retention than do the lunate 
cells and/or epicuticular waxes.35 N. rafflesiana is not unique in 
this regard: fluid with similar properties is produced by pitch-
ers of Nepenthes inermis Danser, Nepenthes aristolochioides Jebb & 
Cheek, Nepenthes jacquelinae Clarke, Davis & Tamin, Nepenthes 
dubia Danser and Nepenthes talangensis Nerz & Wistuba.4

Biomimicry (the use of biological principles in, for example, 
engineering) is a rapidly developing field, as scientists attempt to 
emulate natural systems in a sustainable fashion.36 It is interesting 
to note that the effectiveness of the mechanisms, outlined above 
in trapping insects, has prompted some authors to suggest that 
analogues might be developed as pest control measures, reducing 
the need for application of chemical pesticides.27,34

the pitchers highly conspicuous to many anthophilous taxa.9,10 
The possession of apparently floral traits (nectar, fragrance and 
visual orientation cues to a nectar source) by Nepenthes pitch-
ers represents a powerful example of convergent evolution. Both 
insect-pollinated flowers and Nepenthes pitchers have evolved to 
attract and retain insects at the site of optimum benefit to the 
plant, the first through transfer of gametes, the second, via the 
acquisition of scarce nutrients.

Not all Nepenthes species rely exclusively on nectar as a 
reward to visitors. The pitchers of Nepenthes albomarginata T. 
Lobb ex Lindl. produce only small quantities of nectar in com-
parison to other species.18 However, immediately below the peri-
stome, on the outside surface of the pitcher, lies a conspicuous 
cream-colored band of tomentose tissue from which the species 
derives its name. This tissue attracts lichen-eating termites of the 
genus Hospitalitermes (Isoptera), which forage in columns con-
taining thousands of workers.19 These termites are often trapped 
in large quantities by N. albomarginata pitchers; using stable iso-
tope analysis, it has been conservatively estimated that termites 
account for >50% of foliar nitrogen (N) in this species.20

Prey Capture and Retention

As noted above, the peristome is a region of high nectary den-
sity, making it a key component of the prey attraction system.  

Figure 1. Scanning electron micrographs of some features of Nepen-
thes pitchers. (A) vertical section through peristome of N. villosa. Arrow 
points to position of extrafloral nectary at top of nectar duct. (B) Peri-
stome of N. rafflesiana, showing anisotropic arrangement of epidermal 
cells. Arrow points in direction of pitcher mouth. (C) Lunate cells and 
wax plates inside upper wall of N. diatas pitcher. (D) Digestive glands 
towards base of N. fusca pitcher. in all cases, white bar = 100 µm.
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is an exception in that it can often be found growing under the 
canopy of tropical heath forest.67 Litterfall is a key component 
of forest nutrient cycling that represents a significant nutrient 
resource for organisms able to intercept and utilize it.68,69 N. amp-
ullaria is one such species: by producing “carpets” of pitchers at 
ground level, it intercepts falling leaves and derives up to 35% 
of its N from this source.70 The balance probably comes from a 
 combination of invertebrate prey capture and root uptake.

Although the density of potential invertebrate prey is high in 
tropical lowlands, the number of available prey animals declines 
rapidly with increasing altitude.71 Many Nepenthes species are 
restricted to montane habitats,3,4 and are therefore under pressure 
to exploit alternative sources of nutrients. One Bornean montane 
species, Nepenthes lowii Hook. f., deploys large, funnel-shaped 
aerial pitchers that attract the mountain tree-shrew, Tupaia 
montana (Tupaiidae), via the production of copious amounts 
of nectar. The large size of the pitcher, combined with the ori-
entation of the nectary-rich lid, ensures capture and retention 
of any excreta produced by the animal while feeding. Isotopic 
modeling suggests that N. lowii obtains between 57 and 100% 
of its N through the operation of these specialised pitchers.12 It 
has recently been demonstrated that N. lowii is not unique in 
this respect: Nepenthes rajah Hook. f., and Nepenthes macrophylla 
(Marabini) Jebb & Cheek, two very large Bornean montane spe-
cies, also provide nectar for, and harvest excreta from, T. mon-
tana.72 It is interesting to note that this syndrome is not unique 
to the Nepenthaceae: leaves of Roridula spp. have recently been 
shown to utilize insect faeces as a nutrient source.73

Mutualism

Clearly, mutualism is an integral component of the nutrient 
sequestration strategies of the above-mentioned montane spe-
cies. There is also evidence for mutualism in lowland species, 
perhaps the most well-known example being N. bicalcarata, a 
Bornean endemic. It provides swollen pitcher tendrils as doma-
tia for a species of ant, Camponotus schmitzi Stärke (Formicidae), 
which is found only in association with this plant.74 In addition 
to domatia, the plant supplies copious amounts of nectar from 
an array of extrafloral nectaries, the most conspicuous being the 
two giant “thorns” pointing downward from the upper portion 
of the peristome, beneath the pitcher lid.18,75 In return for the ser-
vices provided by the plant, C. schmitzi aids its host in two ways. 
Weevils of the genus Alcidodes (Curculionidae) can cause consid-
erable damage to N. bicalcarata by feeding on developing leaf tips.  
C. schmitzi selectively attacks Alcidodes sp., thus protecting the 
host plant.76 The second service provided by the ant is the removal 
of oversized prey items from the pitcher. Such items can over-
whelm the plant’s digestive capacity, resulting in putrefaction, 
which can eventually kill the pitcher. Remarkably, C. schmitzi can 
swim, which enables groups of them to enter the pitcher fluid, 
haul the item to the underside of the peristome, disarticulate and 
consume it. It is important to note that this activity targets only 
large items; smaller prey are left to the host plant.3,74

Digestion of Prey and Uptake of Nutrients

As well as drowning the prey, the pitcher fluid allows enzymatic 
degradation of the remains, and uptake of the products of diges-
tion. The lower part of the inner pitcher wall possesses large 
numbers of digestive glands26,33,37,38 (Fig. 1D), which carry out 
two ontogenically-determined functions. In young pitchers, the 
glands secrete the aqueous digestive fluid.17,37 This has been shown 
to contain a variety of enzymes that include proteases, peptidases, 
phosphatases, esterases, ribonucleases and chitinases.26,38-47 In 
addition, the glands may also produce free radicals to aid in the 
degradation of prey tissue,48 as well as a thaumatin-like protein 
(TLP) that possesses antibacterial and antifungal properties.47,49 
Once the pitcher has matured, the glands switch from secretion 
of enzymes to absorption of the products of enzymatic break-
down,17,37 in the form of amino acids, peptides and ammonium 
ions.50,51 The optimum pH for enzymatic function is maintained 
through the action of proton pumps.52-54

Costs and Benefits of Carnivory

In common with other carnivorous plants,55,56 Nepenthes are 
N-limited in their natural habitats.57 The degree to which other 
nutrients may be supplemented via carnivory has been reported 
for other taxa.58 However, it remains to be investigated in the 
Nepenthaceae. Pitcher production imposes significant costs on 
the plant, in terms of the resources required for their construc-
tion.57,59 The production of a leaf with the dual roles of carnivory 
and light harvesting also represents a functional compromise that 
ultimately leads to a reduction in photosynthetic efficiency.60 
The deployment of sophisticated and costly trapping structures 
by Nepenthes implies strong evolutionary pressure to augment 
or even supplant root-mediated nutrition with animal-derived 
inputs, and research to date supports this view. For example, 
stable isotope studies have estimated that the capture of ants 
(Formicidae) contributes up to 68% of foliar N in N. rafflesi-
ana20 and that in Nepenthes mirabilis Druce, there is an ontogenic 
switch from primarily root-derived N uptake to chiefly pitcher-
derived N uptake from prey inputs, as the plant matures.61 By 
ameliorating N deficits, prey capture confers physiological 
benefits: a starvation study, in which N. rafflesiana plants were 
denied prey inputs, showed increased foliar reflectance in the 
photosynthetically-active waveband (608–738 nm) compared to 
control plants, signifying degradation of photosynthetic capacity. 
The effects of this loss were manifested in a significant reduction 
in the rate of pitcher production, as well as a decrease in pitcher 
size, compared to controls.62 Similarly, feeding of insect prey 
was found to increase photosynthetic efficiency significantly in  
N. talangensis.63

Non-Carnivorous Nutrient Inputs

Nepenthes typically inhabit open, sunny environments, a habit 
typical of botanical carnivores.55,64-66 Nepenthes ampullaria Jack 
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elucidate the degree to which individual species are selectively 
targeting particular taxa from the range potentially available in 
the habitat.1,86

Mechanisms of attraction. Despite accounts of the role 
of fragrance in prey attraction in N. rafflesiana,9,11 the volatile 
compounds involved remain unidentified. The extent to which 
fragrance may be employed by the pitchers of other Nepenthes 
species, as has recently been carried out for other carnivorous 
plant genera,87 awaits investigation. The role of color patterns 
to orient prey to the nectar source has also been investigated in 
only a very small number of species.9,10 The degree to which nec-
tar composition (e.g., sugar composition/concentration, amino 
acids, etc.) may reflect the requirements of specific prey, in the 
way that many angiosperms tailor their nectar to the needs of 
their pollinators,88,89 might also repay investigation.
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Future Directions

It is evident from this short review that over recent decades, 
researchers from many disciplines have elucidated a number of 
fundamental aspects of the carnivorous syndrome in Nepenthes. 
Perhaps equally importantly, many of the findings presented here 
have posed further questions. Below are a few avenues that we feel 
might reward future research efforts; it is by no means intended 
to be an exclusive list.

Nutrient sequestration strategies. The Nepenthaceae is 
the largest Family of pitcher plants, and new species are being 
described on a regular basis.77-85 Nonetheless, only a relatively 
small number of Nepenthes have been studied in their natural 
habitats and we still know very little about the ecology or physiol-
ogy of the majority of species. Given the range of unusual pitcher 
morphologies, particularly in regards to the elaborate peri-
stomes of many montane species,3,4 it is likely that novel nutrient 
sequestration strategies await discovery. As has been pointed out 
recently, field-based comparisons between prey spectra of pitch-
ers and neutrally-selective analogues (e.g., pitfall traps), will help 
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