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Aims We tested the hypothesis that the 9p21 risk locus promotes atherosclerosis by examining the association between
rs10757278 and coronary artery disease (CAD) severity and progression determined by semi-quantitative angio-
graphic scores.

Methods
and results

The rs10757278 single nucleotide polymorphism (SNP) was genotyped as the marker for the 9p21 locus in 2334
Caucasian patients undergoing cardiac catheterization (mean age 63, male 67%). Angiographic CAD was assessed
using two semi-quantitative scoring systems with one estimating severity (Gensini) and the other extent (Sullivan).
A subset of 308 patients who underwent two or more coronary angiograms at least 6 months apart were examined
for net change in Gensini and Sullivan scores over time to determine the rate of CAD progression by genotype
and were further classified as ‘progressors’ or ‘non-progressors’ based on absolute change per year in angiographic
severity score. We replicated the association between the rs10757278 SNP and myocardial infarction and binary
(presence/absence) angiographic classifications of CAD. Furthermore, we observed a significant additive association
with this SNP, and both severity and extent of CAD using angiographic scores, after adjustment for age, gender, body
mass index, traditional cardiovascular risk factors, myocardial infarction, and statin use (Gensini P ¼ 0.016, Sullivan
P ¼ 0.005). In addition, there was a significant linear association with CAD progression before and after adjustment
for covariates (Gensini P ¼ 0.023, Sullivan P ¼ 0.003) with homozygotes for the risk variant having three-fold
greater odds of CAD progression compared with the referent group.

Conclusion The 9p21 risk locus is associated with angiographically defined severity, extent, and progression of CAD, suggesting a
role for this locus in influencing atherosclerosis and its progression.
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Introduction
Coronary artery disease (CAD) remains a significant health
concern worldwide. While traditional risk factors account for
much of this risk burden, heritable factors play a key role in the
development of CAD.1 Unbiased genome-wide approaches have
led to the identification of the 9p21.3 locus as a risk marker for

myocardial infarction (MI) and prevalent CAD in predominantly
Caucasian cohorts.2 –5 This association has since been replicated
in several studies and in non-Caucasian populations, and confirmed
by two meta-analyses, making this one of the most robust genomic
findings for coronary heart disease to date.6,7

A large prospective study demonstrated that 9p21 status is pre-
dictive of first revascularization in subjects with medically treated
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MI.8 In addition, recent functional studies have demonstrated
enhanced expression of the non-coding RNA, ANRIL, in 9p21 car-
riers9 and this transcript has in turn been associated with greater
atherosclerosis.10 More recently, deletion of the orthologous
70 kb non-coding interval on mouse chromosome 4 has provided
direct evidence that the 9p21 CAD risk interval has a direct role in
the regulation of CDKN2A/B expression and affects CAD pro-
gression by altering the dynamics of vascular cell proliferation.11

Despite these studies suggesting greater atherosclerotic activity
as a potential mechanism, a positive and direct association
between 9p21 carrier status and severity, extent, or progression
of CAD is yet to be convincingly demonstrated in humans. This
may in part be due to the inadequacy of phenotyping methods
employed thus far to assess CAD severity, particularly as the
effect size of common variants is often small.

Despite its many limitations, coronary angiography remains to
be the gold standard for documenting the extent and severity of
CAD. We sought to test the hypothesis that the 9p21 locus pro-
motes atherosclerosis by examining its association with angiogra-
phically defined CAD severity and extent, as well as CAD
progression by refining the phenotype using two validated semi-
quantitative coronary scoring systems.

Methods

Study population
Study participants were recruited as part of the Emory Cardiology
Biobank, consisting of 3492 consecutive patients enrolled prior to
undergoing elective or emergent cardiac catheterization across three
Emory Healthcare sites, between 2003 and 2008. Patients aged 20–
90 years were interviewed to collect information on demographic
characteristics, medical history, and behavioural (lifestyle) habits. Risk
factor prevalence was determined by physician diagnosis and/or treat-
ment for hypertension, hyperlipidaemia, and diabetes. Smoking was
classified as non-smoker or ‘ever smoked’ if there was a lifetime
history of smoking at least 100 cigarettes. Medical records were
reviewed to confirm self-reported history of MI and other conditions
as well as to document previous angiographic findings and prior coron-
ary revascularization.

After excluding self-reported non-Caucasian ancestry, heart trans-
plantation, missing or incomplete angiographic data and missing
DNA/blood samples, 2334 subjects were deemed eligible for this
analysis. The study was approved by the Institutional Review Board
at Emory University, Atlanta, GA, USA. All subjects provided written
informed consent at the time of enrolment.

Coronary angiography definitions and scoring
Two operators, evaluated all coronary angiograms by visual esti-
mation of luminal narrowing in multiple segments based on a modi-
fied form of the AHA/ACC classification of the coronary tree.12

Using this data, coronary angiography phenotypes were estimated
by the authors (R.S.P. and I.J.N.) including, any CAD . 50%,
number of epicardial vessels with . 50% disease, left main and
proximal vessel disease, and finally, quantitative angiographic scores
using the Gensini and Sullivan extent systems.13,14 All coronary
angiography evaluations were performed without the knowledge of
genotype status.

The Gensini score quantifies severity of CAD by a nonlinear points
system for the degree of luminal narrowing along with a multiplier for

specific coronary tree locations, thereby weighting each lesion score
for prognostic significance. The total of the lesion scores is summed
to give a final Gensini score. Thus, multiple severe proximal lesions
gain the highest score.13

The Sullivan Extent score quantifies the percentage of the coronary
intimal surface area affected by atheroma, without specific weighting
for the degree of luminal narrowing. The percentage involvement of
each vessel is estimated and multiplied by a factor representative of
the surface area of that vessel in relation to the entire coronary
tree. We used a modified version based on segments of each vessel
with reported disease to derive percentage involvement. Four seg-
ments of right coronary artery (RCA) each contributing 25%;
three segments of left anterior descending artery (LAD) each contri-
buting 33% with the proximal segment further subdivided into
two; left circumflex artery divided into three segments each contri-
buting 33%.14

To determine the intra-class correlation coefficient, 25 patient
angiograms were randomly chosen and examined independently by
the authors (R.S.P. and I.J.N.). Lesions were visually estimated and
recorded by coronary artery tree segments and then used to calculate
Gensini and Sullivan Extent scores. The intra-class correlation
coefficients were estimated at 0.88 (95% CI 0.74–0.95) and 0.90
(0.77–0.96) for Gensini and Sullivan Extent scores, respectively,
which indicates good inter-observer agreement.

A subset of 308 patients who had undergone two or more coronary
angiographies at least 6 months apart, were identified and the two
angiograms furthest apart in time were quantified using the Gensini
and Sullivan Extent scores described above. Given the variation in
times between angiographies, the net change in angiographic score
was divided by number of years between angiographies to give
Gensini and Sullivan extent ‘rates’ as proxies for progression. Subjects
were also arbitrarily categorized as ‘progressors’ and ‘non-progressors’
based on a Gensini rate of change of .1 or ≤0.5 points/year, respect-
ively (as a guide, one point is equivalent to a 25% lesion in the RCA).
Similarly for the Sullivan Extent score, progression and non-
progression was defined simply as .1% and ≤0.5% change/year,
respectively.

Genotyping
Genotyping for all samples was carried out at deCODE genetics in
Reykjavik, Iceland, as part of the ongoing collaborative studies, with
rs10757278 chosen as the representative single nucleotide polymorph-
ism (SNP) for the 9p21 region based on our group’s prior work.3 All
single SNP (rs10757278) genotyping was carried out using the Cen-
taurus (Nanogen) platform.15 The quality of each Centaurus SNP
assay was evaluated by genotyping each assay on the Caucasian
(CEU) samples and comparing the results with the HapMap data. All
assays had a mismatch rate less than 0.5%.

Statistical analyses
Continuous variables are presented as means (SD) and categorical
variables as proportions (%) with one-way analysis of variance and
x2 tests used to determine differences by genotype. Variables were
tested for normality with Kolmogorov–Smirnov statistics and (+1
natural log) transformed for purposes of parametric analyses.
Reverse log-transformation was applied to obtain clinically inter-
pretable values. Haploview 4.0 software was used to compute
Hardy–Weinberg equilibrium and minor allele frequency for
rs10757278.

Logistic and linear regression models were constructed to test the
additive effect of the SNPs on CAD phenotypes including severity
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and extent, with the SNP coded as 0, 1, or 2 based on the number of
risk (G) alleles. Analyses were repeated after adjusting for age, gender,
BMI, diabetes, hypertension, hyperlipidaemia, smoking, statin use, and
history of MI. Analyses were also repeated after excluding subjects
with normal coronary arteries (smooth or less than 10% luminal irre-
gularities) to ensure any observed effect on graded severity was not
being driven by those without any CAD in whom risk allele frequency
is expected to be significantly lower. Interaction terms were tested for
association between the 9p21 SNP and significant determinants of
CAD severity, followed by stratified analysis to evaluate significant
interactions.

CAD progression was tested as both a continuous variable (change
in angiographic score/year) and as a categorical variable (progression
vs. non-progression) with regression coefficients and odds ratios
(ORs) calculated accordingly. Analyses were adjusted for age,
gender, diabetes, statin use, smoking, and baseline angiographic score
at first catheterization. A two-tailed P value , 0.05 was considered sig-
nificant. All statistical analyses were performed using SPSS 17.0
(Chicago, IL, USA).

Results
A total of 2334 self-reported Caucasians were genotyped for the
rs10757278 SNP and included in this study. The observed genoty-
pic frequencies were consistent with Hardy–Weinberg equilibrium
(P ¼ 0.11) with a risk allele frequency of 0.50 (G allele). Patient
characteristics at baseline by rs10757278 genotype are shown in
Table 1. The mean age (SD) was 63.9 years (11.1) with a range
of 24–90 years. No significant differences in patient characteristics
were observed between rs10757278 genotypes for traditional risk
factors, laboratory parameters, or medication usage.

As described previously, we noted a significant association in the
prevalence of prior MI, with increasing copies of the risk allele (P ¼
0.04, Table 1) equating to an allelic OR of 1.18 (95% CI 1.04–1.34).3

Similarly, there were significant associations with prior percutaneous
coronary intervention [OR 1.17 (1.04–1.32)], CABG [OR
1.17(1.02–1.34)], and angiographically significant CAD defined as at
least one vessel with 50% disease compared with normal coronary

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Patient characteristics by rs10757278 genotype

Patient characteristics (n 5 2334) rs10757278 genotype

AA (557) AG (1206) GG (571) P-value

Age (years) 64.4 (11) 63.6 (11.1) 64.2 (11.3) 0.26

Male (%) 67.9 67.4 66.0 0.78

BMI 29.1 (6.1) 29.5 (6.2) 29.1 (5.6) 0.24

Diabetes (%) 26.8 30.0 27.4 0.30

Glucose (mg/dL) 120.6 (41.9) 122.6 (45.9) 119.3 (38.5) 0.34

Hypertension (%) 65.2 68.6 67.9 0.36

Systolic BP (mmHg) 142 (23.5) 138 (22.6) 141.4 (22.7) 0.13

Hyperlipidaemia (%) 67.0 70.5 71.0 0.25

Total cholesterol (mg/dL) 168.5 (38.9) 169.4 (43.4) 166.1 (45.1) 0.40

LDL (mg/dL) 96.6 (33.9) 96.8 (35.0) 92.7 (36.1) 0.12

HDL (mg/dL) 41.1 (12.8) 40.9 (12.4) 40.7 (12.5) 0.89

Ever smoked (%) 58.7 60.5 61.7 0.59

Statin use (%) 72.5 76.5 77.9 0.19

Beta-blocker (%) 61.5 64.1 66.3 0.28

Serum creatinine (mg/dL) 1.10 (0.56) 1.08 (0.55) 1.06 (0.53) 0.42

Prior MI (%) 29.4 33.5 36.7 0.04

Acute coronary syndrome (%) 12.3 9.6 10.8 0.24

Prior CABG (%) 20.1 23.2 25.6 0.09

Prior PCI (%) 38.2 43.2 45.8 0.03

Ejection fraction (%) 54.3 (10.8) 53.7 (11.2) 53.4 (11.9) 0.48

Angiographic CAD (.50%) (%) 72.4 79.0 80.1 0.004

Coronary disease burden 0.003

Normal (%) 27.6 21.0 19.9

Single vessel (%) 22.9 21.5 19.5

Multi-vessel (%) 49.5 57.5 60.5

Left main (%) 5.6 8.5 10.2 0.017

Proximal disease (%) 60.8 72.1 72.7 ,0.001

Gensini score, median (IQR) 10 (0–49) 17 (3–64) 19 (3–76) 0.001

Sullivan extent, median (IQR) 15 (3–32) 19.9 (5–36) 21.5 (7–37) ,0.001

Mean (SD) or % unless indicated. CAD, coronary artery disease; CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention; IQR, inter-quartile range;
BMI, body mass index; MI, myocardial infarction; BP, blood pressure.
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artery patients [OR 1.25 (1.08–1.45)]. When further classified as
normal, single, and multi-vessel disease, there was a significant associ-
ation with greater risk allele frequency with increasing CAD severity
(P ¼ 0.003). Angiographic traits considered tobeespecially heritable,16

were also more common in the carriers of the risk allele: Left main
[OR ¼ 1.36 (1.10–1.68)] and proximal disease [OR 1.32 (1.13–1.54)].

9p21 association with semi-quantitative
coronary artery disease severity and
extent scores
Table 1 shows the association between the rs10757278 genotype
and severity/extent of CAD with respect to median Gensini and
Sullivan Extent scores. There was a significant additive effect of

the G allele on each measure of CAD. After adjusting for age,
gender, BMI, traditional risk factors, statin use, and history of MI,
the associations between rs10757278 and both scores remained
significant (Gensini P ¼ 0.016, Sullivan P ¼ 0.005) (Table 2). Thus,
possessing one copy of the risk variant equates to greater angio-
graphic scores, which correspond to, for example, a 50% lesion
in the proximal LAD, or 15% of the entire LAD intima area
(Figure 1).

Analyses were repeated after excluding subjects with normal
coronary arteries in order to ensure that the observed effect
was not being driven primarily by the absence of disease in one
group. In this smaller group (n ¼ 1849), the association with
both Gensini and Sullivan Extent scores remained significant and
independent of covariates (adjusted P ¼ 0.03 for both).

Sensitivity analysis did not reveal any significant interactions with
age, gender, or presence of diabetes, hypertension, hyperlipidae-
mia, statin use, or smoking (data not shown). However, we did
observe an interaction with the history of MI (P ¼ 0.03). Stratified
analysis revealed no association between rs10757278 and CAD
scores in subjects with MI (n ¼ 751; Gensini P ¼ 0.91, Sullivan
P ¼ 0.74), while those with no history of MI (n ¼ 1583; Gensini
and Sullivan P , 0.001) maintained a significant association with
both scores.

9p21 association with coronary artery
disease progression
Of the 2334 patients, 308 were identified as having had repeat
angiograms. These patients did not differ by genotype for basic
characteristics and were similar to the main cohort (Table 3).
The median length of time between angiographies was 4.5 years
(IQR 2.5–7 years). There was a significant additive effect of the
G allele on risk of progression when the net change in Gensini
score per year was used to quantify progression (P ¼ 0.023)
with homozygotes for the risk allele progressing at a mean covari-
ate adjusted rate of 5 Gensini points/year compared with the
referent group progressing at under 3 points/year (Figure 2A).
Furthermore when treated as a binary variable, heterozygotes
for the risk allele were more than twice as likely to be progressors
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Table 2 Multivariate predictors of CAD severity and
extent

log Gensini (CAD
severity)

log Sullivan (CAD
extent)

B (SE) P-value B (SE) P-value

Age (years) 0.03 (,0.01) ,0.001 0.03 (,0.01) ,0.001

Gender 0.88 (0.07) ,0.001 0.70 (0.06) ,0.001

BMI 20.01 (0.01) 0.028 20.01 (0.01) 0.07

Diabetes 0.36 (0.08) ,0.001 0.34 (0.06) ,0.001

Hyperlipidaemia 0.30 (0.08) ,0.001 0.22 (0.06) ,0.001

Hypertension 0.08 (0.08) 0.32 0.11 (0.06) 0.06

Smoking 0.14 (0.07) 0.05 0.19 (0.05) ,0.001

Statin use 0.83 (0.08) ,0.001 0.72 (0.06) ,0.001

History of MI 1.30 (0.07) ,0.001 0.89 (0.06) ,0.001

rs10757278 0.12 (0.05) 0.016 0.10 (0.04) 0.005

Multivariate linear regression model includes age, gender, body mass index
(BMI), diabetes, hypertension, hyperlipidaemia, smoking, statin use, history of
myocardial infarction (MI), and rs10757278. Model R2 for log Gensini ¼ 0.356 with
R2 change for rs10757278 ¼ 0.004; model R2 for log Sullivan ¼ 0.343, R2 change
for rs10757278 ¼ 0.004. B (SE), unstandardized regression coefficient with
standard error.

Figure 1 Coronary artery disease (CAD) severity by rs10757278 genotype. CAD severity is illustrated here as (A) the mean Gensini score
(P for trend , 0.001) and (B) the mean Sullivan Extent score (P for trend , 0.001), all adjusted for age, gender, body mass index, risk factors,
statin use, myocardial infarction, and presented after reverse log-transformation. The risk allele is G.
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(Methods) [OR 2.51 (95% CI 1.26–4.99)] when compared with
non-carriers, while homozygotes were greater than three times
more likely [OR 3.42 (95% CI 1.54–7.6)] after adjustment for
age, gender, diabetes, statin use, smoking, and baseline CAD
Gensini score (Figure 2B). A similar trend was observed when
the Sullivan Extent score was used to assess progression in this
manner. After adjustment for the same covariates, we observed
a significant association between rs10757278 and the net change
in Sullivan Extent score/year (P ¼ 0.003) as well as with a binary
categorization of progression (Methods) [heterozygote OR 1.57
(95% CI 0.8–3.1); homozygote OR 2.49 (95% CI 1.1–5.4)]
(Figure 2C and D).

Discussion
Using detailed angiographic data and thereby refining the pheno-
type, we demonstrated a positive association between the
rs10757278 SNP and the Gensini and Sullivan Extent scores that
define the severity and extent of angiographic CAD. Furthermore,
we demonstrated that each copy of the risk allele leads to a higher
risk of CAD progression over time. Our findings add significantly
to the existing clinical and functional studies linking the 9p21 risk
locus to atherosclerosis, by demonstrating an independent associ-
ation with a quantitative CAD phenotype, and importantly with
CAD progression.

A quantitative measure of CAD is preferable to a binary pheno-
type as it (i) avoids misclassification bias owing to the time-
sensitive nature of coronary disease, (ii) gives a better indication
of lifelong cumulative burden of disease, and (iii) may be more sen-
sitive to the small effect size of common variants. We therefore
chose to use two validated semi-quantitative angiographic scores
which can be easily applied as a means to estimate severity and
extent of CAD. While moderately correlated with each other
(r ¼ 0.7, P , 0.01), each score represents a slightly different
aspect of CAD.

Our results demonstrate a significant association with
rs10757278 for both scores using an additive genetic model. As
an example, each copy of the risk allele contributes approximately
one 50% lesion in the LAD. Even after excluding subjects with
normal coronary arteries, whose inclusion may potentially be
driving the effect given, they were shown to have a lower fre-
quency of the risk allele, the additive trend persisted. Interestingly,
while we confirmed an absence of any significant interactions
between 9p21 and common risk factors, we did observe an inter-
action with MI, with a non-significant relationship in those who had
a previous MI. This likely represents a skewed distribution of
disease, as MI patients tend to have a greater degree of CAD
burden at the upper range of Gensini and Sullivan Extent scores,
and thus a smaller range of disease in which to identify a trend.

The positive association between the 9p21 risk genotype and
graded severity of CAD is a novel finding, not previously shown
in angiographic cohorts. Initial studies demonstrated association
with the presence/absence of CAD, either defined clinically or
by 50% disease criteria on angiography.5,17 Early studies failed to
demonstrate an association between 9p21 risk genotype and
CAD severity by the number of vessels affected in Asian popu-
lations. This may have been owing to their low power to detect
small effects along with a relatively insensitive estimate of sever-
ity.18,19 Another study, by Anderson and colleagues, demonstrated
that presence of CAD was correlated with 9p21 in 2100 Caucasian
subjects but not with the extent as assessed by a vessel score and
the Duke CAD index.20 Both scores may be insensitive to the
changes expected, given the complexity of the disease and the
small effect size of this SNP. The Duke CAD index is a validated
hierarchical prognostic score, including only vessels with .50%
disease and is less suited to quantifying multiple lesions. For
example, a left main lesion with 95% luminal stenosis would
score a maximum of 100 for the Duke CAD Index with no
room to quantify further disease that may exist in other vessels,
unlike the Gensini score. Population stratification or differences
in clinical selection criteria for coronary invasive investigation
may also account for the divergent results.

Importantly, our study adds additional information by demon-
strating association with CAD progression over time. In subjects
with repeat angiograms, we observed an additive effect of the
risk allele on the rate of change of Gensini score per year.
When classified as ‘progressors’ and ‘non-progressors’, homozy-
gotes for the risk allele were three times more likely to be progres-
sors compared with non-carriers, even when subjects without
baseline coronary disease were excluded (data not shown).
Similar findings were observed using the Sullivan Extent score to
document progression. In contrast, one study based on a
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Table 3 Patient characteristics by rs10757278
genotype at baseline of those with two or more
angiograms

Patient
characteristics
(n 5 308)

rs10757278 genotypea

AA (63) AG (158) GG (87) P-value

Age (years) 64.4 (11.2) 64.8 (10.3) 66.0 (11.6) 0.61

Male (%) 71.4 67.1 64.4 0.66

BMI 30.2 (7.2) 29.8 (6.2) 29.3 (5.9) 0.66

Diabetes (%) 31.7 35.4 31.1 0.75

Hypertension (%) 74.6 77.0 64.4 0.09

Hyperlipidaemia
(%)

76.2 75.2 74.3 0.92

Ever smoked (%) 52.5 62.1 64.0 0.32

Statin use (%) 77.6 72.6 81.9 0.27

Baseline Gensini
score, median
(IQR)

7.5 (1–14) 10 (3–24) 12 (6–24) 0.07

Baseline Sullivan
Extent score,
median (IQR)

11.6 (5–23) 15 (5–27) 17 (8–27) 0.11

Gensini rate,
median (IQR)

0.8 (0–6) 2.0 (0–5) 2.7 (1–8) 0.04

Sullivan Extent rate,
median (IQR)

1.1 (0–4) 1.8 (0–5) 3.0 (0–5) 0.08

Mean (SD) or % unless indicated. IQR, inter-quartile range; BMI, body mass index.
aHardy–Weinberg equilibrium test: P ¼ 0.6.
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quantitative angiography analysis of subjects enrolled in a statin trial
(treated 147, placebo 141) reported no evidence of progression
over 2 years in relation to 9p21 genotype, despite post hoc calcu-
lations to suggest adequate power.21 This difference may be a con-
sequence of strict patient selection or shorter follow-up time,
compared with our study. On the other hand, supportive evidence
comes from studies reporting progression of subclinical athero-
sclerosis with carotid intima media thickening22 and greater revas-
cularization outcomes in carriers of the 9p21 risk allele.8

Our findings on the whole thus support the notion proposed by
clinical and functional genomic studies that cell proliferation and
atherosclerosis are mediated by this locus.9 –11 In addition to
studies associating this locus with coronary calcium scores23 and
peripheral vascular disease,24 others have also reported association
with intracranial aneurysms and arterial stiffness suggesting that the
locus may also act outside of the traditional atherosclerotic
pathway, perhaps by influencing vascular structure.25,26

Some strengths of our study include: (i) a large sample size, with a
broad range of disease from normal to severe multi-vessel involve-
ment enabling accurate assessment of severity; (ii) use of detailed
coronary angiography phenotyping, moving beyond simple vessel
scoring to carefully quantify disease burden and (iii) evaluation of
progression of disease. There are also some important limitations
to our study. First, the use of coronary angiography to visually

quantify atherosclerosis is limited as remodelling may obscure sub-
stantial disease burden in arterial walls that can be detected by intra-
vascular ultrasound,27,28 but relatively small and limited numbers of
genomic ultrasound registries are available to date. Also, subjects
undergoing first or repeat catheterization are a select group who
are symptomatic or otherwise at high risk and thus may not be
representative of the general population. Furthermore, variations
in healthcare systems and referral patterns for angiography could
also be a source of selection bias. Finally, we only ascertained the
effect of one SNP in this region. However, this SNP was chosen as
the marker of this region based on robust prior data and is in tight
linkage disequilibrium with many other commonly used 9p21
markers (for example rs1333049, r2 ¼ 1) and genotyping these
would thus add little incremental value.

In conclusion, we have shown that the rs10757278 SNP at the
9p21 risk locus is associated with severity, extent, and progression
of CAD in a population undergoing coronary angiography, suggesting
a role for this locus in influencing atherosclerosis and its progression.
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