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Abstract
Detection of disease gene interaction effects among the enormous array of single nucleotide
polymorphism (SNP) combinations represents the next frontier in genome-wide association
(GWA) studies. Here we propose a novel strategy on the basis of the pattern and nature of the
interaction, which can be classified as essential (EI) or removable (RI). We provide an analytical
framework, including the qualitative conditions for screening EIs/RIs and a RI-to-EI likelihood
ratio score to quantitatively measure the effect. In analyzing six GWA data sets, we find that the
scores follow an exponential distribution, except in the upper 10−8 tail region in which the scores
become irregular and unpredictable. Our approach is conceptually simple, computationally
efficient and detects interactions that can be visualized and unequivocally interpreted.
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1. INTRODUCTION
A growing number of successful genome-wide association (GWA) studies have been
reported in the past several years [6]. All have initially focused on the main effects of
individual single nucleotide polymorphisms (SNPs), which for the most part have been
found to be relatively weak. Yet to be explored in this wealth of data are the interaction
effects among SNPs, wherein the main effect of one SNP may be weak because that SNP
confers risk only in the presence of one or more other SNPs. Taking these gene-gene
interactions into account may lead to the discovery of stronger and more interesting effects
[2,8]. However, searching for meaningful interactions is a challenge for even the simplest
case of examining all two-way interactions among a million SNPs (~half of 1012

combinations).

To aid in efficiency and interpretability of this formidable computational problem, we
present an analytical framework for two types of interactions, removable interactions (RIs)
and essential interactions [1,12]. Interaction is usually defined as departure from additivity
of effects on a specific outcome scale. If a monotone transformation exists that induces
additivity, the interaction is called removable; otherwise, the interaction is essential.

What makes the mathematics hard is the sheer volume of networks in GWA data, for which
no universal law underlying the system can be deduced. Our idea to detect interactions in
GWA studies is based on distinct structures which can be visualized and epidemiological
interpretations of the effects. We developed a qualitative tool that can rapidly screen specific
interactions, essential or removable, and a likelihood score that quantifies the extent of the
effect. We have identified empirical regularities in applying the proposed method to six
GWA data sets with number of SNPs ranged from 100,000 to 1,000,000.

Under the simplest scenario of two SNPs (SNP1 and SNP2), each having two genotypic
variants denoted by 0 and 1, respectively, we derived the necessary and sufficient conditions
to use as a screening tool to quickly and reliably identify pair interactions as essential or
removable. We then derived the EI-to-RI likelihood ratio (EI-RI score) to quantify the
effects. In investigation of six existing GWA studies we find a consistent pattern of the EI-
RI score distributions. Extension to scenarios with SNPs having three genotypes is
straightforward, albeit involving tedious calculations.

2. METHODS
2.1 Essential/removable interactions

The joint risks of a pair of dichotomous markers can be graphically represented by two lines
and are depicted in Fig. 1. We use the OR and log(OR) risk scales; however the results
presented can be generalized to any risk scale. Figure 1 illustrates that all two-SNP
combinations can be classified into one of three mutually-exclusive categories:

Absolute non-interaction (ANI) (Fig. 1a): No interaction between SNP1 and SNP2 means
that the effect of SNP1+SNP2 is the sum of the individual effects (i.e., effects are additive).
ANI is manifest by a two-SNP combination that does not produce an interaction under any
risk scale. This phenomenon occurs when in the presence of a given genotypic variant of
SNP2, risk does not vary by genotypic variant of SNP1.

Removable interaction (RI), Fig. 1b–c, is manifest by a two-SNP combination that produces
an interaction under at least one risk scale (Fig. 1b), and does not produce an interaction
under at least one other risk scale (Fig. 1c). If an RI exists, the direction, positive or
negative, of the risk difference for one SNP is not affected by the other SNP (and is not
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zero). However, under a risk scale in which the RI manifests itself as an interaction, the
magnitude of the effect of SNP1 varies by SNP2 genotypic stratum, and vice versa. That is,
with an RI, the magnitude, but not the direction, of the effect for one SNP may be modified
by the other SNP. An example of an RI is given in Table 1.

Essential interaction (EI), Fig. 1d-f, is manifest by a two SNP combination that produces an
interaction under all risk scales: In contrast to RI, an EI exists when the direction of the
effect of one SNP is dependent on the genotypic variant of the other SNP. That is, the effect
of one SNP is reversed by the other SNP. And as in RI, for an EI the magnitude of the effect
for one SNP may also be modified by the other SNP. EI can be further classified into two
subclasses, EISLOPE and EICROSS. EISLOPE occurs when the reversal of the direction of
effect is one way (e.g., SNP1 by SNP2 but not SNP2 by SNP1) (Fig. 1d–e), while EICROSS
occurs when the reversal of the direction of effect is reciprocal (SNP1 by SNP2 and SNP2
by SNP1) (Fig. 1f).

From the above reasoning we can derive a set of relationships in terms of magnitudes and
directions of the effect change of one SNP by the other:

Condition I (slopes have opposite direction): (OR10 − OR00)(OR11 − OR01) ≤ 0 in which
one risk difference in the product can equal zero, but not both.

Condition II (lines intersect): (OR01 − OR00)(OR11 − OR10) ≤ 0 in which one risk
difference, but not both, can equal zero.

An interaction is essential if and only if Condition I and/or II holds. If only one of these
conditions holds, we have an EISLOPE; if both conditions hold, we have an EICROSS. If both
conditions are not satisfied, then we have RI (unless both product terms in Condition I or
Condition II are zeros, in which case we have ANI).

2.2 An EI-RI score: a quantitative measure for the effect
Since the Conditions I-II are invariant under any monotone transformation, ORab in two
conditions could be replaced by its logarithm, the log odds ratio of genotypic variants
combination ab with respect to baseline 00. Based on the Condition I and/or Condition II,
the necessary and sufficient(N&S) condition for EIs, a statistical test can be constructed for
the null hypothesis that no EI exists. By replacing ORs with their logarithms, the testing
hypothesis depends only on log-odds ratios. The standard theory [11,13,14] assures that the
likelihood ratio test for such kind of hypothesis based on the prospective likelihood function
would be valid. The prospective likelihood function is proportional to

(1)

where nab and mab respectively are observed numbers of cases and controls for joint
genotypic variant ab, pab = eθab /(1 + eθab) is the corresponding affected probability and θab
represents the log odd of the joint genotypic variant ab. Let θ = (θ00, θ01, θ10, θ11) be the
vector of parameters. The null hypothesis parameter space, the complement of the subset for
parameters satisfying the N&S condition, is not closed. We will use instead its closure, i.e.,

(2)

as a working null parameter space. By doing so, we can simplify the computation and the
test will be slightly conservative.
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We took the EI-RI score to be the likelihood ratio statistics [7], i.e.

(3)

where ϴ = {θ : −∞ ≤ θ00, θ01, θ10, θ11 < is the uncon-strained parameter space.

Obviously, the unconstrained MLE (θ ∈ ϴ) has a closed form, namely θab = log(nab/mab).
To obtain the EI-RI score, one needs to calculate the constrained MLE under the null
hypothesis, which can be solved by a non-linear programming (NLP) algorithm. However,
the NLP algorithm is time-consuming and could break down especially when the
constrained MLE is on the boundary of ϴ0. Therefore, the NLP algorithm is not suitable for
GWA study.

By virtue of the concavity of the log likelihood function, we developed an efficient
algorithm for calculating the constrained MLE. Details of the algorithm are given in
Appendix A.

2.3 EI-RI scores in six GWA data sets
Under the null hypothesis of ANI or RI, the null distribution of the EI-RI score is
mathematically intractable as it is a mixture of zero (when the maximum point belongs to
the null parameter space) and a positive distribution (when the constrained MLE does not
belong to the null parameter space) with the component weights unknown. Estimation of p-
values by the permutation test fails because the conventional permutation procedure is not
suitable for our composite null hypothesis. In fact, randomly allocating the samples under
the assumption of no joint effects or marginal effects as in the conventional permutation
approach inevitably introduces false positives. And indeed, serious inflated type I error rates
by the permutation test have been observed in our simulation studies (data not shown here).

Re-sampling approaches [4] might be applicable for estimating p-values with small numbers
of SNP markers, but it is beyond computational capability for GWA data with large numbers
of SNP pairs. We therefore sought to examine the empirical distribution patterns of the
scores among six GWA data sets. All empirical distributions of EI-RI scores in six data sets
give rise to similar upper tails, which, in turn, may justify the existence of a universal
threshold for declaring the significance of an EI.

3. RESULTS FOR EMPIRICAL STUDY
Descriptive statistics of six GWA data sets are given in Table 2. The numbers of SNPs in
these studies ranged from 105 to 106. We dichotomized each SNP genotype based on the
empirical mode of inheritance [9]. In the six data sets examined, about half (48.83% on
average) of the SNP pairs were in the category of EIs (Fig. 1d–f). Of the EI pairs, about two-
thirds (65.97% on average) were EISLOPE pairs and one-third (34.03%) were EICROSS pairs.

Histogram plots are drawn for EI-RI scores of the six data sets and are shown in Fig. 2a.
Comparing histogram plots of the two EI groups, EICROSS pairs tend to have higher EI-RI
scores than EISLOPE pairs. Patterns of histogram plots are consistent across six data sets,
particularly, when EI-RI scores become large. This consistency implies that the empirical
distributions of EI pairs in the six data sets have similar tail behavior. This conclusion was
confirmed by the consistency of tail quantiles for EI-RI scores, as shown in Fig. 2c. The
consistent tail distribution of EI-RI scores in six data sets may justify the existence of a
universal critical value for declaring the significance of an EI.
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In GWA studies, the critical values are chosen as the (1-p)-quantiles of EI-RI scores under
the null hypothesis for an extremely small p. One way to estimate the extreme quantiles is to
inverse the linear interpolation of the empirical cumulative distribution function [10]. We
found that the empirical (1-p)-quantiles are consistent across the six data sets for 10−8 ≤ p ≤
10−2 (Fig. 2c, Table 3). However, in the upper 10−8 tail region the quantiles became
irregular and unpredictable, which is due to random error of the extreme value distribution
of p-values. Therefore, the interpolation method is not suitable for estimation of extreme
quantiles. To overcome this problem, we approximated extreme quantiles using much lower
quantiles which can be estimated by intermediate order statistics.

For each empirical distribution of the six data sets, the relationship between the (1 – p)
quantile and log(p) was approximately linear in the range 10−8 ≤ p ≤ 10−2 (Fig. 2c). The
linearity implies that extreme value indices [5] are zero for all six empirical distributions.
The conclusion was confirmed by constructing 95% confidence intervals of the extreme
value index with different numbers of upper orderstatistics (for details see Appendix B). The
value zero belongs to almost all these confidence intervals, which does not contradict the
hypothesis that the extreme value index is zero.

With a zero extreme value index, the (1 − p)-quantile for small p can be approximated by

(4)

for some μ and σ(σ > 0). That is, the upper tail of the EI-RI score approximately follows an
exponential distribution with location parameter σ and scale parameter σ.The two parameters
were estimated by fitting the regression line defined in (4) for p in the range [10−8, 10−2].
As shown in Table 4, all R-square statistics are close to 1, which indicates that regression
lines defined in (4) almost perfectly fit the data (also see quantile-quantile plots in Fig. 2b).

Furthermore, estimators of the two parameters are consistent across all six data sets. This,
again, suggests that distributions of EI-RI scores have similar tail behavior.

Based on these data and a reasonable underlying assumption of an exponential tail
distribution for EI-RI scores under the null hypothesis, we can deduce a simple proposition:
the EI-RI score corresponding to the (1 − p)-quantile is approximately equal to (−2.617) ×
log(p) – 2.483, for small p, and equivalently, the p-value is approximately equal to exp{−
(EI-RI score + 2.483)/2.617}, for large EI-RI scores.

It will be interesting to see whether a similar trend of the scores will hold and the above
estimated p-values can be generalized for any GWA study. If so, this in turn may provide a
simple guideline of choosing significance levels for SNP pairs worthy of further
investigation such as replication studies. For example, here we postulate an EI-RI score less
than 18 indicates an inconclusive interaction; a score between 18 and 26 suggests a
possibility of a true EI; and a score greater than 26 indicates a statistically significant EI.
These speculations warrant further investigation.

4. DISCUSSION
Detection of interaction effects among SNPs represents the next frontier in GWA studies.
However, screening the enormous array of SNP combinations represents a daunting task. To
begin to address this challenge, we classified all two-SNP combinations into three mutually-
exclusive categories, absolute non-interactions, removable interactions, and essential
interactions, and we characterized the conditions for each of these categories. In essence, an
interaction is removable when the magnitude, but not the direction, of the effect of one SNP
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is modified by the other SNP, and an interaction is essential when the direction of the effect
for at least one of the SNPs is altered in the presence of the other SNP (and the magnitude
may be modified as well).

We developed an efficient computer program to screen for EIs and to calculate the EI-RI
scores (likelihood ratio statistics) for each SNP pair in GWA data of any number of SNPs.
With this algorithm we examined the distributions of EI-RI scores in six GWA data sets
with 105 to 106 SNPs. A consistent pattern emerged, which allowed us to derive the tail
quantiles by extrapolation from the stable portion of the empirical distributions. Finally, we
suggested an EI-RI score threshold for identifying prime candidate EIs.

The EI-RI score presented here emphasizes EIs because they are not dependent on risk scale
and represent the most extreme form of interaction (reversal of direction of risk difference).
Furthermore, while one may reasonably screen for RIs solely among SNPs that exhibit
significant main effects, this approach may not work for EIs, especially for EICROSS. This is
because in the presence of an RI, both SNPs have non-zero marginal effects (of course, the
magnitude of the effects depends on the joint effects and MAFs). With EI, however, the
marginal effect for at least one SNP can be close to zero even when the EI effect is
substantial. With EICROSS the marginal effect for both SNPs can be close to zero. Thus,
many EIs may be missed if only SNPs with main effects are screened. This conjecture
requires further investigation.

Even though RIs have the undesirable mathematical property of dependence on the risk
scale, it is likely that many RIs in GWA data sets will prove to be potentially interesting, as
they have proved to be in traditional case-control studies. It will be straightforward to apply
the methods presented here, which are independent of risk scale, to screen for RIs as well as
EIs.

Taken together, the qualitative and the quantitative methods we proposed to detect
interaction effects in GWA data by way of EIs and RIs is conceptually simple,
computationally manageable and, most of all, the resulting interactions can be readily
visualized and unequivocally interpreted. We plan to determine the practical utility of our
current methodology to address real disease problems.

All algorithms have been implemented in C++ and the program is available upon request
from authors.
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APPENDIX A. ALGORITHM FOR CONSTRAINED MLE
If the unconstrained MLE belongs to ϴ0, then it is of course the constrained MLE. If the
constrained MLE is an interior point of ϴ0, it must be the unconstrained MLE since the log
likelihood function is concave so that there are no local maxima other than the global
maxima. Therefore, if the unconstrained MLE does not belong to ϴ0, the constrained MLE

Wu et al. Page 6

Stat Interface. Author manuscript; available in PMC 2010 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



must be on its boundary ϴB. This leads to the algorithm for obtaining the constrained MLE,
which is illustrated in Fig. A1.

The boundary ϴB is the union of four subboundaries:
,
,
 and
. We can calculate the MLEs on four sub-

boundaries separately and the one with largest likelihood function value is the constrained
MLE on boundary ϴB. We also develop an algorithm for obtaining the MLE on sub-
boundary ϴB1(the other three constrained MLEs can be similarly obtained). The algorithm is
graphically displayed in Fig. A2.

The algorithm is very easy to implement and is time efficient since there are closed forms
for these constrained MLEs that need to be calculated in the algorithm. For example, under
constraint θ01 = θ00, the resulting MLE of θ is (log[(n00 + n01)/(m00 + m01)], log[(n00 + n01)/
(m00 + m01)], log[n10/m10], log[n11/m11]). Under constraint θ00 = θ01 = θ10, MLEs of θijs are
θ00 = θ01 = θ10 = log[(n00 + n01 + n10)/(m00 + m01 + m10)] and θ11 = log[n11/m11]. Similarly,
under constraint θ00 = θ01 = θ11, the MLE of θ00 = θ01 = θ11 is log[(n00 + n01 + n11)/(m00 +
m01 + m11)] and the MLE of θ10 is log[n10/m10].

APPENDIX B. MOMENT ESTIMATION AND CONFIDENCE INTERVAL FOR
EXTREME VALUE INDEX

The key issue in extreme value theory is the estimation of the extreme value index c, which
governs the tail behavior of a distribution function. The Hill estimator is the most popular
estimator which is restricted to the case c > 0. The moment estimator , an adaptation of
the Hill estimator, is a consistent estimator for all real value c’s. Let X1,n ≤ X2, n ≤ ⋯ ≤ Xn,n
be the order statistics for sample X1, … , Xn, the moment estimator of c is given by

with  for j = 1,2.

Under some regular conditions,  asymptotically follows a zero mean normal
distribution with variance [3]

An approximate (1 – α)100% confidence interval is then given by
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where  is the asymptotic variance with c being replaced by its moment estimator, and
Zα/2 is the (1 − α/2)-quantile of the standard normal distribution.

Table A gives the 95% asymptotic confidence intervals for various values of k. The value
zero belongs to almost all these confidence intervals, which does not contradict the
hypothesis that the extreme value index is zero.
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Figure 1.
Graphical representations of absolute non-interaction, removable interaction, and essential
interaction. (a) Absolute non-interaction (ANI): in the presence of a given genotypic variant
of SNP2, risk does not vary by genotypic variant of SNP1 (two lines are parallel with zero
slope). This pattern represents ANI because no monotone transformation can force the two
lines to not be parallel. (b) There is an interaction (non-intersecting, non-parallel lines with
slopes of the same direction) between two SNPs on the OR risk scale, and (c) the interaction
is removed (parallel lines) by transformation to the log (OR) scale. In this instance, a
monotone transformation made the two lines parallel. (b) and (c) correspond to the example
illustrated in Table 1. (d) and (e) The same essential interaction (EISLOPE) plotted in two
different ways, (d) with SNP1 represented on the x-axis, in which the two lines have slopes
of opposite directions but do not intersect and (e) with SNP2 represented on the x axis, in
which the two lines have slopes of the same direction, and intersect. The patterns shown in
(d) and (e) are equivalent. (f) Essential interaction EICROSS, in which the two lines have
slopes of opposite direction and intersect. (d), (e), and (f) represent EIs because no
monotone transformation can make the two lines parallel under any of these conditions.

Wu et al. Page 9

Stat Interface. Author manuscript; available in PMC 2010 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2a.
The histogram plots of EI-RI scores in six data sets. Dark black is the histogram for EICROSS
pairs and gray is the histogram for EISLOPE pairs. For each type of EI pair, the leftmost
column is the frequency for EI-RI scores less than 0.0005 and the rightmost column is the
frequency for EI-RI scores larger than 4.
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Figure 2b.
Quantile-quantile plots of EI-RI scores for six GWA data sets. Each point corresponds to a
probability p: the x-coordinate represents the EI-RI score corresponding to the p-th quantile
of the exponential distribution (details in text) and the y-coordinate represents the EI-RI
score corresponding to the p-th sample quantile from the empirical data.
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Figure 2c.
The tail quantiles of the EI-RI scores stratified by EICROSS pairs and EISLOPE pairs in the six
GWA data sets based on the real data (solid lines) and the extrapolated tail quantiles from an
estimated exponential distribution (dotted lines).
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Figure A.
Algorithm for calculating MLE constrained on the null hypothesis. (1) Calculation of
constrained MLE . (2) Calculation of constrained MLE  on boundary ϴB1.
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