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The functions of dicot sucrose trans-
porters (SUTs) in apoplastic phloem 

loading of sucrose are well established; 
however, whether SUTs similarly func-
tion in monocots was unresolved. To 
address this question, we recently pro-
vided genetic evidence that ZmSUT1 
from maize (Zea mays) is required for 
efficient phloem loading. sut1-m1 mutant 
plants hyperaccumulate carbohydrates 
in leaves, are defective in loading sucrose 
into the phloem, and have altered bio-
mass partitioning. Presumably due to 
the hyperaccumulation of soluble sug-
ars in leaves, mutations in ZmSUT1 
lead to downregulation of chlorophyll 
accumulation, photosynthesis and sto-
matal conductance. However, because 
we had identified only a single mutant 
allele, we were not able to exclude the 
possibility that the mutant phenotypes 
were instead caused by a closely linked 
mutation. Based on a novel aspect of 
the sut1 mutant phenotype, secretion of 
a concentrated sugar solution from leaf 
hydathodes, we identified an additional 
mutant allele, sut1-m4. This confirms 
that the mutation of SUT1 is responsible 
for the impairment in phloem loading. 
In addition, the sut1-m4 mutant does 
not accumulate transcripts, supporting 
the findings reported previously that the 
original mutant allele is also a null muta-
tion. Collectively, these data demonstrate 
that ZmSUT1 functions to phloem load 
sucrose in maize leaves.

Introduction

Most plant species translocate sucrose as 
the reduced form of carbon from source 
leaves to nonphotosynthetic sink tissues.1,2 

In apoplastic phloem loading species, 
sucrose transporters (SUTs) import sucrose 
from the apoplast into the companion cells 
and/or sieve elements.3-5 In dicot plants, 
genetic and biochemical evidence has 
shown that SUTs function to phloem 
load sucrose in leaves.6-10 However, it was 
unclear which SUTs perform this role 
within monocots. We recently obtained 
genetic evidence suggesting that maize 
SUT1 functions in phloem loading in 
leaves.11

Using reverse genetics, we obtained a 
Mutator (Mu) transposable element inser-
tion into the 5' UTR of the SUT1 gene 
(referred to as sut1-m1).11 Plants homozy-
gous for the sut1-m1 mutation have greatly 
diminished growth, altered biomass par-
titioning, reduced fertility, hyperaccumu-
late carbohydrates within mature leaves, 
and fail to load 14C-labeled sucrose into the 
veins.11 Here we describe further aspects 
of the mutant phenotype directly related 
to the inability to phloem load sucrose in 
source leaves, and we report the character-
ization of additional mutant alleles, which 
confirm the phenotypes result from the 
loss of SUT1 function.

Inhibition of Phloem Loading 
Leads to Secretion of Soluble 

Sugars from Maize Leaves

Under normal growing conditions, 
wild-type maize plants secrete drop-
lets of water from specialized structures, 
called hydathodes,12 when water poten-
tial in roots is greater than that in leaves 
(Fig. 1A). This process is known as gut-
tation.13-15 Typically, guttation fluids 
contain only trace amounts of reduced 
carbon compounds and rapidly evaporate 
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mutants.16-25 Guttation fluid was col-
lected from untreated wild-type sibling 
and sut1-m1 mutant plants and assayed 
for soluble sugar concentrations. Wild-
type guttation fluid contained very low 
sugar concentrations, whereas guttation 
fluid from sut1-m1 leaves contained over 
700 mg of sucrose/g of fluid and 20–25 
mg each of glucose and fructose/g of fluid 
(Fig. 1C and D). We infer that both the 
loss of SUT1 function and the inhibition of 
phloem transport by girdling result in the 
build-up of apoplastic sucrose that subse-
quently migrates into the xylem transpira-
tion stream. The presence of the relatively 
equal amounts of glucose and fructose in 
the guttation fluid is likely explained by 
cell wall invertases that cleave sucrose into 
the two monosaccharides.26

Accumulation of Carbohydrates in 
sut1 Mutant Leaves is Associated 

with Decreased Photosynthetic 
and Stomatal Conductance Rates

High levels of photoassimilates are known 
to feedback and negatively regulate photo-
synthesis.27,28 In sut1-m1 mutants, photo-
synthetic and stomatal conductance rates 
are comparable to wild-type plants only in 
leaves emerging from the whorl (leaf 7 in 
Fig. 1E and F), which are in the process 
of transitioning to source tissue.11 Once 
leaves become sources, photosynthesis 
and stomatal conductance rates drastically 
decline in the sut1-m1 mutant relative 
to wild type (leaves 4–6 in Fig. 1E and 
F), presumably due to the excess accu-
mulation of carbohydrates downregulat-
ing photosynthesis. However, even with 
greatly elevated carbohydrate levels, sut1 
mutant leaves perform limited photosyn-
thesis and gas exchange.

Phenotypes Observed 
in the sut1 Mutant Plants are  

Representative of Null Mutations 
in the SUT1 Gene

Based on the novel phenotype of the 
concentrated sucrose solution being 
secreted from leaf margins (Fig. 1B), 
an additional mutant allele of ZmSUT1 
(sut1-m4) was independently isolated. 
The sut1-m4 allele was recovered from a 
Ds transposable element remobilization 

cold-girdled,11 a process that results in 
inhibition of phloem transport (data 
not shown). This novel phenotype was 
not observed for the many other maize 
leaf carbohydrate hyperaccumulation 

from the leaf surface shortly after dawn. 
Interestingly, we observed that sut1-m1 
mutant leaves retained guttation fluids 
on their surface (Fig. 1B). This was also 
seen in wild-type plants that had been 

Figure 1. additional phenotypes of sut1 mutant plants. (a and B) Photographs of guttation fluid 
on leaf margins. (c and d) Graphs of quantifications of sucrose (S), glucose (G) and fructose (F) in 
guttation fluid. (a and c) Wild type. (B and d) sut1-m1 mutant. (e and F) measurements of photo-
synthesis (e) and stomatal conductance (F) rates of wild-type and sut1-m1 mutant leaves. L7-L4 
indicate leaves seven through four on three-week-old plants. circles represent wild type and 
squares represent sut1 mutants. Open symbols indicate data collected at 8 am and filled symbols 
indicate data collected at 8 Pm (described in ref. 11).
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compensatory changes in the expression 
of SUT family members in maize sut1 
mutants, and by analyzing double and 
higher order sut mutant combinations will 
address these possibilities.
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(iKi) stained. (a and c) Wild type. (B and d) sut1-m4 mutant. (e and F) rt-Pcr on three biological 
replicates isolated from wild-type and sut1-m4 mutant leaves. (e) rt-Pcr with SUT1-specific prim-
ers. (F) rt-Pcr with ubiquitin primers as a cdna normalization control (described in ref. 11).



690 Plant Signaling & Behavior Volume 5 issue 6

26. Koch K. Sucrose metabolism: regulatory mechanisms 
and pivotal roles in sugar sensing and plant develop-
ment. Curr Opin Plant Biol 2004; 7:235-46.

27. Sheen J. Metabolic repression of transcription in 
higher plants. Plant Cell 1990; 2:1027-38.

28. Sheen J. Feedback-control of gene-expression. 
Photosynth Res 1994; 39:427-38.

29. Evert RF, Eschrich W, Heyser W. Leaf structure in 
relation to solute transport and phloem loading in 
Zea mays L. Planta 1978; 138:279-94.

22. Ma Y, Slewinski TL, Baker RF, Braun DM. Tie-dyed1 
encodes a novel, phloem-expressed transmembrane 
protein that functions in carbohydrate partitioning. 
Plant Physiol 2009; 149:181-94.

23. Slewinski TL, Ma Y, Baker RF, Huang M, Meeley 
R, Braun DM. Determining the role of Tie-dyed1 in 
starch metabolism: Epistasis analysis with a maize 
ADP-glucose pyrophosphorylase mutant lacking leaf 
starch. J Hered 2008; 99:661-6.

24. Russin WA, Evert RF, Vanderveer PJ, Sharkey TD, 
Briggs SP. Modification of a specific class of plas-
modesmata and loss of sucrose export ability in the 
sucrose export defective1 maize mutant. Plant Cell 
1996; 8:645-58.

25. Slewinski TL, Braun DM. The Psychedelic genes of 
maize redundantly promote carbohydrate export 
from leaves. Genetics 2010; doi: 10.1534/genet-
ics.109.113357.

17. Baker RF, Braun DM. tie-dyed1 functions non-cell 
autonomously to control carbohydrate accumulation 
in maize leaves. Plant Physiol 2007; 144:867-78.

18. Baker RF, Braun DM. tie-dyed2 functions with tie-
dyed1 to promote carbohydrate export from maize 
leaves. Plant Physiol 2008; 146:1085-97.

19. Blauth S, Yao Y, Klucinec J, Shannon J, Thompson 
D, Guilitinan M. Identification of Mutator inser-
tional mutants of starch-branching enzyme 2a in 
corn. Plant Physiol 2001; 125:1396-405.

20. Dinges JR, Colleoni C, James MG, Myers AM. 
Mutational analysis of the pullulanase-type debranch-
ing enzyme of maize indicates multiple functions in 
starch metabolism. Plant Cell 2003; 15:666-80.

21. Ma Y, Baker RF, Magallanes-Lundback M, 
DellaPenna D, Braun DM. Tie-dyed1 and Sucrose 
export defective1 act independently to promote car-
bohydrate export from maize leaves. Planta 2008; 
227:527-38.


