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Abstract
Exposure of alcohols 1a-1i to butadiene in the presence of a cyclometallated iridium catalyzed
derived from allyl acetate, 4-methoxy-3-nitrobenzoic acid and BIPHEP (2,2′-
bis(diphenylphosphino)biphenyl) results in hydrogen transfer to generate aldehyde-allyliridium
pairs, which engage in C-C coupling to form products of carbonyl crotylation. Under related
conditions using 1,4-butanediol as hydrogen donor, butadiene reductively couples to aldehydes
2e-2g and 2i to furnish carbonyl crotylation products 3e-3g and 3i. Thus, butadiene mediated
carbonyl crotylation occurs with equal facility from the alcohol or aldehyde oxidation level with
complete levels of branched regioselectivity.
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We have found that hydrogen exchange between alcohols and π-unsaturated reactants
triggers generation of electrophile-nucleophile pairs en route to products of C-C coupling.1,2
Using ruthenium- catalysts, the “transfer hydrogenative coupling” of alcohols to dienes,3
enynes,4 alkynes,5 and allenes6 delivers products of carbinol C-H functionalization or
“hydro-hydroxyalkylation”. Recently, related alcohol-enal couplings catalyzed by ruthenium
were reported where C-C bond formation is followed by redox isomerization.7 Using
ruthenium-based catalysts, diastereoselective hydro-hydroxyalkylation only has been
achieved in one isolated case6b and, to date, enantioselective variants have proven elusive.
In contrast, excellent levels of relative and absolute stereocontrol have been achieved in the
iridium catalyzed C-C coupling of alcohols to π-unsaturated reactants, including allylic
acetates,8,9 dimethylallene8e,g,10 and 1,3-cyclohexadiene.11 This fact prompted us to
explore alcohol-butadiene C-C coupling under the conditions of iridium catalyzed transfer
hydrogenation. Our efforts were further motivated by the fact that the most broadly utilized
protocol for stereoselective carbonyl crotylation, the method reported by Brown,12 is
attended by significant preactivation and the superstoichiometric generation of the
secondary alcohol byproduct, isopinocampheol, has proven problematic.13 In contrast,
butadiene is an abundant petrochemical feedstock that could potentially deliver products of
carbonyl crotylation in the absence of stoichiometric byproducts, while bypassing discrete
steps devoted to alcohol oxidation (Scheme 1).14
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In an initial series of experiments, the coupling of butadiene to alcohol 1a was explored
using the ortho-cyclometallated iridium complex derived from [Ir(cod)Cl]2, various 4-
substituted 3-nitrobenzoic acids, allyl acetate and the chelating phosphine ligand BIPHEP
(2,2′-bis(diphenylphosphino)biphenyl). Unlike other iridium catalyzed couplings developed
in our laboratory,8–11 reactions attempted in THF produced only trace quantities of 3a.
Improved conversion to 3a was observed in non-Lewis basic solvents, and toluene was best
among the solvents screened (Table 1, entries 1–5). Additionally, a dramatic electronic
effect involving the C,O-benzoate was evident: whereas the catalyst derived from 4-
cyano-3-nitrobenzoic acid “BIPHEP-I-CN”provides only an 8% yield of C-C coupling
product 3a, the catalyst derived from 4-methoxy-3-nitrobenzoic acid “BIPHEP-I-OMe”
delivers 3a in 62% yield (Table 1, entries 5–7). Finally, mild basic additives, in particular
sodium acetate, were found to enhance conversion (Table 1, entries 5, 8–11). Under optimal
conditions employing “BIPHEP-I-OMe” as precatalyst in toluene solvent employing sodium
acetate as base, butadiene and alcohol 1a are converted to the product of C-C coupling 3a in
80% isolated yield. Notably, a single regioisomer is formed (Table 1).

Under these optimized conditions, butadiene was coupled to alcohols 1a-1i. Benzylic
alcohols 1a-1f were converted to products of carbonyl crotylation 3a-3f in good yield.
Allylic alcohols 1g and 1h also couple to butadiene to provide moderate yields homoallylic
alcohols 3g and 3h. Finally, the unactivated aliphatic alcohol 1i combines with butadiene to
provide a 52% yield of the hydro-hydroxyalkylation product 3i. Although products 3a-3i are
obtained as mixtures of syn- and anti-diastereomers, only a single regioisomer is formed in
each case (Table 2).

The modest levels of syn-diastereoselectivity suggests a kinetic preference for butadiene
hydrometallation from the s-cis conformer to deliver the anti-π-allyl which, in turn, provides
the (Z)-σ-allyl stereoisomer. It is likely that conversion of the kinetically preferred (Z)-σ-
allyl stereoisomer to the thermodynamically preferred (E)-σ-allyl stereoisomer occurs at a
rate comparable to carbonyl addition. Alternatively, a Curtin-Hammett scenario might be
operative, wherein full equilibration between the (Z) and (E)-σ-allyl stereoisomers is
achieved, yet there exists a slight kinetic preference for carbonyl addition from the
thermodynamically less stable (Z)-σ-allyl stereoisomer (Scheme 2).

For nearly all the C-C bond forming transfer hydrogenations we have developed,3–11

carbonyl addition may be achieved from both the alcohol or aldehyde oxidation levels. In
the latter case, a stoichiometric reductant such as isopropanol or formic acid is required.
Using BIPHEP-I-OMe as precatalyst, the reductive coupling of butadiene to aldehydes
mediated by 1,4-butanediol14 occurs smoothly, as demonstrated by the conversion of
aldehydes 2e-2g and 2i to crotylation products 3e-3g and 3i. Thus, butadiene-mediated
carbonyl crotylation occurs with equal facility from the alcohol or aldehyde oxidation level
(Scheme 3).

Having established favorable reactivity, a preliminary evaluation of chirally modified
catalysts was undertaken. Toward this end, the ortho-cyclometallated iridium C,O-benzoate
derived from (S)-SEGPHOS and (R)-WALPHOS (SL-W002-1) were prepared and assayed
in the coupling of butadiene to alcohol 1a. Using (S)-SEGPHOS-I-OMe, the crotylation
product 3a was obtained in 80% yield as a 1.4:1 mixture of syn- and anti-diastereomers,
respectively. High levels of enantiomeric enrichment were observed for the syn-stereoisomer
(87% ee). Using (R)-WALPHOS-I-OMe, the crotylation product 3a was obtained in 40%
yield as a 1:2.2 mixture of syn- and anti-diastereomers, respectively. High levels of
enantiomeric enrichment were observed for the major anti-diastereomer (88% ee) (Scheme
4).
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In summary, we report the iridium catalyzed hydro-hydroxyalkylation of butadiene
employing alcohols 1a-1i to furnish products of carbonyl crotylation 3a-3i. Using 1,4-
butanediol as hydrogen donor, butadiene couples to aldehydes 2e-2g and 2i to provide
products of carbonyl crotylation 3e-3g and 3i. Thus, butadiene-mediated carbonyl
crotylation occurs with equal facility from the alcohol or aldehyde oxidation level. Although
products 3a-3i are obtained as diastereomeric mixtures, preliminary studies employing chiral
iridium catalysts modified by (S)- SEGPHOS and (R)-WALPHOS (SL-W002-1) reveal
promising levels of asymmetric induction and catalyst-directed diastereocontrol. Future
studies will focus on the development of second-generation catalysts that promote
butadiene-mediated carbonyl crotylation with control of relative and absolute
stereochemistry.

Experimental Section
Procedure for the Synthesis of BIPHEP-I-OMe

To an oven-dried sealed tube under an atmosphere of nitrogen charged with [Ir(cod)Cl]2
(100 mg, 0.15 mmol, 100 mol%), BIPHEP (156 mg, 0.3 mmol, 200 mol%), Cs2CO3 (195
mg, 0.6 mmol, 400 mol%) and 4-methoxy-3-nitrobenzoic acid (100 mg, 0.6 mmol, 400 mol
%) was added THF (3 mL, 0.05 M). The reaction mixture was heated at 80 °C for 30 min
and was then allowed to cool to ambient temperature. Allyl acetate (75 mg, 0.75 mmol, 500
mol%) was added and the reaction mixture was allowed to stir for an additional 90 min at 80
°C, at which point the reaction mixture was allowed to cool to ambient temperature. The
reaction mixture was filtered and washed with THF (15 mL) until all yellow residue was
dissolved. The filtrate was concentrated in vacuo and hexanes (50 mL) was added. The
resulting yellow precipitate was collected by filtration and dried under vacuum (253 mg,
0.266 mmol, 90% yield).

General Procedure for Iridium Catalyzed Hydro-hydroxyalkylation of Butadiene
To an oven-dried sealed tube under an atmosphere of nitrogen charged with alcohol 1a (50
mg, 0.30 mmol, 100 mol%), Ir-BIPHEP-1-OMe (14 mg, 0.015 mmol, 5 mol%), sodium
acetate (25 mg, 0.30 mmol, 100 mol%) was added toluene (1.0 M, 0.3 mL) followed by 1,3-
butadiene (0.1 ml, 1.2 mmol, 400 mol%, chilled at −78 °C). The reaction mixture was
placed in a 70 °C oil batch and was allowed to stir for 48 hr, at which point the reaction
mixture was concentrated in vacuo. Purification of the product by column chromatography
(SiO2; ethyl acetate:hexanes, 1:10) provides the product of carbonyl crotylation 3a (53 mg)
as a colorless oil in 80% yield as a single regioisomer and as a 1.4:1 mixture of syn/anti
diastereomers.
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Scheme 1.
Metal catalyzed hydro-hydroxyalkylation of butadiene circumvents the preactivation and
byproduct generation that attends “state-of-the-art” carbonyl crotylation methodology.
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Scheme 2.
Proposed catalytic mechanism for iridium catalyzed hydro-hydroxyalkylation of butadiene.
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Scheme 3.
Iridium catalyzed reductive coupling of butadiene to aldehydes 2e-2g and 2i.
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Scheme 4.
Preliminary evaluation of chirally modified catalysts.
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Table 1

Selected experiments in the optimization of the iridium catalyzed hydro-hydroxyalkylation of butadiene.a

entry solvent base R yield 3a (syn:anti)

1 THF NaHCO3 OMe trace

2 MeCN NaHCO3 OMe trace

3 dioxane NaHCO3 OMe 32% (1.4:1)

4 DCE NaHCO3 OMe 49% (1.4:1)

5 PhMe NaHCO3 OMe 62% (1.4:1)

6 PhMe NaHCO3 H 57% (1.4:1)

7 PhMe NaHCO3 CN 8% (1:1)

8 PhMe No Base OMe 31% (1.4:1)

9 PhMe KHCO3 OMe 57% (1.4:1)

10 PhMe Li2CO3 OMe trace

11 PhMe NaOAc OMe 80% (1.4:1)

a
Reactions were performed in 13 × 100 mm pressure tubes. The cited yields are of material isolated by silica gel chromatography. See Supporting

Information for experimental details.
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Table 2

Iridium catalyzed hydro-hydroxyalkylation of butadiene employing alcohols 1a-1i.a

1a, R = p-(CO2Me)Ph 1b, R = p-(COMe)Ph 1c, R = p-CF3Ph

1d, R = p-NO2Ph 1e, R = p-BrPh 1f, R = 2-Furyl

1g, R = CH=CHPh 1h, R =
CH=CHCH2OBn

1i, R = (CH2)7Me

3a, 80% Yield
1.4:1 (syn: anti)

3b, 82% Yield
1.4:1 (syn: anti)

3c, 86% Yield
1.4:1 (syn: anti)

3d, 70% Yield
1:1.3 (syn: anti)

3e, 62% Yield
1.7:1 (syn: anti) 3f, 73% Yield

1.1:1 (syn: anti)b

3g, 64% Yield
1.5:1 (syn: anti)

3h, 62% Yield
1.4:1 (syn: anti)

3i, 52% Yield
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1.5:1 (syn: anti)c

a
As described in Table 1.

b
95 °C.

c
72 hr.
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