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Abstract

Despite extensive research, the pathogenesis of neurodegenerative Alzheimer’s disease (AD) still eludes our
comprehension. This is largely due to complex and dynamic cross-talks that occur among multiple cell types throughout
the aging process. We present a mathematical model that helps define critical components of AD pathogenesis based on
differential rate equations that represent the known cross-talks involving microglia, astroglia, neurons, and amyloid-b (Ab).
We demonstrate that the inflammatory activation of microglia serves as a key node for progressive neurodegeneration. Our
analysis reveals that targeting microglia may hold potential promise in the prevention and treatment of AD.
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Introduction

Alzheimer’s disease (AD) is one of the most prevalent

neurodegenerative disorders associated with aging, causing

dementia and related severe public health concerns [1]. Despite

extensive research effort and progress, the pathogenesis of AD

remains incompletely understood, partly due to highly complex

and intertwined intercellular cross-talks taking place throughout

the aging process [2]. Consequently, despite limited treatment

options to manage and slow the progression of AD, no effective

cure is available.

Although the deposition of amyloid-b (Ab) peptides and

formation of senile plaques in the brain is the cardinal

morphological feature identifying the clinical phenotype of AD

[3,4], increasing clinical and basic studies suggest that inflamma-

tory activation of microglia may play an equally important role

during the initiation and progression of the disease [5]. Microglia

are resident innate immune macrophages within brain tissues,

capable of expressing pro-inflammatory mediators and reactive

oxygen species when activated by inflammatory signals including

amyloid-b (Ab) [6]. In healthy brains, together with quiescent

astroglia (Aq), resting microglia may adopt an anti-inflammatory

state (M2) and in turn foster neuron survival (Ns) and prevent

astroglia proliferation (Ap) [7,8]. As inflammatory signals (e.g. Ab)

gradually build, microglia may adopt an activated pro-inflamma-

tory state (M1), leading to Ap proliferation and neuron death (Nd)

[9,10,11]. Neuronal debris, amyloid-b (Ab), and/or proliferating

astroglia (Ap) may in turn further exacerbate the inflammatory

phenotype of M1 macroglia [12,13]. The multiple positive and

negative feedbacks among these cells are thus crucial for

neurodegeneration that eventually alters the neuronal structure

and function during the pathogenesis of AD (Figure 1).

Due to its multi-cellular components and complex nature,

conventional experimental approaches have failed to identify

critical underlying causes for AD, contributing to the lack of an

effective therapeutic treatment. Mathematical models can serve as

powerful tools to understand the molecular and cellular processes

that control complex diseases [14,15]. Indeed, there have been

several attempts to model the process of senile plaque formation

[16,17,18,19]. Specifically, these approaches focused on a

nucleation step that is coupled with rates for the irreversible

binding of Ab monomers to the fibril ends, the lateral aggregation

of filaments into fibrils, and fibril elongation through end-to-end

association. Other modeling efforts examined the signaling

cascade responsible for microglia migration and activation in

response to an initial inflammation-provoking stimulus involving

Ab [16,20].

However, no systematic modeling approaches have been

reported to examine the network cross-talks among microglia,

neuron, and astroglia, and the corresponding pathological

consequence. Here, we evaluate the dynamic network involving

multiple cross-talks among distinct states of microglia, astroglia,

and neurons through a mathematical model. Our approach has

led to an intriguing insight suggesting that microglia activation in

addition to a threshold for Ab may be the critical initiator for the

pathogenesis of AD.

Methods

Mathematical Method
We propose a sixteen pathway AD mechanism involving seven

species that is shown schematically in Fig. 1. The paths have rates

ai that implicitly represent the influences of intercellular signaling

along them. The mechanism is based on an assumption of

constant risk of neuronal death, i.e., a single event randomly

initiates cell death independently of the state of any other neuron

at any instant [21]. The spatiotemporal influence of diffusion is
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neglected since local cell events are assumed to occur on a slower

timescale than signal dispersion through chemotaxis.

The seven rate equations for the cell populations and the

number of Ab molecules in an arbitrary local volume can be

written through seven coupled rate equations, namely,

dNs=dt~a1 Aq{a2 Ap{a3 M1, ð1Þ

dNd=dt~{dNs=dt, ð2Þ

dAq

�
dt~a4 M2{a5 M1, ð3Þ

dAp

�
dt~{dAp

�
dt, ð4Þ

dM2=dt~(a6za11)Ns{a10 Ndz(a7za12)Aq

{a9 M1za14 M2{(a8za13)Ab,
ð5Þ

dM1=dt~{dM2=dt, and ð6Þ

dAb=dt~a15 Ns{a16 M2: ð7Þ

These relate the change in each cell population or the number

of Ab molecules at any instant to the values of all species at that

Table 2. Sensitivities of the cell types to the initial conditions.

Ns(0) Nd(0) Aq(0) Ap(0) M1(0) M2(0) Ab (0)

Value 104 102 105 103 103 105 103

S(Ns) 1 <0 <0 <0 20.2 0 <0

S(Nd) <0 1 <0 <0 0.2 <0 <0

S(Aq) <0 <0 1 <0 20.2 <0 <0

S(Ap) <0 <0 <0 1 0.2 <0 <0

S(M1) <0 0.2 <0 <0 1.2 <0 <0

S(M2) <0 20.2 <0 <0 20.2 1 <0

S(Ab) 1 <0 <0 <0 20.2 <0 <0

Initial values X(0) of the initial cell populations and the number of molecules of
Ab in an arbitrary local volume and orders of magnitude for the sensitivity
coefficients S(Nj, j = s,d) = dNj/d(X(0)) determined after 20 years for tenfold
perturbations, i.e., 106 and 10216, in these initial values.
doi:10.1371/journal.pone.0015176.t002

Figure 1. Schematic of the AD mechanism that incorporates
feedback influences from surviving and dead neurons, Ns and
Nd, quiescent and proliferating astroglia Aq and Ap, reactive
and normal microglia, M1 and M2, and Ab. The rates associated
with the pathways are included in Table 1.
doi:10.1371/journal.pone.0015176.g001

Table 1. Mathematical parameters describing the functional interactions among various cell types.

Rate 1/year Pathway S(Ns) S(Nd) S(M1) S(M2) Sensitivity

a1 1025 Aq R Ns 50000 250000 26000 6000 Strong

a2 1023 Ap R Nd 2500 500 260 60 Weak

a3 1022 M1 R Nd 2200 200 235 35 Weak

a4 1024 M2 R Aq 500 2500 150 2150 Weak

a5 1022 M1 R Ap 23 3 1 21 Weak

a6 1022 Ns R M2 500 2500 26000 6000 Weak

a7 1024 Aq R M2 5000 25000 250000 50000 Strong

a8 1022 Ab H M2 2400 400 5000 25000 Moderate

a9 1022 M1 H M2 230 30 250 2250 Weak

a10 1022 Nd R M1 28 8 90 290 Weak

a11 1022 Ns H M1 500 2500 26000 6000 Moderate

a12 1024 Aq H M1 5000 25000 250000 50000 Strong

a13 1022 Ab R M1 2400 400 5000 25000 Moderate

a14 1024 M2 H M1 5000 25000 250000 50000 Strong

a15 1 Ns R Ab 210 10 100 2100 Weak

a16 1022 M2 H Ab 100 2100 21000 1000 Weak

ar 1 M2 H Ab 8 28 2100 100 Weak

The rates ai associated with the pathways of the AD mechanism, and the sensitivities of the Ns and Nd populations to variations in the values of ai. The values for the
sensitivity coefficients S(Nj, j = s, d) = dNj/dai are determined after 20 years for 62.5% perturbations in each ai value. A cell population is more sensitive to a change in a rate
that produces a larger value of |S(Nj)|. Positive S(Nj) imply that a rate contributes to an increase in Nj while a negative value entails a corresponding population decrease.
doi:10.1371/journal.pone.0015176.t001
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time. For instance, Eq. (1) relates the rate of change in Ns to the

Aq, Ap, and M1 populations with the pathway weights a1, a2, and

a3, respectively. Whereas Aq increases the rate of change of Ns, Ap

and M1 decrease it. Equation (5) for the rate of change of the M2

population is the most complex, since it involves nine pathway

weights, and five cell populations and Ab. The conversion of Ns

into Nd is irreversible, whereas those of Aq and M2 into Ap and M1

are reversible.

The rates for each ai are specified, as shown in presented in

Table 1 for each pathway. Since the literature points to the path

Ns R Ab being dominant, we assume that it is also the fastest. Its

rate is set at 1/year, i.e., each year every Ns cell stimulates the

formation of a sustaining an Ab molecule. Likewise, since neuronal

survival decreases significantly once disease progresses, we assume

that the overall path M2 R Aq R Ns is slow so that the associated

rates a1 and a4 are also relatively the smallest. The other rates are

similarly specified in terms of their relative abilities to facilitate or

inhibit the formation of a cell or Ab molecule according to the

particular pathway. Next, we specify the initial composition of the

volume under consideration. These initial conditions for the seven

species are presented in Table 2.

Results

Our objective is to be able to describe neuropathogenesis during

AD in terms of the Ns and Nd populations. Hence, we first

determine the sensitivities of these cells to changes in the rates ai,

using the usual definition of the sensitivity coefficient,

S Nj

� �
~dNj

�
dai, j~s, d: ð8Þ

The sensitivity coefficients for Ns, Nd, M1 and M2 cells,

presented in Table 1, are determined after 20 years for 62.5%

perturbations in each ai value. A cell population is more sensitive

Figure 2. Dynamic simulation of various cell populations
during the progression of Alzheimer’s disease. The (a) Ns (black),
M1 (red) and Ab (blue), and (b) Nd (black) and Ap (blue) populations over
20 years for the rates reported in Table 1. The removal rate ar stabilizes
the net number of Ab molecules after three years so that there is only a
gradual increase in Nd and corresponding decline in Ns thereafter. The
microglia populations are also consequently relatively stable.
doi:10.1371/journal.pone.0015176.g002

Figure 3. Dynamic variations of cell populations given distinct Ab removal rate. Variations in the (a) M1, (b) Ap, (c) Ab, and (d) Nd

populations over 20 years for three values of ar = 16(black), 10216(red), and 10226(blue) the value reported in Table 1 for the Ab removal rate. As
ar decreases, there is an increase in neuropathogenesis so that all four populations increase.
doi:10.1371/journal.pone.0015176.g003
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to a change in a rate that produces a larger value of |S(Nj)|.

Positive values for S(Nj) imply that a rate contributes to an increase

in Nj while a negative value implies that its influence leads to a

corresponding population decrease. The sensitivity analysis shows

that the Ns and Nd populations are most sensitive to the path Aq R
Ns, which increases neuronal survival and decreases neuron death.

Important paths that inhibit neuropathogenesis include Aq R M2,

Aq H M1 and M2 H M1, while those that enhance disease involve

M1 R Nd, Ab H M2 and Ab R M1.

A similar analysis that perturbs the initial cell populations and

the number of Ab molecules tenfold is presented in Table 2. It

shows that, in comparison to the other species, the M1 population

is most sensitive to these substantial perturbations in the initial

amount of any species while Nd is only sensitive to the initial

amounts of M1 and M2. This implies an important role for

microglia during AD progression. The sensitivity coefficients S(M1)

and S(M2), also presented in Table 1, show that, as for Ns and Nd,

the dominant paths that inhibit neuropathogenesis by affirming

M2 and decreasing M1 are also Aq R M2, Aq H M1 and M2 H
M1. Once again, paths 7 and 14 involving Ab, i.e., Ab H M2 and

Ab R M1 promote AD progression. The model suggests that

interventions aimed at decreasing a8 and a13, which involve M1,

M2 and Ab and contribute to AD progression, are the ones more

likely to diminish neuropathogenesis. This intuitive result empha-

sizes that decreasing the number of reactive microglia and

ensuring a sufficient population of quiescent astroglia is important

in treating AD.

The temporal variation in various species for the rates in Table 1

is illustrated in Fig. 2. Figure 2(a) presents the Ns, M1 and Ab
populations over 20 years, and Fig. 2(b) the corresponding values

for Nd and Ap. Most notable is the influence of the removal rate ar,

which stabilizes the number of Ab molecules after three years.

Following that period, there is only a gradual increase in Nd that is

coupled with a corresponding decline in Ns. Consequently, the

microglia populations are also relatively stable. Therefore, the

rates in Table 1 should be considered as being representative of a

healthy population.

We examine the influence of varying ar on neuropathogeneis in

Fig. 3, which presents the M1, Ap, Ab and Nd populations over 20

years for three values of ar. As ar decreases, there is an increasing

neuronal death. Thus, all four populations, which are associated

with AD progression, increase. While microglia play an important

role in AD, Fig. 3 shows how the local Ab concentration plays a

critical role in initiating and promoting AD.

We investigate this further by varying a8 and a13. Figure 4

presents results for the M1, Nd and Ab populations over 20 years

for three values of a13. As a13 increases, the M1, Ap and Nd

populations also increase, leading to an associated decrease in

neuronal survival, as illustrated through Eqs. (1) and (2) of the

mathematical model. A tenfold increase in a13 leads to a near

doubling in Nd after 20 years. As Ns decreases so does Ab, but the

smaller protein concentration is still sufficient to promote

neuropathogenesis among the smaller Ns population. Identical

results are obtained for similar variations in the rate a8 for Ab H
M2, since the sensitivity coefficients for each of M1 and Nd towards

paths 8 and 13 are identical.

Discussion

We present a mathematical model for neuropathogenesis during

AD that involves neurons, normal and reactive glial cells, and Ab.

It uses neuronal death as a surrogate for senile plaque formation.

By monitoring neuronal health, we are able to identify intuitive

strategies for interventions. In particular, the model suggests that

the most effective intervention is one that improves the inhibition

of reactive microglia and Ab by normal microglia, and ensuring a

sufficient population of quiescent astroglia. Overall, neuropatho-

genesis proceeds through the production of reactive microglia.

Our analysis is consistent with experimental data that indicate

that inflammation may be an early initiator for AD, long before

the apparent senile plaque formation [22,23]. It further reinforces

Figure 4. Dynamic variations of cell populations given distinct
impacts of Ab on M1 macrophages (the value of a13). Variations
in the (a) M1, (b) Nd and (c) Ab populations over 20 years for three
values of a13 = 16(black), 106(red), and 506(blue) the value reported
in Table 1 for the path Ab R M1. As a13 increases, M1 and Nd also
increase and, consequently, there is an associated decrease in neuronal
survival. This is also illustrated through Eqs. (1) and (2) of the
mathematical model.
doi:10.1371/journal.pone.0015176.g004
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the notion that additional studies should be directed at examining

earlier inflammatory signals and alterations involving microglia as

a key node so as to better define AD initiation and understand

mechanisms for effective prevention and treatment of the disease.

We realize that our mathematical analysis is an initial attempt to

examine AD and may not fully account for the associate

intertwined cellular communication pathways. Nevertheless, it

serves as a hypothesis provoking and building process that should

encourage integrated analyses of AD pathogenesis. Future

experimental data examining the cross-talks among microglia,

astroglia, and neurons will allow us to better refine our model and

implement realistic parameters in the rate equations.
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