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Abstract
Background—Reduced synaptic connectivity in frontal cortex may contribute to schizophrenia
symptoms. While altered mRNA and protein expression of various synaptic genes has been found,
discrepancies between studies mean a generalisable synaptic pathology in schizophrenia has not
been identified.

Methods—We determined if mRNAs encoding presynaptic proteins enriched in inhibitory
[vesicular GABA transporter (VGAT) and complexin 1] and/or excitatory [vesicular glutamate
transporter (VGluT1) and complexin 2] terminals are altered in the dorsolateral prefrontal cortex
of subjects with schizophrenia (n=37 patients, n=37 controls). We also measured mRNA
expression of markers associated with synaptic plasticity/neurite outgrowth [growth associated
protein 43 (GAP43) and neuronal navigators 1 and 2 (NAV1 and NAV2)]; and mRNAs of other
synaptic-associated proteins previously implicated in schizophrenia: dysbindin and vesicle-
associated membrane protein (VAMP1) mRNAs using quantitative RT-PCR.

Results—No significant changes in complexin 1, VGAT, complexin 2, VGluT1, dysbindin,
NAV2, or VAMP1 mRNA expression were found, however we observed reduced expression of
mRNAs associated with plasticity/cytoskeletal modification (GAP43 and NAV1) in
schizophrenia. Although dysbindin mRNA did not differ in schizophrenia compared to controls,
dysbindin mRNA positively correlated with GAP-43 and NAV1 in schizophrenia, but not in
controls, suggesting low levels of dysbindin may be linked to reduced plasticity in the disease
state. No relationships between three dysbindin genetic polymorphisms previously associated with
dysbindin mRNA levels were found.

Conclusions—A reduction in the plasticity of synaptic terminals supports the hypothesis that
reduced modifiability of synaptic terminals may contribute to neuropathology and working
memory deficits in schizophrenia.
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Introduction
While the primary etiology of schizophrenia remains elusive, a dysregulation of synaptic
connectivity of the frontal cortex may underlie the pathology and symptoms of the disease
(1-4). Structural MRI studies suggest a reduced frontal grey matter volume in schizophrenics
(5,6) and increased packing density of cells (7,8) implicates a reduction in volume of the
neuropil, where synapses are found (9). However, at the molecular level there is a lack of
consistent evidence of altered dorsolateral prefrontal cortex (DLPFC) expression of the
synaptic membrane protein synaptophysin, considered one of the most valid markers of
synapse density (10-12). To date, 8/10 studies report synaptophysin expression as
unchanged in the DLPFC in patients with schizophrenia (13-20), while 3/10 report a
reduction in synaptophysin in synaptosomal fraction or by immunohistochemistry in
prefrontal cortex (18,21,22). This discrepancy suggests that synaptic reduction may not be
widespread anatomically, may not be generalisable to all patients with schizophrenia, or that
synaptic proteins may be reduced in a subset of terminals with a compensatory increase in
others. Our previous study of five makers of presynaptic terminal proteins in patients with
schizophrenia demonstrated that only vesicular associated membrane protein 1 (VAMP-1)
was significantly reduced (16), however it is unknown if this fairly ubiquitous pre-synaptic
terminal protein is reduced at the mRNA level in the DLPFC.

Considering that one of the most prominent pathologies in schizophrenia involves a deficit
in GABAergic interneurons or changes in factors involved in GABA neurotransmission [ie
reduction in GAD67, GAT1 and GABA receptor subunits (23-29)], this may suggest that
inhibitory terminals are preferentially affected in schizophrenia. Indeed, complexin 1
protein, enriched in inhibitory terminals, may be reduced in schizophrenia (30), however
mRNA is unchanged (31). Thus, the balance of inhibitory to excitatory synaptic terminals
might be altered in the DLPFC in schizophrenia; however evidence suggests that there may
also be a reduction in excitatory terminals with decreased spine density (32,33) and reduced
expression of vesicular glutamate transporter (VGluT1) and complexin 2 (enriched in
excitatory terminals) in schizophrenia (31). This leaves the relative contribution of
inhibitory and excitatory terminals to cortical synaptic change in schizophrenia, as well as
the nature of any synaptic loss, unresolved. In this study, we examined the expression of
multiple synaptic markers in one of the largest schizophrenia cohorts studied to date in order
to test if putative synaptic changes may preferentially involve either inhibitory terminals
[indexed by vesicular GABA transporter (VGAT) and complexin 1] or excitatory terminals
(VGluT1 and complexin 2) to determine which are most altered.

It is possible that overall synaptic density is unchanged, while synaptic plasticity is reduced
in patients with schizophrenia as growth associated protein 43 (GAP43) mRNA has been
reported to be reduced in the DLPFC (34) and other telencephalic areas (35-38) however,
GAP43 protein has also been reported as unchanged or increased in schizophrenia
(16,17,22,36,39,40). Thus, we sought to measure the expression of markers associated with
synaptic plasticity/neurite outgrowth [GAP43 and neuronal navigators 1 and 2 (NAV1 and
NAV2)] to determine if synaptic plasticity may be altered in our cohort (41).

It is unclear to what extent putative synaptic pathology is directly related to the etiology of
schizophrenia. While multiple studies suggest that schizophrenia susceptibility genes encode
proteins with synaptic function, one of the most replicated, dysbindin, is localised to the
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synapse [reviewed by (42)]. We sought to replicate the reduction in dysbindin mRNA
expression in the DLPFC (20,43), and to determine if dysbindin mRNA levels may relate to
dysbindin genotypes (20,44) and/or may correlate with synaptic pathology as has been
previously found in the hippocampus (43,45). We chose this subset of mRNAs encoding
presynaptic proteins based on the criteria that they were representative of either inhibitory or
excitatory terminals and/or that they were previously reported to be altered in schizophrenia,
with the aim to replicate findings in an additional postmortem cohort. NAV1 was chosen as
a further candidate indicative of plasticity in order to corroborate or refute any GAP43
findings.

Methods and materials
Human post-mortem brain tissue

Tissue from the DLPFC of schizophrenia patients and matched controls was obtained from
the New South Wales Tissue Resource Centre (Sydney, Australia; University of New South
Wales Human Research Ethics Committee #HREC07261). This cohort consisted of 30
individuals diagnosed with schizophrenia and 7 individuals diagnosed with schizoaffective
disorder with tissue from 37 controls where individuals were matched according to brain
pH, age at death, RNA integrity number (RIN), and post-mortem interval (PMI) and groups
did not differ on these factors (Table S1 in Supplement 1), as described previously (41). All
schizophrenia and schizoaffective cases fulfilled the criteria of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV) of the American Psychiatric Association. All
subjects were prescribed antipsychotics at the time of death and the majority of patients
(20/35 tested) had detectable levels of medication by toxicology. Control cases had no
history of major psychiatric, neurological illnesses or drug abuse. Brains were hemisected
and cut into coronal blocks approximately 1cm in thickness prior to freezing. From the slab
just rostral to or at the genu of the corpus callosum, (Figure 1A) grey matter tissue was
carefully trimmed from the underlying white matter with a dental drill (Cat # UP500-UG33,
Brasseler, USA), typically along the inferior frontal sulcus [containing ventral middle frontal
gyrus and dorsal inferior gyrus (blue region in Figure 1B)]. We verified that we were in a
fairly consistent rostral-caudal level (from adjacent sections, dotted region in Figure 1B) by
NeuN immunohistochemistry to confirm BA46 cytoarchitecture was present in the block for
each case [criteria adapted from (46), Figure 1C]. Prior to RNA extraction, tissue was
pulverised on dry ice. Total RNA was extracted using Trizol (Invitrogen) from 300mg of
tissue and quality analysed by Agilent Bioanalyzer 2100 (Agilent Technologies, Palo Alto,
CA, USA) (41).

Immunohistochemistry
Thawed 14μm tissue sections were fixed with 4% paraformaldehyde in phosphate buffered
saline (10 min, 4°C) and immunohistochemistry was performed using anti-NeuN antibody
(1:1000 in diluent, Millipore MAB377) as per the protocol described previously (47).

Quantitative Real Time PCR analysis
cDNA was synthesised using the SuperScript® First-Strand Synthesis kit and random
hexamers (Invitrogen) in 3× 3μg total RNA per sample (pooled). Transcript levels were
measured by quantitative real time-PCR (qPCR) using an ABI Prism 7900HT Fast Real time
PCR system, 384-well format and TaqMan Gene Expression Assays (Applied Biosystems)
(VAMP1, Hs00249911_m1; complexin 1, Hs00362510_m1; VGAT, Hs00369773_m1;
complexin 2, Hs00932617_m1; VGluT1, Hs00220404_m1; GAP43, Hs00967138_m1;
NAV1, Hs00368110_m1; NAV2, Hs00367864_m1; dysbindin, Hs01105865_m1). PCR
cycling conditions were: 50°C for 2 minutes, 95°C for 10 minutes, 40 cycles of 95°C for 15
seconds and 60°C for 1 minute. PCR data were obtained with the Sequence Detector
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Software (SDS version 2.0, Applied Biosystems). No template and no reverse transcriptase
enzyme controls produced no signal. All measurements from each subject were performed in
triplicate and relative quantities determined from a seven point standard curve. Measurement
outliers were removed if the variance of triplicates was > 30% of the mean and the mean re-
calculated based on two values. No subjects were excluded due to missing data. Transcript
quantities were normalised by the geometric mean of four housekeeping genes: ubiquitin C
(Hs00824723_m1), β-actin (Hs99999903_m1), glyceraldehyde-3-phosphate dehydrogenase
(Hs99999905_m1), TATA box binding protein (Hs00427620_m1) determined to be
unaltered in the DLPFC in schizophrenia (41).

SNP Genotyping
DNA was isolated from DLPFC tissue using a PUREGENE DNA purification kit
(QIAGEN) from 20mg of tissue. SNP genotype was determined using TaqMan SNP
genotyping assays [Applied Biosystems (48) as detailed in Table 1]. Heterozygotes were
grouped with individuals homozygous for the rare allele to increase the group size for
statistical analysis.

Statistical analysis
For qPCR, outliers (+/- 2 SD from the mean) were removed from each diagnostic group
(<6% of values). Data were normally distributed (all p>0.20) and all genes showed
homogeneity of variance (p>0.29) with the exception of VGAT (p=0.008). Analysis of
variance (ANOVA) was used to determine diagnostic group differences. Pearson's
correlations were run to determine relationships between gene expression and demographics
and, when appropriate, analysis of co-variance (ANCOVA) were run covarying for factors
that correlated to gene expression in the whole cohort or controls only or schizophrenics
only. All statistical analyses were performed using Statistica software (version 7.1).

Results
Expression of synaptic mRNAs in schizophrenia

The geometric mean of housekeepers used to normalise target gene expression did not differ
between schizophrenia patients compared to controls (41). Normalised levels of many
mRNAs encoding synaptic proteins correlated with pH, RIN and age (significantly
decreasing with increased age) as expected (Table S2 in Supplement 1). Additionally, a few
transcripts correlated significantly with PMI.

VAMP1 mRNA, detected in cells with VGAT or VGluT1 protein positive terminals (49)
was unaltered in schizophrenia (co-varying for age, pH and PMI, F=1.43, df=66, p=0.25;
Figure 2A; Table 2). Expression of genes encoding inhibitory terminal-enriched mRNAs
(complexin 1 and VGAT) was not significantly altered in schizophrenia (F=1.90, df=68,
p=0.17 and co-varying for age, pH, RIN, F=0.61, df=64, p=0.44, respectively; Figure 2A)
although complexin 1 trends towards a significant reduction when a directional hypothesis
was used (t=1.38, df=68, p=0.08). For mRNAs of excitatory-terminal enriched proteins, a
slight reduction in complexin 2 mRNA expression was noted in schizophrenics but this
failed to reach statistical significance (5.5%, covarying for pH and PMI, F=2.81, df=65,
p=0.10). mRNA encoding the excitatory terminal marker VGluT1 was also not altered in
schizophrenia (co-varying for age, pH, RIN, and PMI, F=0.02, df=66, p=0.89; Figure 2A).

A statistically significant reduction with moderate effect size was found in the plasticity-
associated mRNA, GAP43 mRNA in schizophrenia compared to controls (8.7% reduction,
Cohen's d = 0.57; F=5.84, df=66, p=0.02; Figure 2B; Table 2), and in NAV1 mRNA co-
varying for pH (9.8% reduction, Cohen's d = 0.43, co-varying for pH F=4.33, df=67,
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p=0.04; Figure 2B). No significant alterations were observed in NAV2 mRNA expression in
the DLPFC of schizophrenia patients compared to controls (co-varying for age, pH, RIN,
PMI, F=0.10, df=62, p=0.91; Figure 2B). No overall diagnostic differences were found for
dysbindin mRNA (co-varying for age and pH, F=0.41, df=68, p=0.53; Figure 2B).

Dysbindin expression in schizophrenia – correlations with other mRNAs encoding
synaptic markers

Given the proposed links of dysbindin to schizophrenia, we sought to examine the
relationships with the plasticity related genes that we had determined to be altered in
schizophrenia, GAP43 and NAV1 (Figure 3), and VGluT1 [previously reported to inversely
correlate with dysbindin in schizophrenia (45)] by performing Pearson's correlations.
Relationships between these mRNAs and dysbindin varied between control and
schizophrenia groups (Figure 3). VGluT1 mRNA expression negatively correlated with
dysbindin mRNA in controls but not schizophrenics (r=-0.37, p=0.03 in controls; r=-0.10,
p=0.58 in schizophrenics; Table S3 in Supplement 1; Figure 3G). In contrast, GAP43 and
NAV1 mRNAs strongly positively correlated with dysbindin mRNA in schizophrenia but
was not significantly correlated in controls (r= 0.60, p=2.5 × 10-4 and r=0.50, p=0.002 in
schizophrenics, r= 0.31, p=0.08 and r=0.28, p=0.11 in controls; Table S3 in Supplement 1;
Figure 3G).

SNPs in dysbindin gene did not alter gene expression
.None of the three dysbindin SNPs tested appeared to influence dysbindin mRNA expression
and there was no effect of diagnosis or no genotype by diagnosis interaction effect by
ANCOVA co-varying for age and pH (Table 3).

Affect of clinical characteristics on gene expression of synaptic proteins in schizophrenia
Correlations of synaptic marker gene expression with disease demographics and medications
showed significant negative correlation with both excitatory and inhibitory neurotransmitter
transporter (VGluT1 and VGAT) mRNA expression and duration of illness (r=-0.49,
p=0.002, and r=-0.39, p=0.02, respectively; Table S4 in Supplement 1) that lost significance
when partial correlation with age was performed. Similarly, the trend for correlation of
VGluT1 and VGAT with lifetime chlorpromazine exposure is lost when partial correlations
for age are performed (r=-0.04, p=0.82 and r=-0.15, p=0.41, respectively). There is a
significant positive correlation of NAV2 mRNA expression with age of onset (r=0.35,
p=0.05). We found that manner of death had no significant effect on gene expression (results
not shown). Similarly, alcohol consumption also had no effect on gene expression (results
not shown).

Discussion
Numerous reviews claim altered synaptic abundance to be one of the core cortical
pathologies in schizophrenia (2,9,50-53); however this claim is based on indirect and
variable evidence. Microarray analysis revealed that genes involved in presynaptic secretory
function were some of the most changed genes in patients with schizophrenia (4),
implicating schizophrenia as a disease of the synapse (1,3,4). However, the reduction in
mRNAs of individual synaptic proteins varied from person to person; and thus, no clear and
generalisable pattern of synaptic reduction was identified. In the present study, we report
that there is little overall group change in the mRNA expression of transcripts encoding
synaptic genes, including complexin 1, VGAT, complexin 2, VGluT1 and VAMP1 in the
DLPFC in our cohort (Figure 2), demonstrating that changes in synaptic mRNAs may be
subtle and variable, and this does not support that synaptic reduction is widespread and
ubiquitous as often portrayed. We do, however, report reductions in expression of two
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mRNAs encoding proteins associated with plasticity of the synapse and cytoskeletal
stabilisation (GAP43 and NAV1, Figure 2) which may implicate an overall dysregulation of
synaptic plasticity in the frontal cortex of people with schizophrenia in the context of
apparently normal synaptic content or density.

Overall, we do not see any overt alterations in expression of the more specific markers of
inhibitory or excitatory terminals (complexins or vesicular neurotransmitter transporters) in
the DLPFC of patients with schizophrenia (Figure 2A). It may be that any “synaptic marker”
can play a distinct role in a particular subset of terminals and could therefore be altered
within specific terminals and not others. Complexins participate in synaptic vesicle fusion
and help stabilise the SNARE complex in a fusogenic state (54). Early studies determined
that complexins are predominantly co-localised to either inhibitory (complexin I) or
excitatory (complexin II) terminals (55-57) and may, therefore, represent a good molecular
measurement of overall inhibitory vs excitatory synapses. Indeed, reduced complexin I in
the superior temporal cortex (31) and PFC (30) suggests an overall reduction in inhibitory
terminals in schizophrenia. However, these reductions in complexin 1 are not consistently
found in all brain regions in schizophrenia (31, 56, 58, 59). The variable nature of this
reduction is consistent with our finding of a trend towards reduced complexin 1 in
schizophrenia and suggests that complexin 1 mRNA may be reduced in certain subsets of
patients. Reports are similarly varied for complexin II mRNA and protein expression in
schizophrenic subjects (30, 31, 56, 59), suggesting that alterations in complexins may vary
by brain region, between cohorts and among individuals. Additionally, findings may be
influenced by disease heterogeneity, sample size, molecular technique used (eg in situ
hybridization, quantitative PCR, and western blotting), age, and medication status of
patients. We have reviewed recent studies examining synaptic proteins in the DLPFC in
schizophrenia [since (16)] in Table 4, showing that most synaptic proteins are unchanged in
the schizophrenic DLPFC and that an overall discrepancy between findings at protein and/or
mRNA level exists. In a further recent review, Brose demonstrated that most studies of
complexin 1 and 2 report either a reduction or no change in mRNA/protein of complexins in
multiple brain regions (54).

More recent reports suggest that complexins 1 and 2 display some functional redundancy in
complexin 1 and complexin 2 deficient mice suggesting that they are not necessarily
localised to specific inhibitory or excitatory terminals (60). Consequently, we also examined
the mRNA expression of the vesicular GABA and glutamate transporters (VGAT and
VGluT1, respectively) as more specific inhibitory/excitatory transmission markers. A
reduction in VGluT1 mRNA and/or protein in the PFC and hippocampus (31,61), but also
an increase in VGluT1 protein in the hippocampus (45) in people with schizophrenia have
been reported. In our cohort, however we failed to detect a significant diagnostic difference
in expression of either VGAT or VGluT1 mRNAs, and we also do not find any significant
alterations in the expression of several other synaptic or cytoskeletal genes previously
associated with schizophrenia: VAMP1 [part of the SNARE complex involved in vesicle
fusion; previously reported to show overall reduced protein levels in the DLPFC (16)], and
NAV2 [associated with actin cytoskeleton remodelling (62) and reported to be
downregulated in schizophrenia (63)] (Figure 2). This suggests that within our cohort there
is no overall change in many of the mRNAs encoding presynaptic proteins which have
previously been found to be reduced in patients with schizophrenia. This may be viewed as
consistent with the evidence from most studies that fail to detect an alteration in
synaptophysin widely considered a general marker of overall synapse number [reviewed by
(16)], however synaptophysin may be enriched in glutamatergic vesicles (64). An alternative
interpretation of our data might suggest that we failed to detect alterations in any one of
these genes due to the heterogeneous nature of schizophrenia. This heterogeneity could
implicate alterations in any one or more genes in a functional pathway that could then
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disrupt synaptic communication and lead to alterations in synaptic communication. A
similar mechanism has been proposed to account for the numerous genes in the
neurotransmission machinery of the synapse that have been implicated in the
neuropathology of schizophrenia (3,4). Indeed this may also be seen for VGAT and
complexin 2 mRNA expression where a few individuals have particularly low expression of
these genes, while average expression in the schizophrenia cohort as a whole is not
significantly altered (Figure 2A).

Our finding of reduced GAP43 mRNA expression in schizophrenia (Figure 2B) is consistent
with our previously reported reduction in GAP43 mRNA expression in layers III, V, and VI
in the DLPFC of schizophrenia patients (34), although another study showed no alteration in
GAP43 mRNA in the DLPFC in people with schizophrenia (36). While Perrone-Bizzozero
and colleagues (22) reported an increase in GAP43 protein in the visual and frontal cortices,
our previous work and that of others did not show any alteration in GAP43 protein in the
DLPFC of patients with schizophrenia (16, 17). However, as GAP43 mRNA is robustly
expressed in deeper cortical layers and GAP-43 protein is shipped via fast-axonal transport
to the presynaptic terminals (65), we predict reductions in GAP-43 protein levels may be
more readily detected in the thalamus or in the caudate to which the infragranular cortical
neurons project. The potential roles of GAP43 in neuronal pathfinding and branching in
development and neurotransmitter release, long-term potentiation and learning in the adult
brain [reviewed by (65)] demonstrate a variety of mechanisms through which GAP43
deficiency might lead to altered plasticity of the brain and schizophrenia symptoms.
Although there is the possibility of type 1 error, we also report a reduced mRNA expression
encoding another cytoskeletal modulator (NAV1 see below) in the DLPFC of people with
schizophrenia in this cohort (Figure 2B); however, to further strengthen the case for reduced
synaptic plasticity in schizophrenia, these findings need to be replicated in another cohort.

The reduction we find in NAV1 mRNA in schizophrenia (Figure 2B) supports dysregulation
of cytoskeleton reorganisation in schizophrenia. NAV1 localises to the growth cone and
branch points in development similar to that of GAP43, and has a role in bundling
microtubules and in pathfinding, axogenesis and synaptic maturation (66). It therefore
appears that an overall reduction in synaptic plasticity may be a generalised finding in the
schizophrenia cortex, as has been suggested (34, 35, 59). NAV1 is homologous to NAV2
with deletion of several exons from a gene duplication, but with a similar proposed function
(67). NAV2 is also associated with neurite outgrowth and acts to remodel the cytoskeleton
through association with growing microtubules (68-70) and it has been suggested that this
protein contributes to actin cytoskeleton remodelling through its CH domain linking ABI-1
homologue and the ARP2/3 complex (62). We did not detect a change in NAV2 in our
cohort, however NAV2 mRNA was found to be reduced in the DLPFC of people with
schizophrenia (63). While the Navigators have been implicated in migration and neurite
outgrowth, it is not clear why NAV1, but not NAV2 is not similarly reduced schizophrenia
in our cohort.

From our previous work, we expected to find reduced dysbindin expression in the DLPFC
(20,43). In the present study, with a larger cohort we failed to replicate this reduction in
dysbindin mRNA in schizophrenia (Figure 2B), although some individuals with
schizophrenia appear to have lower dysbindin expression than controls, as may be expected
due to the fact that only a small subset of schizophrenia cases would carry the “at risk”
genetic variant in dysbindin that is linked to mRNA down-regulation(44). However, when
we genotyped our cohort we found that none of the dysbindin SNPs tested which were
previously reported to alter dysbindin mRNA levels (20), were associated with a change in
dysbindin mRNA expression in the present cohort (Table 3). This suggests that in our
Australian cohort these SNPs do not directly relate to variation in gene expression and
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individual differences in dysbindin gene expression may be more saliently influenced by
other genetic, epigenetic or environmental factors. Additionally, it is possible that laminar-
specific alterations in dysbindin mRNA may be present in our cohort and may have escaped
detection with our homogenate-based approach. Interestingly, while overall levels of
synaptic-related transcripts are not significantly altered on a group basis, some correlations
between measured synaptic/cytoskeletal genes did display varying relationships in the
control cohort as compared to schizophrenia subjects. Positive correlations of dysbindin
with plasticity associated genes (GAP43 and NAV1) occurred in the disease state but not in
controls (Figure 3). Dysbindin has been associated with adaptive modulation of vesicle
release and regulation of LTP (71,72) and the fact that those individuals with reduced
dysbindin also tended to have reduced GAP-43 and NAV1 suggests that dysregulation of
dysbindin in schizophrenia may limit synaptic plasticity/cytoskeleton reorganisation in
schizophrenia (71).

While we have globally surveyed only a small subset of synaptic protein mRNAs we have
chosen those previously reported to be altered in schizophrenia and/or representative of
different terminal types to address the question of whether inhibitory or excitatory terminals
may be most affected in schizophrenia. We report a lack of change in overall synaptic
mRNA levels which may reflect no change in synaptic density; however, at the current
resolution we are unable to determine whether subsets of terminals are reduced in number or
density along with compensatory increases in the number or size of other subsets of
terminals. While studies of synaptic proteins may by more closely linked to synaptic density,
measurement of synaptic proteins in homogenates would also miss selective changes in
subsets of terminals. Techniques with higher anatomical resolution will be needed to
examine questions about synaptic mRNAs in specific subsets of neurons, such as laser
capture or in situ hybridization, which would allow more specific examination of different
neuronal subtypes or distinct cortical layers. However, even these approaches may not be
sensitive enough to pick up changes in a subset of terminals within a neuron. So, it is
premature to conclude that synaptic terminal number or density is completely unchanged in
schizophrenia.

In summary, our analysis of mRNAs encoding synaptic proteins, using one of the largest
schizophrenia cohorts studied to date does not support an overall widespread reduction in
synaptic marker mRNAs in the frontal cortex of patients with schizophrenia. This implies
that synaptic changes in schizophrenia cortex may be more subtle, anatomically restricted,
or heterogeneous. Although there are consistent reports of a GABAergic deficit in
schizophrenia cohorts (23-29), we do not find evidence for an overall deficit in mRNAs
encoding proteins found in inhibitory synaptic terminals nor do we find a compensatory/
parallel alteration in mRNAs encoding excitatory terminal proteins in schizophrenia. Our
study does lend support to the theory that there is a deficit in synaptic plasticity associated
genes, and potentially a deficit in the modifiability of synaptic terminals, and we speculate
that this loss of plasticity may be more important in the cortical pathology of schizophrenia
than gross reductions in the overall terminal abundance.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Isolation of DLPFC tissue
Coronal blocks of approximately 1cm thickness were cut from hemisected brains and frozen.
The coronal block rostral to the corpus callosum, or containing the genu of the corpus
callosum (A) was used to dissect grey matter tissue containing typically inferior frontal
sulcus, ventral middle frontal gyrus and dorsal inferior gyrus (blue region in B). 14μm
frozen coronal sections were cut from adjacent tissue (dotted region in B) and NeuN
immunohistochemistry was used to determine BA46 cytoarchitecture (C).
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Figure 2. Expression of synaptic mRNAs in schizophrenia
(A) The general synaptic mRNA VAMP1 and mRNAs enriched in inhibitory terminals
(complexin 1 and vesicular GABA transporter, VGAT) or excitatory terminals (complexin 2
and vesicular glutamate transporter, VGluT1) are not significantly reduced in schizophrenia.
(B) Plasticity and axon guidance associated mRNAs (growth associated protein 43, GAP43;
and neuronal navigators 1 and 2, NAV1 and NAV2) are reduced in the DLPFC in
schizophrenia compared to controls. Dysbindin mRNA expression is not altered overall in
the schizophrenia cohort. *p<0.05 by Student's t-test, # p<0.05 by ANCOVA co-varying for
pH. White bars controls, grey bars schizophrenia cases.
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Figure 3. Dysbindin mRNA expression in schizophrenia
Correlation plots depicting the relationship between dysbindin and VGluT1 and plasticity-
related genes altered in schizophrenia (NAV1, GAP43) in control (A, C, E) and
schizophrenia cohorts (B, D, F). (G) Correlations between dysbindin and VGluT1, NAV1,
and GAP43 are dysregulated in schizophrenia (italic) compared to controls (regular text).
Bold text represents statistically significant correlations.
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